Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.752
Filtrar
1.
Sci Data ; 11(1): 494, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744868

RESUMO

The standard of care for brain tumors is maximal safe surgical resection. Neuronavigation augments the surgeon's ability to achieve this but loses validity as surgery progresses due to brain shift. Moreover, gliomas are often indistinguishable from surrounding healthy brain tissue. Intraoperative magnetic resonance imaging (iMRI) and ultrasound (iUS) help visualize the tumor and brain shift. iUS is faster and easier to incorporate into surgical workflows but offers a lower contrast between tumorous and healthy tissues than iMRI. With the success of data-hungry Artificial Intelligence algorithms in medical image analysis, the benefits of sharing well-curated data cannot be overstated. To this end, we provide the largest publicly available MRI and iUS database of surgically treated brain tumors, including gliomas (n = 92), metastases (n = 11), and others (n = 11). This collection contains 369 preoperative MRI series, 320 3D iUS series, 301 iMRI series, and 356 segmentations collected from 114 consecutive patients at a single institution. This database is expected to help brain shift and image analysis research and neurosurgical training in interpreting iUS and iMRI.


Assuntos
Neoplasias Encefálicas , Bases de Dados Factuais , Imageamento por Ressonância Magnética , Imagem Multimodal , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Glioma/diagnóstico por imagem , Glioma/cirurgia , Ultrassonografia , Neuronavegação/métodos
2.
J Acoust Soc Am ; 155(4): 2860-2874, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38682916

RESUMO

A high-frequency 6 MHz miniature handheld histotripsy device with an endoscopic form factor and co-registered high-resolution ultrasound imaging was developed. This device could allow precision histotripsy ablation during minimally invasive brain tumor surgeries with real-time image guidance. This study characterized the outcome of acute histotripsy in the normal in vivo rat brain using the device with a range of histotripsy pulse settings, including number of cycles, pulse repetition frequency, and pressure, as well as other experimental factors. The stability and shape of the bubble cloud were measured during ablations, as well as the post-histotripsy ablation shape in ultrasound B-mode and histology. The results were compared between histological images and the ultrasound imaging data to determine how well ultrasound data reflected observable damage in histology. The results indicated that while pulse settings can have some influence on ablation shape, sample-to-sample variation had a larger influence on ablation shape. This suggests that real-time ablation monitoring is essential for accurate knowledge of outcomes. Ultrasound imaging provided an accurate real-time indication of ablation shape both during ablation and post-ablation.


Assuntos
Encéfalo , Ablação por Ultrassom Focalizado de Alta Intensidade , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Encéfalo/patologia , Ratos , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Ablação por Ultrassom Focalizado de Alta Intensidade/instrumentação , Ratos Sprague-Dawley , Masculino , Desenho de Equipamento , Ultrassonografia/métodos , Ultrassonografia de Intervenção/métodos
3.
J Neurosci Methods ; 407: 110133, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38588922

RESUMO

BACKGROUND: High-precision neurosurgical targeting in nonhuman primates (NHPs) often requires presurgical anatomical mapping with noninvasive neuroimaging techniques (MRI, CT, PET), allowing for translation of individual anatomical coordinates to surgical stereotaxic apparatus. Given the varied tissue contrasts that these imaging techniques produce, precise alignment of imaging-based coordinates to surgical apparatus can be cumbersome. MRI-compatible stereotaxis with radiopaque fiducial markers offer a straight-forward and reliable solution, but existing commercial options do not fit in conformal head coils that maximize imaging quality. NEW METHOD: We developed a compact MRI-compatible stereotaxis suitable for a variety of NHP species (Macaca mulatta, Macaca fascicularis, and Cebus apella) that allows multimodal alignment through technique-specific fiducial markers. COMPARISON WITH EXISTING METHODS: With the express purpose of compatibility with clinically available MRI, CT, and PET systems, the frame is no larger than a human head, while allowing for imaging NHPs in the supinated position. This design requires no marker implantation, special software, or additional knowledge other than the operation of a common large animal stereotaxis. RESULTS: We demonstrated the applicability of this 3D-printable apparatus across a diverse set of experiments requiring presurgical planning: 1) We demonstrate the accuracy of the fiducial system through a within-MRI cannula insertion and subcortical injection of a viral vector. 2) We also demonstrated accuracy of multimodal (MRI and CT) alignment and coordinate transfer to guide a surgical robot electrode implantation for deep-brain electrophysiology. CONCLUSIONS: The computer-aided design files and engineering drawings are publicly available, with the modular design allowing for low cost and manageable manufacturing.


Assuntos
Mapeamento Encefálico , Cebus , Imageamento por Ressonância Magnética , Animais , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/instrumentação , Mapeamento Encefálico/métodos , Mapeamento Encefálico/instrumentação , Técnicas Estereotáxicas/instrumentação , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Encéfalo/anatomia & histologia , Marcadores Fiduciais , Imagem Multimodal/métodos , Imagem Multimodal/instrumentação , Macaca mulatta , Masculino
4.
Artigo em Inglês | MEDLINE | ID: mdl-38617832

RESUMO

Clinical vignette: We present the case of a patient who developed intra-operative pneumocephalus during left globus pallidus internus deep brain stimulation (DBS) placement for Parkinson's disease (PD). Microelectrode recording (MER) revealed that we were anterior and lateral to the intended target. Clinical dilemma: Clinically, we suspected brain shift from pneumocephalus. Removal of the guide-tube for readjustment of the brain target would have resulted in the introduction of movement resulting from brain shift and from displacement from the planned trajectory. Clinical solution: We elected to leave the guide-tube cannula in place and to pass the final DBS lead into a channel that was located posterior-medially from the center microelectrode pass. Gap in knowledge: Surgical techniques which can be employed to minimize brain shift in the operating room setting are critical for reduction in variation of the final DBS lead placement. Pneumocephalus after dural opening is one potential cause of brain shift. The recognition that the removal of a guide-tube cannula could worsen brain shift creates an opportunity for an intraoperative team to maintain the advantage of the 'fork' in the brain provided by the initial procedure's requirement of guide-tube placement.


Assuntos
Estimulação Encefálica Profunda , Pneumocefalia , Humanos , Estimulação Encefálica Profunda/efeitos adversos , Pneumocefalia/diagnóstico por imagem , Pneumocefalia/etiologia , Pneumocefalia/terapia , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Globo Pálido/diagnóstico por imagem , Globo Pálido/cirurgia , Movimento
5.
Neurosurg Rev ; 47(1): 174, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38643293

RESUMO

Brain Arteriovenous Malformations (bAVMs) are rare but high-risk developmental anomalies of the vascular system. Microsurgery through craniotomy is believed to be the mainstay standard treatment for many grades of bAVMs. However, a significant challenge emerges in the existing body of clinical studies on open surgery for bAVMs: the lack of reproducibility and comparability. This study aims to assess the quality of studies reporting clinical and surgical outcomes for bAVMs treated by open surgery and develop a reporting guideline checklist focusing on essential elements to ensure comparability and reproducibility. This is a systematic literature review that followed the PRISMA guidelines with the search in Medline, Embase, and Web of Science databases, for studies published between January 1, 2018, and December 1, 2023. Included studies were scrutinized focusing on seven domains: (1) Assessment of How Studies Reported on the Baseline Characteristics of the Patient Sample; (2) Assessment and reporting on bAVMs grading, anatomical characteristics, and radiological aspects; (3) Angioarchitecture Assessment and Reporting; (4) Reporting on Pivotal Concepts Definitions; (5) Reporting on Neurosurgeon(s) and Staff Characteristics; (6) Reporting on Surgical Details; (7) Assessing and Reporting Clinical and Surgical Outcomes and AEs. A total of 47 studies comprising 5,884 patients were included. The scrutiny of the studies identified that the current literature in bAVM open surgery is deficient in many aspects, ranging from fundamental pieces of information of methodology to baseline characteristics of included patients and data reporting. Included studies demonstrated a lack of reproducibility that hinders building cumulative evidence. A bAVM Open Surgery Reporting Guideline with 65 items distributed across eight domains was developed and is proposed in this study aiming to address these shortcomings. This systematic review identified that the available literature regarding microsurgery for bAVM treatment, particularly in studies reporting clinical and surgical outcomes, lacks rigorous scientific methodology and quality in reporting. The proposed bAVM Open Surgery Reporting Guideline covers all essential aspects and is a potential solution to address these shortcomings and increase transparency, comparability, and reproducibility in this scenario. This proposal aims to advance the level of evidence and enhance knowledge regarding the Open Surgery treatment for bAVMs.


Assuntos
Malformações Arteriovenosas Intracranianas , Humanos , Reprodutibilidade dos Testes , Malformações Arteriovenosas Intracranianas/cirurgia , Encéfalo/cirurgia , Microcirurgia , Procedimentos Neurocirúrgicos
6.
Sci Rep ; 14(1): 6326, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491119

RESUMO

Propofol's pharmacokinetics have been extensively studied using human blood samples and applied to target-controlled infusion systems; however, information on its concentration in the brain remains scarce. Therefore, this study aimed to simultaneously measure propofol plasma and brain concentrations in patients who underwent awake craniotomy and establish new pharmacokinetic model. Fifty-seven patients with brain tumors or brain lesions who underwent awake craniotomy were sequentially assigned to model-building and validating groups. Plasma and brain (lobectomy or uncapping margins) samples were collected at five time-points. The concentration of propofol was measured using high-performance liquid chromatography. Population pharmacokinetic analysis was conducted through a nonlinear mixed-effects modeling program using a first-order conditional estimation method with interactions. Propofol's brain concentrations were higher than its plasma concentrations. The measured brain concentrations were higher than the effect site concentrations using the previous models. Extended models were constructed based on measured concentrations by incorporating the brain/plasma partition coefficient (Kp value). Extended models showed good predictive accuracy for brain concentrations in the validating group. The Kp value functioned as a factor explaining retention in the brain. Our new pharmacokinetic models and Kp value can predict propofol's brain and plasma concentrations, contributing to safer and more stable anesthesia.


Assuntos
Propofol , Humanos , Encéfalo/cirurgia , Plasma , Anestésicos Intravenosos , Infusões Intravenosas
7.
Neurosurg Rev ; 47(1): 110, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38459217

RESUMO

A cerebrospinal-fluid-related (CSF-related) problem occurred in 25-30% of frontoethmoidal encephalocele (FEE) cases. Since there was no algorithm or guideline, the judgment to treat the CSF-related problem often relies upon the surgeon's experience. In our institution, the early shunt was preferable to treat the problem, but it added risks to the children. We developed an algorithm, "Shunt Algorithm for Frontoethmoidal Encephalocele" (SAFE), to guide the surgeon in making the most reasonable decision. To evaluate the SAFE's efficacy in reducing unnecessary early shunting for FEE with CSF-related intracranial abnormality. Medical records of FEE patients with CSF-related abnormalities treated from January 2007 to December 2019 were reviewed. The patients were divided into two groups: before the SAFE group as group 1 (2007 - 2011) and after the SAFE group as group 2 (2012 - 2019). We excluded FEE patients without CSF-related abnormalities. We compared the number of shunts and the complications between the two groups. One hundred and twenty-nine patient's medical records were reviewed. The males were predominating (79 versus 50 patients) with an average age of 58.2±7.1 months old (6 to 276 months old). Ventriculomegaly was found in 18 cases, arachnoid cysts in 46 cases, porencephalic cysts in 19 cases, and ventricular malformation in 46 cases. Group 1, with a score of 4 to 7 (19 cases), received an early shunt along with the FEE repair. Complications occurred in 7 patients of this group. Group 2, with a score of 4-7, received shunts only after the complication occurred in 3 cases (pseudomeningocele unresponsive with conservative treatment and re-operation in 2 cases; a sign of intracranial hypertension in 1 case). No complication occurred in this group. Groups 1 and 2, with scores of 8 or higher (6 and 8 cases, respectively), underwent direct shunt, with one complication (exposed shunt) in each group. The SAFE decision algorithm for FEE with CSF-related intracranial abnormalities has proven effective in reducing unnecessary shunting and the rate of shunt complications.


Assuntos
Hidrocefalia , Hipertensão Intracraniana , Criança , Masculino , Humanos , Pré-Escolar , Encefalocele/diagnóstico , Encefalocele/cirurgia , Hidrocefalia/cirurgia , Encéfalo/cirurgia , Hipertensão Intracraniana/cirurgia , Procedimentos Neurocirúrgicos , Derivações do Líquido Cefalorraquidiano , Estudos Retrospectivos
8.
Magn Reson Imaging ; 110: 23-28, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38552748

RESUMO

OBJECTIVE: To evaluate the effect of stent implantation for vertebrobasilar artery stenosis,by using 3D arterial spin labeling (3D ASL) technique. METHODS: A retrospective analysis was conducted on the clinical and 3D ASL data of 48 patients who underwent vertebral-basilar artery stenting. Post-labeling delay times (PLD) of 1.5 s and 2.5 s were chosen, and the average regional cerebral blood flow (rCBF) values were measured in nine brain regions of the posterior circulation: bilateral thalamus, bilateral occipital lobes, bilateral cerebellar hemispheres, midbrain, pons, and medulla. The 48 patients were divided into two groups based on the presence or absence of acute ischemic stroke in the posterior cerebral circulation region detected by diffusion-weighted imaging (DWI). The preoperative and postoperative rCBF results were statistically analyzed. RESULTS: In the infarct group, there were significant increases in rCBF values of all nine brain regions at both PLD = 1.5 s and 2.5 s postoperatively compared to preoperatively. At PLD = 1.5 s, statistically significant differences in rCBF values between the preoperative and postoperative periods were found in the right thalamus, left cerebellum, midbrain, and pons regions (P < 0.05). At PLD = 2.5 s, statistically significant differences in rCBF values between the preoperative and postoperative periods were observed in the left occipital lobe, right cerebellum, midbrain, and pons regions (P < 0.05). When analyzing the rCBF values of the brain regions with recent infarcts in the infarct group, there was a significant increase in postoperative rCBF values compared to preoperative values (P < 0.05). After excluding the data from brain regions with recent infarcts, the CBF values in the remaining brain regions were also increased postoperatively, and some brain regions showed statistically significant differences in rCBF values between the preoperative and postoperative periods (P < 0.05). In the non-infarct group, there were no statistically significant differences in the preoperative and postoperative rCBF values in all brain regions at both PLD = 1.5 s and 2.5 s (P > 0.05). CONCLUSION: The application of 3D ASL technology shows significant value in assessing the surgical efficacy of vertebral-basilar artery stenting, especially in patients with acute posterior circulation infarction.


Assuntos
Circulação Cerebrovascular , Imageamento Tridimensional , Stents , Insuficiência Vertebrobasilar , Humanos , Masculino , Feminino , Insuficiência Vertebrobasilar/diagnóstico por imagem , Insuficiência Vertebrobasilar/cirurgia , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Imageamento Tridimensional/métodos , Resultado do Tratamento , Marcadores de Spin , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Encéfalo/cirurgia , Adulto
9.
J Vis Exp ; (204)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38436323

RESUMO

Engrafting organoids into vascularized tissues in model animals, such as the immunodeficient mouse or chick embryo chorioallantoic membrane (CAM), has proven efficient for neovascularization modeling. The CAM is a richly vascularized extraembryonic membrane, which shows limited immunoreactivity, thus becoming an excellent hosting model for human origin cell transplants. This paper describes the strategy to engraft human brain organoids differentiated at multiple maturation stages into the CAM. The cellular composition of brain organoids changes with time, reflecting the milestones of human brain development. We grafted brain organoids at relevant maturation stages: neuroepithelial expansion (18 DIV), early neurogenesis (60 DIV), and early gliogenesis (180 DIV) into the CAM of embryonic day (E)7 chicken embryos. Engrafted brain organoids were harvested 5 days later and their histological features were analyzed. No histological signs of neovascularization in the grafted organoids or abnormal blood vessels adjacent to the graftings were detected. Moreover, remarkable changes were observed in the cellular composition of the grafted organoids, namely, an increase in the number of glial fibrillary acidic protein-positive-reactive astrocytes. However, the cytoarchitectural changes were dependent on the organoid maturation stage. Altogether, these results suggest that brain organoids can grow in the CAM, and they show differences in the cytoarchitecture depending on their maturation stage at grafting.


Assuntos
Membrana Corioalantoide , Fenômenos Fisiológicos do Sistema Nervoso , Humanos , Embrião de Galinha , Animais , Camundongos , Membrana Corioalantoide/cirurgia , Organoides , Neurogênese , Encéfalo/cirurgia , Neovascularização Patológica
10.
Magy Onkol ; 68(1): 5-12, 2024 Mar 14.
Artigo em Húngaro | MEDLINE | ID: mdl-38484371

RESUMO

The treatment of central nervous system tumors is still a major challenge for the oncological and neurosurgical teams. Due to the heterogeneous histological and topological characteristics of these neoplasms, every case requires individual evaluation. In addition to histology and stage, survival is largely determined by the extent of resection, which can be severely limited by the proximity of eloquent brain regions. A key component of current modern neuro-oncological care is the planning and execution of surgical intervention to ensure the longest possible progression-free survival with adequate quality of life. The simultaneous development of several pre- and intra-operative imaging modalities is making optimal therapy more and more accessible and safe. Structural, diffusion and functional MRI offers the possibility to visualize the tumor and the surrounding areas both before and during surgery. For the surgeon, the optimal intra-operative environment, orientation and visual acuity are provided by increasingly sophisticated microscopes, navigation devices, intra-operative imaging equipment, endo- and exoscopes.


Assuntos
Neoplasias Encefálicas , Neurocirurgia , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Qualidade de Vida , Encéfalo/patologia , Encéfalo/cirurgia , Procedimentos Neurocirúrgicos/métodos , Imageamento por Ressonância Magnética/métodos
11.
Neurosurg Rev ; 47(1): 124, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509320

RESUMO

Histotripsy, a non-thermal ultrasound technique, holds significant promise in various applications within the realm of brain interventions. While its use for treating brain tumors is somewhat limited, focused ultrasound technology has been extensively investigated for a wide range of purposes within the brain, including disrupting the blood-brain barrier, supporting immunotherapy, addressing conditions like essential tremor, Parkinson's disease, Alzheimer's disease, epilepsy, and neuropathic pain. Research findings indicate that histotripsy can reduce tumor cells with fewer pulses, minimizing the risk of bleeding and cellular injury. The use of MRI sequences such as T2 and T2* enhances the evaluation of the effects of histotripsy treatment, facilitating non-invasive assessment of treated areas. Furthermore, histotripsy displays promise in creating precise brain lesions with minimal edema and inflammation, particularly in porcine models, suggesting considerable progress in the treatment of brain lesions. Moreover, studies confirm its feasibility, safety, and effectiveness in treating intracerebral hemorrhage by safely liquefying clots without causing significant harm to surrounding brain tissue., opening exciting possibilities for clinical applications. The development of transcranial MR-guided focused ultrasound systems based on histotripsy represents a significant breakthrough in overcoming the limitations associated with thermal ablation techniques. Histotripsy's ability to efficiently liquefy clots, minimize skull heating, and target shallow lesions near the skull establishes it as a promising alternative for various brain treatments. In conclusion, histotripsy offers diverse potential in the field of brain interventions, encompassing applications ranging from tumor treatment to the management of intracerebral hemorrhage. While challenges such as accurate monitoring and differentiation of treatment effects persist, ongoing research efforts and technological advancements continue to expand the role of histotripsy in both neurology and neurosurgery.


Assuntos
Técnicas de Ablação , Neoplasias Encefálicas , Humanos , Animais , Suínos , Ultrassonografia/métodos , Neoplasias Encefálicas/cirurgia , Hemorragia Cerebral , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia
12.
No Shinkei Geka ; 52(2): 309-318, 2024 Mar.
Artigo em Japonês | MEDLINE | ID: mdl-38514120

RESUMO

This study aimed to evaluate the clinical usefulness of zero-echo time(ZTE)-based magnetic resonance imaging(MRI)in planning an optimal surgical approach and applying ZTE for anatomical guidance during transcranial surgery. P atients who underwent transcranial surgery and carotid endarterectomy and for whom ZTE-based MRI and magnetic resonance angiography(MRA)data were obtained, were analyzed by creating ZTE/MRA fusion images and 3D-ZTE-based MRI models. We examined whether these images and models could be substituted for computed tomography imaging during neurosurgical procedures. Furthermore, the clinical usability of the 3D-ZTE-based MRI model was evaluated by comparing it with actual surgical views. ZTE/MRA fusion images and 3D-ZTE-based MRI models clearly illustrated the cranial and intracranial morphology without radiation exposure or the use of an iodinated contrast medium. The models allowed the determination of the optimum surgical approach for cerebral aneurysms, brain tumors near the brain surface, and cervical internal carotid artery stenosis by visualizing the relationship between the lesions and adjacent bone structures. However, ZTE-based MRI did not provide useful information for surgery for skull base lesions, such as vestibular schwannoma, because bone structures of the skull base often include air components, which cause signal disturbances in MRI. ZTE sequences on MRI allowed distinct visualization of not only the bone but also the vital structures around the lesion. This technology is minimally invasive and useful for preoperative planning and guidance of the optimum approach during surgery in a subset of neurosurgical diseases.


Assuntos
Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X , Humanos , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X/métodos , Angiografia por Ressonância Magnética , Crânio , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia
14.
J Clin Neurophysiol ; 41(2): 96-107, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306217

RESUMO

SUMMARY: Similar to adults, children undergoing brain surgery can significantly benefit from intraoperative neurophysiologic mapping and monitoring. Although young brains present the advantage of increased plasticity, during procedures in close proximity to eloquent regions, the risk of irreversible neurological compromise remains and can be lowered further by these techniques. More so, pathologies specific to the pediatric population, such as neurodevelopmental lesions, often result in medically refractory epilepsy. Thus, their successful surgical treatment also relies on accurate demarcation and resection of the epileptogenic zone, processes in which intraoperative electrocorticography is often employed. However, stemming from the development and maturation of the central and peripheral nervous systems as the child grows, intraoperative neurophysiologic testing in this population poses methodologic and interpretative challenges even to experienced clinical neurophysiologists. For example, it is difficult to perform awake craniotomies and language testing in the majority of pediatric patients. In addition, children may be more prone to intraoperative seizures and exhibit afterdischarges more frequently during functional mapping using electrical cortical stimulation because of high stimulation thresholds needed to depolarize immature cortex. Moreover, choice of anesthetic regimen and doses may be different in pediatric patients, as is the effect of these drugs on immature brain; these factors add additional complexity in terms of interpretation and analysis of neurophysiologic recordings. Below, we are describing the modalities commonly used during intraoperative neurophysiologic testing in pediatric brain surgery, with emphasis on age-specific clinical indications, methodology, and challenges.


Assuntos
Anestésicos , Neoplasias Encefálicas , Adulto , Humanos , Criança , Mapeamento Encefálico/métodos , Encéfalo/cirurgia , Eletrocorticografia , Craniotomia/métodos , Anestésicos/farmacologia , Neoplasias Encefálicas/cirurgia
15.
J Clin Neurophysiol ; 41(4): 317-321, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38376938

RESUMO

SUMMARY: Current preoperative evaluation of epilepsy can be challenging because of the lack of a comprehensive view of the network's dysfunctions. To demonstrate the utility of our multimodal neurophysiology and neuroimaging integration approach in the presurgical evaluation, we present a proof-of-concept for using this approach in a patient with nonlesional frontal lobe epilepsy who underwent two resective surgeries to achieve seizure control. We conducted a post-hoc investigation using four neuroimaging and neurophysiology modalities: diffusion tensor imaging, resting-state functional MRI, and stereoelectroencephalography at rest and during seizures. We computed region-of-interest-based connectivity for each modality and applied betweenness centrality to identify key network hubs across modalities. Our results revealed that despite seizure semiology and stereoelectroencephalography indicating dysfunction in the right orbitofrontal region, the maximum overlap on the hubs across modalities extended to right temporal areas. Notably, the right middle temporal lobe region served as an overlap hub across diffusion tensor imaging, resting-state functional MRI, and rest stereoelectroencephalography networks and was only included in the resected area in the second surgery, which led to long-term seizure control of this patient. Our findings demonstrated that transmodal hubs could help identify key areas related to epileptogenic network. Therefore, this case presents a promising perspective of using a multimodal approach to improve the presurgical evaluation of patients with epilepsy.


Assuntos
Imagem de Tensor de Difusão , Eletroencefalografia , Imageamento por Ressonância Magnética , Imagem Multimodal , Humanos , Eletroencefalografia/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Adulto , Masculino , Feminino , Encéfalo/cirurgia , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Epilepsia/cirurgia , Epilepsia/fisiopatologia , Epilepsia/diagnóstico por imagem , Epilepsia do Lobo Frontal/cirurgia , Epilepsia do Lobo Frontal/fisiopatologia , Epilepsia do Lobo Frontal/diagnóstico por imagem
16.
NMR Biomed ; 37(6): e5124, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38403798

RESUMO

Advanced intraoperative MR images (ioMRI) acquired during the resection of pediatric brain tumors could offer additional physiological information to preserve healthy tissue. With this work, we aimed to develop a protocol for ioMRI with increased sensitivity for arterial spin labeling (ASL) and diffusion MRI (dMRI), optimized for patient positioning regularly used in the pediatric neurosurgery setting. For ethical reasons, ASL images were acquired in healthy adult subjects that were imaged in the prone and supine position. After this, the ASL cerebral blood flow (CBF) was quantified and compared between both positions. To evaluate the impact of the RF coils setups on image quality, we compared different setups (two vs. four RF coils) by looking at T1-weighted (T1w) signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), as well as undertaking a qualitative evaluation of T1w, T2w, ASL, and dMR images. Mean ASL CBF did not differ between the surgical prone and supine positions in any of the investigated regions of interest or the whole brain. T1w SNR (gray matter: p = 0.016, 34% increase; white matter: p = 0.016, 32% increase) and CNR were higher (p = 0.016) in the four versus two RF coils setups (18.0 ± 1.8 vs. 13.9 ± 1.8). Qualitative evaluation of T1w, T2w, ASL, and dMR images resulted in acceptable to good image quality and did not differ statistically significantly between setups. Only the nonweighted diffusion image maps and corticospinal tract reconstructions yielded higher image quality and reduced susceptibility artifacts with four RF coils. Advanced ioMRI metrics were more precise with four RF coils as the standard deviation decreased. Taken together, we have investigated the practical use of advanced ioMRI during pediatric neurosurgery. We conclude that ASL CBF quantification in the surgical prone position is valid and that ASL and dMRI acquisition with two RF coils can be performed adequately for clinical use. With four versus two RF coils, the SNR of the images increases, and the sensitivity to artifacts reduces.


Assuntos
Imageamento por Ressonância Magnética , Procedimentos Neurocirúrgicos , Razão Sinal-Ruído , Humanos , Masculino , Feminino , Imageamento por Ressonância Magnética/métodos , Criança , Adulto , Circulação Cerebrovascular/fisiologia , Marcadores de Spin , Imagem de Difusão por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia
17.
Breast ; 74: 103675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340685

RESUMO

Introduction, A decade ago, stereotactic radiosurgery (SRS) without whole brain radiotherapy (WBRT) was emerging as preferred treatment for oligometastatic brain metastases. Studies of cavity SRS after neurosurgery were underway. Data specific to metastatic HER2 breast cancer (MHBC), describing intracranial, systemic and survival outcomes without WBRT, were lacking. A Phase II study was designed to address this gap. Method, Adults with MHBC, performance status 0-2, ≤ five BrM, receiving/planned to receive HER2-targeted therapy were eligible. Exclusions included leptomeningeal disease and prior WBRT. Neurosurgery allowed ≤6 weeks before registration and required for BrM >4 cm. Primary endpoint was 12-month requirement for WBRT. Secondary endpoints; freedom from (FF-) local failure (LF), distant brain failure (DBF), extracranial disease failure (ECDF), overall survival (OS), cause of death, mini-mental state examination (MMSE), adverse events (AE). Results, Twenty-five patients accrued Decembers 2016-2020. The study closed early after slow accrual. Thirty-seven BrM and four cavities received SRS. Four cavities and five BrM were observed. At 12 months: one patient required WBRT (FF-WBRT 95 %, 95 % CI 72-99), FFLF 91 % (95 % CI 69-98), FFDBF 57 % (95 % CI 34-74), FFECDF 64 % (95 % CI 45-84), OS 96 % (95 % CI 74-99). Two grade 3 AE occurred. MMSE was abnormal for 3/24 patients at baseline and 1/17 at 12 months. Conclusion, At 12 months, SRS and/or neurosurgery provided good control with low toxicity. WBRT was not required in 95 % of cases. This small study supports the practice change from WBRT to local therapies for MHBC BrM.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Radiocirurgia , Adulto , Humanos , Feminino , Radiocirurgia/métodos , Neoplasias da Mama/cirurgia , Neoplasias Encefálicas/secundário , Encéfalo/cirurgia , Terapia de Salvação/métodos
18.
World Neurosurg ; 184: e737-e742, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342168

RESUMO

BACKGROUND: The factors on which the accuracy of stereotactic brain biopsy depends are the competence of the neurosurgeon in obtaining a representative sample and the ability of the neuropathologist to make a histological diagnosis from a minuscule sample. Over the years intraoperative frozen section has enhanced the diagnostic yield of this minimally invasive procedure. Use of fluorescence in achieving a greater extent of resection is well-established in contemporary neurosurgical practice. This ability of brain tumors to take up the fluorescein sodium dye and glow under the YELLOW 560-nm filter has been utilized in a handful of studies to increase the diagnostic accuracy of stereotactic biopsy. METHODS: We performed a prospective study where the fluorescein sodium dye was injected at a low dose and fluorescence of the biopsied core was compared with that of a tissue obtained from the normal parenchyma. Sample was labeled 'truly fluorescent' only when the glow was more than that of the tissue from normal parenchyma. RESULTS: On cross-tabulating the index test (true fluorescence status) and the reference standard test (final histopathological report) the sensitivity of acquiring a representative sample was found to be 94.74%, specificity was 100%. The positive predictive value and negative predictive value were calculated to be 100% and 50% respectively. The diagnostic yield was comparable to that of the intraoperative frozen section. CONCLUSION: The use of the YELLOW 560-nm filter can make stereotactic biopsy faster, safer, less cumbersome, and more cost-effective, and can be used as a substitute for the frozen section in resource-constrained centers.


Assuntos
Neoplasias Encefálicas , Secções Congeladas , Humanos , Fluoresceína , Estudos Prospectivos , Biópsia/métodos , Encéfalo/cirurgia , Encéfalo/patologia , Neoplasias Encefálicas/patologia
19.
World Neurosurg ; 184: e689-e694, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38346588

RESUMO

BACKGROUND: Stereotactic brain biopsy is a crucial minimally invasive surgical technique leveraged to obtain tissue specimens from deep-seated intracranial lesions, offering a safer alternative to open craniotomy for patients who cannot tolerate the latter. Despite its effectiveness, the diagnostic yield varies across different centers and has not been widely studied in Sub-Saharan Africa. METHODS: A single-center retrospective analysis was conducted on 67 consecutive stereotactic brain biopsy procedures carried out by experienced neurosurgeons between January 2012 and December 2022 at a tertiary center in Sub-Saharan Africa. Preoperative clinical status, biopsy type, postoperative complication rate, and histological diagnosis were meticulously analyzed. Factors associated with negative biopsy results were identified using IBM Statistical Package for the Social Sciences SPSS version for Mac, with Fisher exact test employed to detect differences in patient characteristics. Statistical significance was pegged at P < 0.05. RESULTS: The overall diagnostic yield rate was 67%. Major contributors to negative biopsy outcomes were superficial location of the lesion, lesion size less than 10 cc, and the use of the Cape Town Stereotactic System. Enhanced yield rates of up to 93% were realized through the application of magnetic resonance imaging-based images, Stealth Station 7, and frozen section analysis. No correlation was observed between the number of cores obtained and the yield rate. Procedure complications were negligible, and no procedure-related mortality was recorded. CONCLUSIONS: The diagnostic yield rate from our study was somewhat lower than previously reported in contemporary literature, primarily attributed to the differing definitions of diagnostic yield, the dominant use of the older framed Cape Town Stereotactic System, computed tomography-based imaging, and the absence of intraoperative frozen section. Nevertheless, biopsies conducted using the frameless system were comparable with studies from other global regions. Our findings reaffirm that stereotactic brain biopsy when complemented with magnetic resonance imaging-based imaging, frameless stereotactic systems and intraoperative frozen section is a safe, effective, and reliable method for obtaining histological diagnosis.


Assuntos
Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Técnicas Estereotáxicas , Estudos Retrospectivos , África do Sul , Biópsia/métodos , Imageamento por Ressonância Magnética , Secções Congeladas , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Encéfalo/patologia
20.
J Clin Neurophysiol ; 41(1): 36-49, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38181386

RESUMO

SUMMARY: Presurgical evaluations to plan intracranial EEG implantations or surgical therapies at most epilepsy centers in the United States currently depend on the visual inspection of EEG traces. Such analysis is inadequate and does not exploit all the localizing information contained in scalp EEG. Various types of EEG source modeling or imaging can provide sublobar localization of spike and seizure sources in the brain, and the software to do this with typical long-term monitoring EEG data are available to all epilepsy centers. This article reviews the fundamentals of EEG voltage fields that are used in EEG source imaging, the strengths and weakness of dipole and current density source models, the clinical situations where EEG source imaging is most useful, and the particular strengths of EEG source imaging for various cortical areas where spike/seizure sources are likely.


Assuntos
Encéfalo , Epilepsia , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Eletrocorticografia , Eletroencefalografia , Convulsões/diagnóstico por imagem , Convulsões/cirurgia , Epilepsia/diagnóstico , Epilepsia/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...