Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 43(5): 812-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26517887

RESUMO

Complement control protein modules (CCPs) occur in numerous functionally diverse extracellular proteins. Also known as short consensus repeats (SCRs) or sushi domains each CCP contains approximately 60 amino acid residues, including four consensus cysteines participating in two disulfide bonds. Varying in length and sequence, CCPs adopt a ß-sandwich type fold and have an overall prolate spheroidal shape with N- and C-termini lying close to opposite poles of the long axis. CCP-containing proteins are important as cytokine receptors and in neurotransmission, cell adhesion, blood clotting, extracellular matrix formation, haemoglobin metabolism and development, but CCPs are particularly well represented in the vertebrate complement system. For example, factor H (FH), a key soluble regulator of the alternative pathway of complement activation, is made up entirely from a chain of 20 CCPs joined by short linkers. Collectively, therefore, the 20 CCPs of FH must mediate all its functional capabilities. This is achieved via collaboration and division of labour among these modules. Structural studies have illuminated the dynamic architectures that allow FH and other CCP-rich proteins to perform their biological functions. These are largely the products of a highly varied set of intramolecular interactions between CCPs. The CCP can act as building block, spacer, highly versatile recognition site or dimerization mediator. Tandem CCPs may form composite binding sites or contribute to flexible, rigid or conformationally 'switchable' segments of the parent proteins.


Assuntos
Enzimas Ativadoras do Complemento/química , Ativação do Complemento , Proteínas Inativadoras do Complemento/química , Desenho de Fármacos , Modelos Moleculares , Engenharia de Proteínas , Animais , Sítios de Ligação , Enzimas Ativadoras do Complemento/genética , Enzimas Ativadoras do Complemento/metabolismo , Fator H do Complemento/química , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Inativadores do Complemento/química , Inativadores do Complemento/metabolismo , Inativadores do Complemento/farmacologia , Proteínas Inativadoras do Complemento/genética , Proteínas Inativadoras do Complemento/metabolismo , Humanos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia
2.
Am J Hum Genet ; 88(6): 689-705, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21664996

RESUMO

Recent studies have revealed profound developmental consequences of mutations in genes encoding proteins of the lectin pathway of complement activation, a central component of the innate immune system. Apart from impairment of immunity against microorganisms, it is known that hereditary deficiencies of this system predispose one to autoimmune conditions. Polymorphisms in complement genes are linked to, for example, atypical hemolytic uremia and age-dependent macular degeneration. The complement system comprises three convergent pathways of activation: the classical, the alternative, and the lectin pathway. The recently discovered lectin pathway is less studied, but polymorphisms in the plasma pattern-recognition molecule mannan-binding lectin (MBL) are known to impact its level, and polymorphisms in the MBL-associated serine protease-2 (MASP-2) result in defects of complement activation. Recent studies have described roles outside complement and immunity of another MBL-associated serine protease, MASP-3, in the etiology of 3MC syndrome, an autosomal-recessive disorder involving a spectrum of developmental features, including characteristic facial dysmorphism. Syndrome-causing mutations were identified in MASP1, encoding MASP-3 and two additional proteins, MASP-1 and MAp44. Furthermore, an association was discovered between 3MC syndrome and mutations in COLEC11, encoding CL-K1, another molecule of the lectin pathway. The findings were confirmed in zebrafish, indicating that MASP-3 and CL-K1 underlie an evolutionarily conserved pathway of embryonic development. Along with the discovery of a role of C1q in pruning synapses in mice, these recent advances point toward a broader role of complement in development. Here, we compare the functional immunologic consequences of "conventional" complement deficiencies with these newly described developmental roles.


Assuntos
Ativação do Complemento/genética , Proteínas do Sistema Complemento/genética , Genes Letais , Mutação , Substituição de Aminoácidos , Animais , Colectinas/genética , Enzimas Ativadoras do Complemento/química , Enzimas Ativadoras do Complemento/genética , Humanos , Camundongos , Polimorfismo Genético , Conformação Proteica
3.
Neurosci Res ; 69(2): 87-92, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21093502

RESUMO

Neurotransmitter receptors play central roles in basic neurotransmission and synaptic plasticity. Recent studies have revealed that some transmembrane and extracellular proteins bind to neurotransmitter receptors, forming protein complexes that are required for proper synaptic localization or gating of core receptor molecules. Consequently, the components of these complexes contribute to long-term potentiation, a process that is critical for learning and memory. Here, we review factors that regulate neurotransmitter receptors, with a focus on proteins containing CUB (complement C1r/C1s, Uegf, Bmp1) or CCP (complement control protein) domains, which are frequently found in complement system proteins. Proteins that contain these domains are structurally distinct from TARPs (transmembrane AMPA receptor regulatory proteins), and may constitute new protein families that modulate either the localization or function of neurotransmitter receptors. In addition, other CCP domain-containing proteins participate in dendritic patterning and/or synaptic differentiation, although current evidence has not identified any direct activities on neurotransmitter receptors. Some of these proteins are involved in pathologic conditions such as epileptic seizure and mental retardation. Together, these lines of information have shown that CUB and CCP domain-containing proteins contribute to a wide variety of neuronal events that ultimately establish neural circuits.


Assuntos
Diferenciação Celular , Plasticidade Neuronal/fisiologia , Receptores de Neurotransmissores/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Enzimas Ativadoras do Complemento/química , Enzimas Ativadoras do Complemento/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...