Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(4): e1012199, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38683868

RESUMO

The microsporidian Enterocytozoon hepatopenaei (EHP) is a fungi-related, spore-forming parasite. EHP infection causes growth retardation and size variation in shrimp, resulting in severe economic losses. Studies on shrimp immune response have shown that several antimicrobial peptides (AMPs) were upregulated upon EHP infection. Among those highly upregulated AMPs is c-type lysozyme (LvLyz-c). However, the immune signaling pathway responsible for LvLyz-c production in shrimp as well as its function against the EHP infection are still poorly understood. Here, we characterized major shrimp immune signaling pathways and found that Toll and JAK/STAT pathways were up-regulated upon EHP infection. Knocking down of a Domeless (DOME) receptor in the JAK/STAT pathways resulted in a significant reduction of the LvLyz-c and the elevation of EHP copy number. We further elucidated the function of LvLyz-c by heterologously expressing a recombinant LvLyz-c (rLvLyz-c) in an Escherichia coli. rLvLyz-c exhibited antibacterial activity against several bacteria such as Bacillus subtilis and Vibrio parahaemolyticus. Interestingly, we found an antifungal activity of rLvLyz-c against Candida albican, which led us to further investigate the effects of rLvLyz-c on EHP spores. Incubation of the EHP spores with rLvLyz-c followed by a chitin staining showed that the signals were dramatically decreased in a dose-dependent manner, suggesting that rLvLyz-c possibly digest a chitin coat on the EHP spores. Transmission electron microscopy analysis revealed that an endospore layer, which is composed mainly of chitin, was digested by rLvLyz-c. Lastly, we observed that EHP spores that were treated with rLvLyz-c showed a significant reduction of the spore germination rate. We hypothesize that thinning of the endospore of EHP would result in altered permeability, hence affecting spore germination. This work provides insights into shrimp immune signaling pathways responsible for LvLyz-c production and its anti-EHP property. This knowledge will serve as important foundations for developing EHP control strategies.


Assuntos
Enterocytozoon , Muramidase , Penaeidae , Transdução de Sinais , Animais , Penaeidae/imunologia , Penaeidae/microbiologia , Muramidase/metabolismo , Enterocytozoon/metabolismo , Microsporidiose/imunologia
2.
Environ Microbiol ; 19(5): 2077-2089, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28345194

RESUMO

Glycolysis and oxidative phosphorylation are the fundamental pathways of ATP generation in eukaryotes. Yet in microsporidia, endoparasitic fungi living at the limits of cellular streamlining, oxidative phosphorylation has been lost: energy is obtained directly from the host or, during the dispersive spore stage, via glycolysis. It was therefore surprising when the first sequenced genome from the Enterocytozoonidae - a major family of human and animal-infecting microsporidians - appeared to have lost genes for glycolysis. Here, we sequence and analyse genomes from additional members of this family, shedding new light on their unusual biology. Our survey includes the genome of Enterocytozoon hepatopenaei, a major aquacultural parasite currently causing substantial economic losses in shrimp farming, and Enterospora canceri, a pathogen that lives exclusively inside epithelial cell nuclei of its crab host. Our analysis of gene content across the clade suggests that Ent. canceri's adaptation to intranuclear life is underpinned by the expansion of transporter families. We demonstrate that this entire lineage of pathogens has lost glycolysis and, uniquely amongst eukaryotes, lacks any obvious intrinsic means of generating energy. Our study provides an important resource for the investigation of host-pathogen interactions and reductive evolution in one of the most medically and economically important microsporidian lineages.


Assuntos
Enterocytozoon/metabolismo , Genoma de Protozoário/genética , Glicólise/genética , Hexoquinase/genética , Interações Hospedeiro-Parasita/fisiologia , Fosforilação Oxidativa , Penaeidae/parasitologia , Animais , Sequência de Bases , Evolução Biológica , Enterocytozoon/genética , Enterocytozoon/patogenicidade , Humanos , Microsporidiose/parasitologia , Filogenia , Análise de Sequência de DNA
3.
Ann Agric Environ Med ; 20(2): 287-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23772577

RESUMO

Microsporidia are intracellular parasites that cause opportunistic infections in humans of various immunological status. Only a few case reports exist on microsporidial infection in solid organ transplant recipients worldwide. The presented study demonstrates the first case in Poland of Enterocytozoon bieneusi infection in a liver transplant patient. Parasites were diagnosed in stool samples using both modified trichrome staining and PCR.


Assuntos
Enterocytozoon/isolamento & purificação , Microsporidiose/parasitologia , Adolescente , Compostos Azo/metabolismo , Corantes/metabolismo , Enterocytozoon/genética , Enterocytozoon/metabolismo , Amarelo de Eosina-(YS)/metabolismo , Fezes/parasitologia , Feminino , Humanos , Transplante de Fígado , Verde de Metila/metabolismo , Microsporidiose/diagnóstico , Microsporidiose/imunologia , Dados de Sequência Molecular , Filogenia , Polônia , Reação em Cadeia da Polimerase
4.
Genome Biol Evol ; 2: 304-9, 2010 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-20624735

RESUMO

Reduction of various biological processes is a hallmark of the parasitic lifestyle. Generally, the more intimate the association between parasites and hosts the stronger the parasite relies on its host's physiology for survival and reproduction. However, some systems have been held to be indispensable, for example, the core pathways of carbon metabolism that produce energy from sugars. Even the most hardened anaerobes that lack oxidative phosphorylation and the tricarboxylic acid cycle have retained glycolysis and some downstream means to generate ATP. Here we describe the deep-coverage genome resequencing of the pathogenic microsporidiian, Enterocytozoon bieneusi, which shows that this parasite has crossed this line and abandoned complete pathways for the most basic carbon metabolism. Comparing two genome sequence surveys of E. bieneusi to genomic data from four other microsporidia reveals a normal complement of 353 genes representing 30 functional pathways in E. bieneusi, except that only 2 out of 21 genes collectively involved in glycolysis, pentose phosphate, and trehalose metabolism are present. Similarly, no genes encoding proteins involved in the processing of spliceosomal introns were found. Altogether, E. bieneusi appears to have no fully functional pathway to generate ATP from glucose. Therefore, this intracellular parasite relies on transporters to import ATP from its host.


Assuntos
Carbono/metabolismo , Enterocytozoon/genética , Enterocytozoon/metabolismo , Genoma Fúngico , Trifosfato de Adenosina/metabolismo , Enterocytozoon/patogenicidade , Evolução Molecular , Genes Fúngicos , Glicólise/genética , Interações Hospedeiro-Patógeno , Humanos , Redes e Vias Metabólicas/genética , Microsporídios/classificação , Microsporídios/genética , Microsporídios/metabolismo
5.
Biochem Soc Trans ; 31(2): 420-3, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12653651

RESUMO

Members of the phylum Microspora are all obligate intracellular parasites. Little is known concerning metabolic pathways in these parasites, some of which pose serious problems in immunocompromised patients. We investigated polyamine metabolism in the systemic pathogen Enterocytozoon cuniculi using intact pre-emergent spores, and cell-free preparations. We found both polyamine synthetic and interconversion pathways to be operative, as evidenced by conversion of ornithine into polyamines, and production of spermidine from spermine by pre-emergent spores. Recent developments in the antitumour field have highlighted the ability of bis-ethylated polyamine analogues to reduce polyamine levels and block growth of tumour cells. In light of enhanced polyamine uptake in Enc. cuniculi, we have begun to study bis-aryl 3-7-3 and bis-ethyl oligoamine analogues as leads for chemotherapy of microsporidia.


Assuntos
Poliaminas Biogênicas/metabolismo , Microsporídios/efeitos dos fármacos , Microsporídios/metabolismo , Animais , Antiprotozoários/química , Antiprotozoários/farmacologia , Poliaminas Biogênicas/antagonistas & inibidores , Poliaminas Biogênicas/biossíntese , Enterocytozoon/efeitos dos fármacos , Enterocytozoon/metabolismo , Humanos , Concentração Inibidora 50 , Poliaminas/química , Poliaminas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...