Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 16(6)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38922168

RESUMO

Claviceptaceous endophytic fungi in the genus Epichloë mostly form a symbiotic relationship with cool-season grasses. Epichloë spp. are capable of producing bioactive alkaloids such as peramines, lolines, ergot alkaloids, and indole-diterpenes, which protect the host plant from herbivory by animals, insects, and nematodes. The host also benefits from enhanced tolerance to abiotic stresses, such as salt, drought, waterlogging, cold, heavy metals, and low nitrogen stress. The bioactive alkaloids produced can have both direct and indirect effects towards plant parasitic nematodes. Direct interaction with nematodes' motile stages can cause paralysis (nematostatic effect) or death (nematicidal effect). Indirectly, the metabolites may induce host immunity which inhibits feeding and subsequent nematode development. This review highlights the different mechanisms through which this interaction and the metabolites produced have been explored in the suppression of plant parasitic nematodes and also how the specific interactions between different grass genotypes and endophyte strains result in variable suppression of different nematode species. An understanding of the different grass-endophyte interactions and their successes and failures in suppressing various nematode species is essential to enable the proper selection of grass-endophyte combinations to identify the alkaloids produced, concentrations required, and determine which nematodes are sensitive to which specific alkaloids.


Assuntos
Alcaloides , Endófitos , Nematoides , Poaceae , Animais , Alcaloides/farmacologia , Endófitos/metabolismo , Poaceae/parasitologia , Nematoides/efeitos dos fármacos , Epichloe/metabolismo , Doenças das Plantas/parasitologia , Doenças das Plantas/microbiologia
2.
Microb Ecol ; 87(1): 73, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758374

RESUMO

Endophytes generally increase antioxidant contents of plants subjected to environmental stresses. However, the mechanisms by which endophytes alter the accumulation of antioxidants in plant tissues are not entirely clear. We hypothesized that, in stress situations, endophytes would simultaneously reduce oxidative damage and increase antioxidant contents of plants and that the accumulation of antioxidants would be a consequence of the endophyte ability to regulate the expression of plant antioxidant genes. We investigated the effects of the fungal endophyte Epichloë gansuensis (C.J. Li & Nan) on oxidative damage, antioxidant contents, and expression of representative genes associated with antioxidant pathways in Achnatherum inebrians (Hance) Keng plants subjected to low (15%) and high (60%) soil moisture conditions. Gene expression levels were measured using RNA-seq. As expected, the endophyte reduced the oxidative damage by 17.55% and increased the antioxidant contents by 53.14% (on average) in plants subjected to low soil moisture. In line with the accumulation of antioxidants in plant tissues, the endophyte increased the expression of most plant genes associated with the biosynthesis of antioxidants (e.g., MIOX, crtB, gpx) while it reduced the expression of plant genes related to the metabolization of antioxidants (e.g., GST, PRODH, ALDH). Our findings suggest that endophyte ability of increasing antioxidant contents in plants may reduce the oxidative damage caused by stresses and that the fungal regulation of plant antioxidants would partly explain the accumulation of these compounds in plant tissues.


Assuntos
Antioxidantes , Secas , Endófitos , Epichloe , Estresse Oxidativo , Endófitos/metabolismo , Endófitos/fisiologia , Antioxidantes/metabolismo , Epichloe/fisiologia , Epichloe/genética , Epichloe/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico
3.
Microbiol Spectr ; 12(4): e0257423, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38488391

RESUMO

The clavicipitaceous fungus Epichloë gansuensis forms symbiotic associations with drunken horse grass (Achnatherum inebrians), providing biotic and abiotic stress protection to its host. However, it is unclear how E. gansuensis affects the assembly of host plant-associated bacterial communities after ammonium nitrogen (NH4+-N) treatment. We examined the shoot- and root-associated bacterial microbiota and root metabolites of A. inebrians when infected (I) or uninfected (F) with E. gansuensis endophyte. The results showed more pronounced NH4+-N-induced microbial and metabolic changes in the endophyte-infected plants compared to the endophyte-free plants. E. gansuensis significantly altered bacterial community composition and ß-diversity in shoots and roots and increased bacterial α-diversity under NH4+-N treatment. The relative abundance of 117 and 157 root metabolites significantly changed with E. gansuensis infection under water and NH4+-N treatment compared to endophyte-free plants. Root bacterial community composition was significantly related to the abundance of the top 30 metabolites [variable importance in the projection (VIP) > 2 and VIP > 3] contributing to differences between I and F plants, especially alkaloids. The correlation network between root microbiome and metabolites was complex. Microorganisms in the Proteobacteria and Firmicutes phyla were significantly associated with the R00693 metabolic reaction of cysteine and methionine metabolism. Co-metabolism network analysis revealed common metabolites between host plants and microorganisms.IMPORTANCEOur results suggest that the effect of endophyte infection is sensitive to nitrogen availability. Endophyte symbiosis altered the composition of shoot and root bacterial communities, increasing bacterial diversity. There was also a change in the class and relative abundance of metabolites. We found a complex co-occurrence network between root microorganisms and metabolites, with some metabolites shared between the host plant and its microbiome. The precise ecological function of the metabolites produced in response to endophyte infection remains unknown. However, some of these compounds may facilitate plant-microbe symbiosis by increasing the uptake of beneficial soil bacteria into plant tissues. Overall, these findings advance our understanding of the interactions between the microbiome, metabolome, and endophyte symbiosis in grasses. The results provide critical insight into the mechanisms by which the plant microbiome responds to nutrient stress in the presence of fungal endophytes.


Assuntos
Endófitos , Epichloe , Endófitos/fisiologia , Epichloe/metabolismo , Nitrogênio/metabolismo , Poaceae/metabolismo , Poaceae/microbiologia , Simbiose , Bactérias
4.
BMC Plant Biol ; 23(1): 636, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38072924

RESUMO

BACKGROUND: Commercial cultivars of perennial ryegrass infected with selected Epichloë fungal endophytes are highly desirable in certain pastures as the resulting mutualistic association has the capacity to confer agronomic benefits (such as invertebrate pest deterrence) largely due to fungal produced secondary metabolites (e.g., alkaloids). In this study, we investigated T2 segregating populations derived from two independent transformation events expressing diacylglycerol acyltransferase (DGAT) and cysteine oleosin (CO) genes designed to increase foliar lipid and biomass accumulation. These populations were either infected with Epichloë festucae var. lolii strain AR1 or Epichloë sp. LpTG-3 strain AR37 to examine relationships between the introduced trait and the endophytic association. Here we report on experiments designed to investigate if expression of the DGAT + CO trait in foliar tissues of perennial ryegrass could negatively impact the grass-endophyte association and vice versa. Both endophyte and plant characters were measured under controlled environment and field conditions. RESULTS: Expected relative increases in total fatty acids of 17-58% accrued as a result of DGAT + CO expression with no significant difference between the endophyte-infected and non-infected progeny. Hyphal growth in association with DGAT + CO expression appeared normal when compared to control plants in a growth chamber. There was no significant difference in mycelial biomass for both strains AR1 and AR37, however, Epichloë-derived alkaloid concentrations were significantly lower on some occasions in the DGAT + CO plants compared to the corresponding null-segregant progenies, although these remained within the reported range for bioactivity. CONCLUSIONS: These results suggest that the mutualistic association formed between perennial ryegrass and selected Epichloë strains does not influence expression of the host DGAT + CO technology, but that endophyte performance may be reduced under some circumstances. Further investigation will now be required to determine the preferred genetic backgrounds for introgression of the DGAT + CO trait in combination with selected endophyte strains, as grass host genetics is a major determinant to the success of the grass-endophyte association in this species.


Assuntos
Alcaloides , Epichloe , Lolium , Endófitos/metabolismo , Lolium/genética , Epichloe/genética , Epichloe/metabolismo , Simbiose , Poaceae/metabolismo , Alcaloides/metabolismo , Lipídeos
5.
J Agric Food Chem ; 71(38): 13965-13978, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37704203

RESUMO

The various grass-induced epichloëcyclins of the Epichloë spp. are ribosomally synthesized and post-translationally modified peptides (RiPPs), produced as small, secreted cyclopeptides from a single gene, gigA. Here, four clustered and coregulated genes (gigA, gigB, gigC, and kexB) with predicted roles in epichloëcyclin production in Epichloë festucae were evaluated through gene disruption. Subsequent chemical analysis indicates that GigB is a DUF3328 domain-containing protein associated with cyclization of epichloëcyclins; GigC is a methyltransferase enzyme responsible for N-methylation of desmethylepichloëcyclins; and KexB is a subtilisin-like enzyme, partly responsible for the propeptide cleavage of epichloëcyclin intermediates. Symbiotic effects on the host phenotype were not observed for gigA, gigC, or kexB mutants, although ΔgigB infection correlated with increased host tiller height and biomass, while only ΔkexB exhibited an effect on endophyte morphology. Disrupting epichloëcyclin biosynthesis showed negligible influence on the biosynthesis of E. festucae-associated alkaloids. Epichloëcyclins may perform other secondary metabolism functions in Epichloë and other fungi.


Assuntos
Epichloe , Lolium , Lolium/metabolismo , Epichloe/genética , Epichloe/metabolismo , Peptídeos Cíclicos/genética , Peptídeos Cíclicos/metabolismo , Proteínas Fúngicas/metabolismo , Simbiose , Família Multigênica
6.
Mol Plant Pathol ; 24(11): 1430-1442, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37477276

RESUMO

Epichloë festucae uses a siderophore-mediated system to acquire iron, which is important to maintain endophyte-grass symbioses. Here we investigate the roles of the alternative iron acquisition system, reductive iron assimilation (RIA), via disruption of the fetC gene, which encodes a multicopper ferroxidase, either alone (i.e., ΔfetC) or in combination with disruption of the gene sidA, which encodes a siderophore biosynthesis enzyme (i.e., ΔfetC/ΔsidA). The phenotypic characteristics of these mutants were compared to ΔsidA and wild-type (WT) strains during growth under axenic culture conditions (in culture) and in symbiosis with the host grass, perennial ryegrass (in planta). Under iron deficiency, the colony growth rate of ΔfetC was slightly slower than that of WT, while the growth of ΔsidA and ΔfetC/ΔsidA mutants was severely suppressed. Siderophore analyses indicated that ΔfetC mutants hyperaccumulate ferriepichloënin A (FEA) at low iron concentrations and ferricrocin and FEA at higher iron concentrations. When compared to WT, all mutant strains displayed hyperbranching hyphal structures and a reduced ratio of Epichloë DNA to total DNA in planta. Furthermore, host colonization and vertical transmission through infection of the host seed were significantly reduced in the ΔfetC/ΔsidA mutants, confirming that high-affinity iron uptake is a critical process for Epichloë transmission. Thus, RIA and siderophore iron uptake are complementary systems required for the maintenance of iron metabolism, fungal growth, and symbiosis between E. festucae and perennial ryegrass.


Assuntos
Epichloe , Lolium , Lolium/microbiologia , Sideróforos/metabolismo , Epichloe/metabolismo , Simbiose/genética , Endófitos , Ferro/metabolismo , Sementes/metabolismo , DNA/metabolismo
7.
Phytopathology ; 112(11): 2310-2320, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35704677

RESUMO

Epichloë endophytes can improve the resistance of host grasses to pathogenic fungi, but the underlying mechanisms remain largely unknown. Here, we used phytohormone quantifications, gene expression analysis, and pathogenicity experiments to investigate the effect of Epichloë sibirica on the resistance of Achnatherum sibiricum to Curvularia lunata pathogens. Comparison of gene expression patterns between endophyte-infected and endophyte-free leaves revealed that endophyte infection was associated with significant induction of 1,758 and 765 differentially expressed genes in the host before and after pathogen inoculation, respectively. Functional analysis of the differentially expressed genes suggested that endophyte infection could activate the constitutive resistance of the host by increasing photosynthesis, enhancing the ability to scavenge reactive oxygen species, and actively regulating the expression of genes with function related to disease resistance. We found that endophyte infection was associated with induction of the expression of genes involved in the biosynthesis pathways of jasmonic acid, ethylene, and pipecolic acid and amplified the defense response of the jasmonic acid/ethylene co-regulated EIN/ERF1 transduction pathway and Pip-mediated TGA transduction pathway. Phytohormone quantifications showed that endophyte infection was associated with significant accumulation of jasmonic acid, ethylene, and pipecolic acid after pathogen inoculation. Exogenous phytohormone treatments confirmed that the disease index of plants was negatively related to both jasmonic acid and ethylene concentrations. Our results demonstrate that endophyte infection can not only improve the constitutive resistance of the host to phytopathogens before pathogen inoculation but also be associated with enhanced systemic resistance of the host to necrotrophs after C. lunata inoculation.


Assuntos
Epichloe , Epichloe/genética , Epichloe/metabolismo , Poaceae/genética , Poaceae/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Simbiose/genética , Doenças das Plantas/microbiologia , Endófitos/fisiologia , Transdução de Sinais , Hormônios/metabolismo , Etilenos/metabolismo
8.
Biol Trace Elem Res ; 200(11): 4865-4879, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34973128

RESUMO

Selenium (Se) is an essential micronutrient with many beneficial effects for humans and other living organisms. Numerous microorganisms in culture systems enrich and convert inorganic selenium to organic selenium. In this study, Epichloë sp. from Festuca sinensis was exposed to increasing Na2SeO3 concentrations (0, 0.1, 0.2, 0.3, and 0.4 mmol/L) in Petri dishes with potato dextrose agar (PDA) for 8 weeks. Epichloë sp. mycelia were immediately collected after mycelial diameters were measured at 4, 5, 6, 7, and 8 weeks of cultivation, respectively. Gas chromatography-mass spectrometer (GC-MS) analysis was performed on different groups of Epichloë sp. mycelia. Different changes were observed as Epichloë sp. was exposed to different selenite conditions and cultivation time. The colony diameter of Epichloë sp. decreased in response to increased selenite concentrations, whereas the inhibitory effects diminished over time. Seventy-two of the 203 identified metabolites did not differ significantly across selenite treatments within the same time point, while 82 compounds did not differ significantly between multiple time points of the same Se concentration. However, the relative levels of 122 metabolites increased the most under selenite conditions. Specifically, between the 4th and 8th weeks, there were increases in 2-keto-isovaleric acid, uridine, and maltose in selenite treatments compared to controls. Selenium increased glutathione levels and exhibited antioxidant properties in weeks 4, 5, and 7. Additionally, we observed that different doses of selenite could promote the production of carbohydrates such as isomaltose, cellobiose, and sucrose; fatty acids such as palmitoleic acid, palmitic acid, and stearic acid; and amino acids such as lysine and tyrosine in Epichloë sp. mycelia. Therefore, Epichloë sp. exposed to selenite stress may benefit from increased levels of some metabolite compounds.


Assuntos
Epichloe , Festuca , Selênio , Ágar , Antioxidantes/farmacologia , Celobiose , Epichloe/química , Epichloe/metabolismo , Ácidos Graxos , Festuca/metabolismo , Glucose , Glutationa , Humanos , Isomaltose , Lisina , Maltose , Micronutrientes , Ácidos Palmíticos , Ácido Selenioso , Selênio/metabolismo , Selênio/farmacologia , Selenito de Sódio/metabolismo , Selenito de Sódio/farmacologia , Ácidos Esteáricos , Sacarose , Tirosina , Uridina
9.
Toxins (Basel) ; 13(2)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669319

RESUMO

The Epichloë species of fungi include seed-borne symbionts (endophytes) of cool-season grasses that enhance plant fitness, although some also produce alkaloids that are toxic to livestock. Selected or mutated toxin-free endophytes can be introduced into forage cultivars for improved livestock performance. Long-read genome sequencing revealed clusters of ergot alkaloid biosynthesis (EAS) genes in Epichloë coenophiala strain e19 from tall fescue (Lolium arundinaceum) and Epichloë hybrida Lp1 from perennial ryegrass (Lolium perenne). The two homeologous clusters in E. coenophiala-a triploid hybrid species-were 196 kb (EAS1) and 75 kb (EAS2), and the E. hybrida EAS cluster was 83 kb. As a CRISPR-based approach to target these clusters, the fungi were transformed with ribonucleoprotein (RNP) complexes of modified Cas9 nuclease (Cas9-2NLS) and pairs of single guide RNAs (sgRNAs), plus a transiently selected plasmid. In E. coenophiala, the procedure generated deletions of EAS1 and EAS2 separately, as well as both clusters simultaneously. The technique also gave deletions of the EAS cluster in E. hybrida and of individual alkaloid biosynthesis genes (dmaW and lolC) that had previously proved difficult to delete in E. coenophiala. Thus, this facile CRISPR RNP approach readily generates non-transgenic endophytes without toxin genes for use in research and forage cultivar improvement.


Assuntos
Sistemas CRISPR-Cas , Endófitos/genética , Epichloe/genética , Alcaloides de Claviceps/genética , Edição de Genes , Técnicas de Inativação de Genes , Família Multigênica , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endófitos/crescimento & desenvolvimento , Endófitos/metabolismo , Epichloe/crescimento & desenvolvimento , Epichloe/metabolismo , Alcaloides de Claviceps/biossíntese , Alcaloides de Claviceps/toxicidade , Regulação Fúngica da Expressão Gênica , Reprodução Assexuada , Metabolismo Secundário
10.
Toxins (Basel) ; 13(2)2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670470

RESUMO

For 30 years, forage ryegrass breeding has known that the germplasm may contain a maternally inherited symbiotic Epichloë endophyte. These endophytes produce a suite of secondary alkaloid compounds, dependent upon strain. Many produce ergot and other alkaloids, which are associated with both insect deterrence and livestock health issues. The levels of alkaloids and other endophyte characteristics are influenced by strain, host germplasm, and environmental conditions. Some strains in the right host germplasm can confer an advantage over biotic and abiotic stressors, thus acting as a maternally inherited desirable 'trait'. Through seed production, these mutualistic endophytes do not transmit into 100% of the crop seed and are less vigorous than the grass seed itself. This causes stability and longevity issues for seed production and storage should the 'trait' be desired in the germplasm. This makes understanding the precise nature of the relationship vitally important to the plant breeder. These Epichloë endophytes cannot be 'bred' in the conventional sense, as they are asexual. Instead, the breeder may modulate endophyte characteristics through selection of host germplasm, a sort of breeding by proxy. This article explores, from a forage seed company perspective, the issues that endophyte characteristics and breeding them by proxy have on ryegrass breeding, and outlines the methods used to assess the 'trait', and the application of these through the breeding, production, and deployment processes. Finally, this article investigates opportunities for enhancing the utilisation of alkaloid-producing endophytes within pastures, with a focus on balancing alkaloid levels to further enhance pest deterrence and improving livestock outcomes.


Assuntos
Alcaloides/metabolismo , Endófitos/metabolismo , Epichloe/metabolismo , Herbivoria , Gado , Lolium/microbiologia , Plantas Geneticamente Modificadas/microbiologia , Sementes/microbiologia , Alcaloides/genética , Alcaloides/toxicidade , Ração Animal , Animais , Endófitos/genética , Epichloe/genética , Regulação Fúngica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Lolium/genética , Lolium/crescimento & desenvolvimento , Nova Zelândia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Reprodução Assexuada , Metabolismo Secundário , Sementes/genética , Sementes/crescimento & desenvolvimento , Simbiose
11.
Toxins (Basel) ; 13(2)2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498584

RESUMO

Epichloë endophytes are filamentous fungi (family Clavicipitaceae) that live in symbiotic associations with grasses in the sub family Poöideae. In New Zealand, E. festucae var. lolii confers significant resistance to perennial ryegrass (Lolium perenne) against insect and animal herbivory and is an essential component of pastoral agriculture, where ryegrass is a major forage species. The fungus produces in planta a range of bioactive secondary metabolites, including ergovaline, which has demonstrated bioactivity against the important pasture pest black beetle, but can also cause mammalian toxicosis. We genetically modified E. festucae var. lolii strain AR5 to eliminate key enzymatic steps in the ergovaline pathway to determine if intermediate ergot alkaloid compounds can still provide insecticidal benefits in the absence of the toxic end product ergovaline. Four genes (dmaW, easG, cloA, and lpsB) spanning the pathway were deleted and each deletion mutant was inoculated into five different plant genotypes of perennial ryegrass, which were later harvested for a full chemical analysis of the ergot alkaloid compounds produced. These associations were also used in a black beetle feeding deterrence study. Deterrence was seen with just chanoclavine present, but was cumulative as more intermediate compounds in the pathway were made available. Ergovaline was not detected in any of the deletion associations, indicating that bioactivity towards black beetle can be obtained in the absence of this mammalian toxin.


Assuntos
Besouros/fisiologia , Endófitos/genética , Epichloe/genética , Alcaloides de Claviceps/genética , Regulação Fúngica da Expressão Gênica , Lolium/microbiologia , Controle Biológico de Vetores , Animais , Endófitos/metabolismo , Epichloe/metabolismo , Alcaloides de Claviceps/biossíntese , Ergotaminas/metabolismo , Deleção de Genes , Herbivoria , Lolium/parasitologia , Simbiose
12.
Environ Microbiol ; 23(4): 2116-2131, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33350014

RESUMO

Recent studies have identified key genes that control the symbiotic interaction between Epichloë festucae and Lolium perenne. Here we report on the identification of specific E. festucae genes that control host infection. Deletion of setB, which encodes a homologue of the H3K36 histone methyltransferase Set2/KMT3, reduced histone H3K36 trimethylation and led to severe defects in colony growth and hyphal development. The E. festucae ΔclrD mutant, which lacks the gene encoding the homologue of the H3K9 methyltransferase KMT1, displays similar developmental defects. Both mutants are completely defective in their ability to infect L. perenne. Alleles that complement the culture and plant phenotypes of both mutants also complement the histone methylation defects. Co-inoculation of either ΔsetB or ΔclrD with the wild-type strain enables these mutants to colonize the host. However, successful colonization by the mutants resulted in death or stunting of the host plant. Transcriptome analysis at the early infection stage identified four fungal candidate genes, three of which encode small-secreted proteins, that are differentially regulated in these mutants compared to wild type. Deletion of crbA, which encodes a putative carbohydrate binding protein, resulted in significantly reduced host infection rates by E. festucae.


Assuntos
Epichloe , Epichloe/genética , Epichloe/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Histonas/genética , Metiltransferases/genética , Poaceae , Simbiose/genética
13.
BMC Genomics ; 21(1): 680, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32998709

RESUMO

BACKGROUND: Ergot alkaloids (E+) are mycotoxins produced by the endophytic fungus, Epichloë coenophiala, in tall fescue that are associated with ergotism in animals. Exposure to ergot alkaloids during gestation reduces fetal weight and placental mass in sheep. These reductions are related to vasoconstrictive effects of ergot alkaloids and potential alterations in nutrient transport to the fetus. Cotyledon samples were obtained from eight ewes that were fed E+ (n = 4; E+/E+) or E- (endophyte-free without ergot alkaloids; n = 4; E-/E-) seed during both mid (d 35 to 85) and late (d 85-133) gestation to assess differentially expressed genes associated with ergot alkaloid induced reductions in placental mass and fetal weight, and discover potential adaptive mechanisms to alter nutrient supply to fetus. RESULTS: Ewes fed E+/E+ fescue seed during both mid and late gestation had 20% reduction in fetal body weight and 33% reduction in cotyledon mass compared to controls (E-/E-). Over 13,000 genes were identified with 110 upregulated and 33 downregulated. Four genes had a |log2FC| > 5 for ewes consuming E+/E+ treatment compared to controls: LECT2, SLC22A9, APOC3, and MBL2. REViGO revealed clusters of upregulated genes associated glucose, carbohydrates, lipid, protein, macromolecular and cellular metabolism, regulation of wound healing and response to starvation. For downregulated genes, no clusters were present, but all enriched GO terms were associated with anion and monocarboxylic acid transport. The complement and coagulation cascade and the peroxisome proliferator-activated receptor signaling pathway were found to be enriched for ewes consuming E+/E+ treatment. CONCLUSIONS: Consumption of ergot alkaloids during gestation altered the cotyledonary transcriptome specifically related to macronutrient metabolism, wound healing and starvation. These results show that ergot alkaloid exposure upregulates genes involved in nutrient metabolism to supply the fetus with additional substrates in attempts to rescue fetal growth.


Assuntos
Alcaloides de Claviceps/toxicidade , Micotoxinas/toxicidade , Placenta/metabolismo , Ovinos/microbiologia , Transcriptoma , Ração Animal/microbiologia , Animais , Apolipoproteína C-III/genética , Apolipoproteína C-III/metabolismo , Epichloe/metabolismo , Epichloe/patogenicidade , Feminino , Festuca/microbiologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lectina de Ligação a Manose/genética , Lectina de Ligação a Manose/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Placenta/efeitos dos fármacos , Gravidez , Ovinos/genética , Ovinos/metabolismo
14.
Toxins (Basel) ; 12(10)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019560

RESUMO

Rapid scientific advances are increasing our understanding of the way complex biological interactions integrate to maintain homeostatic balance and how seemingly small, localized perturbations can lead to systemic effects. The 'omics movement, alongside increased throughput resulting from statistical and computational advances, has transformed our understanding of disease mechanisms and the multi-dimensional interaction between environmental stressors and host physiology through data integration into multi-dimensional analyses, i.e., integrative interactomics. This review focuses on the use of high-throughput technologies in farm animal research, including health- and toxicology-related papers. Although limited, we highlight recent animal agriculture-centered reports from the integrative multi-'omics movement. We provide an example with fescue toxicosis, an economically costly disease affecting grazing livestock, and describe how integrative interactomics can be applied to a disease with a complex pathophysiology in the pursuit of novel treatment and management approaches. We outline how 'omics techniques have been used thus far to understand fescue toxicosis pathophysiology, lay out a framework for the fescue toxicosis integrome, identify some challenges we foresee, and offer possible means for addressing these challenges. Finally, we briefly discuss how the example with fescue toxicosis could be used for other agriculturally important animal health and welfare problems.


Assuntos
Ração Animal/toxicidade , Exposição Ambiental/efeitos adversos , Epichloe/metabolismo , Alcaloides de Claviceps/toxicidade , Ergotismo/veterinária , Lolium/microbiologia , Metabolômica , Toxicologia , Criação de Animais Domésticos , Bem-Estar do Animal , Animais , Alcaloides de Claviceps/metabolismo , Ergotismo/metabolismo , Ergotismo/microbiologia , Ergotismo/prevenção & controle , Microbioma Gastrointestinal , Ensaios de Triagem em Larga Escala
15.
PLoS One ; 15(7): e0229192, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32701945

RESUMO

Tall fescue (Lolium arundinaceum) is a widely used forage grass which shares a symbiosis with the endophytic fungus Epichloë coenophiala. The endophyte produces an alkaloid toxin that provides herbivory, heat and drought resistance to the grass, but can cause fescue toxicosis in grazing livestock. Fescue toxicosis can lead to reduced weight gain and milk yields resulting in significant losses to the livestock industry. The objective of this study was to identify bacterial and fungal communities associated with fescue toxicosis tolerance. In this trial, 149 Angus cows across two farms were continuously exposed to toxic, endophyte-infected, fescue for a total of 13 weeks. Of those 149 cows, 40 were classified into either high (HT) or low (LT) tolerance groups according to their growth performance (weight gain). 20 HT and 20 LT cattle balanced by farm were selected for amplicon sequencing to compare the fecal microbiota of the two tolerance groups. This study reveals significantly (q<0.05) different bacterial and fungal microbiota between HT and LT cattle, and indicates that fungal phylotypes may be important for an animal's response to fescue toxicosis: We found that fungal phylotypes affiliating to the Neocallimastigaceae, which are known to be important fiber-degrading fungi, were consistently more abundant in the HT cattle. Whereas fungal phylotypes related to the genus Thelebolus were more abundant in the LT cattle. This study also found more pronounced shifts in the microbiota in animals receiving higher amounts of the toxin. We identified fungal phylotypes which were consistently more abundant either in HT or LT cattle and may thus be associated with the respective animal's response to fescue toxicosis. Our results thus suggest that some fungal phylotypes might be involved in mitigating fescue toxicosis.


Assuntos
Epichloe/metabolismo , Microbioma Gastrointestinal , Lolium/microbiologia , Animais , Ascomicetos/isolamento & purificação , Ascomicetos/metabolismo , Bovinos , Análise Discriminante , Alcaloides de Claviceps/análise , Alcaloides de Claviceps/toxicidade , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Neocallimastigales/isolamento & purificação , Neocallimastigales/metabolismo , Simbiose , Toxinas Biológicas/análise , Toxinas Biológicas/toxicidade
16.
Mol Microbiol ; 114(4): 626-640, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32634260

RESUMO

The endophytic fungus Epichloë festucae systemically colonizes the intercellular spaces of cool-season grasses to establish a mutualistic symbiosis. Hyphal growth of the endophyte within the host plant is tightly regulated and synchronized with the growth of the host plant. A genetic screen to identify symbiotic genes identified mutant FR405 that had an antagonistic interaction with the host plant. Perennial ryegrass infected with the FR405 mutant were stunted and underwent premature senescence and death. The disrupted gene in FR405 encodes a nuclear-localized protein, designated as NsiA for nuclear protein for symbiotic infection. Like previously isolated symbiotic mutants the nsiA mutant is defective in hyphal cell fusion. NsiA interacts with Ste12, a C2H2 zinc-finger transcription factor, and a MAP kinase MpkB. Both are known as essential components for cell fusion in other fungal species. In E. festucae, MpkB, but not Ste12, is essential for cell fusion. Expression of several genes required for cell fusion and symbiosis, including proA/adv-1, pro41/ham-6, ham7, ham8, and ham9 were downregulated in the nsiA mutant. However, the NsiA ortholog in Neurospora crassa was not essential for hyphal cell fusion. These results demonstrate that the roles of NsiA and Ste12 orthologs in hyphal cell fusion are distinctive between fungal species.


Assuntos
Epichloe/metabolismo , Fusão Celular , Epichloe/enzimologia , Epichloe/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Hifas/crescimento & desenvolvimento , Lolium/metabolismo , Lolium/microbiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Nucleares/genética , Simbiose/genética , Fatores de Transcrição/metabolismo
17.
World J Microbiol Biotechnol ; 36(7): 92, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32562008

RESUMO

All plants harbor many microbial species including bacteria and fungi in their tissues. The interactions between the plant and these microbes could be symbiotic, mutualistic, parasitic or commensalistic. Mutualistic microorganisms are endophytic in nature and are known to play a role in plant growth, development and fitness. Endophytes display complex diversity depending upon the agro-climatic conditions and this diversity could be exploited for crop improvement and sustainable agriculture. Plant-endophyte partnerships are highly specific, several genetic and molecular cascades play a key role in colonization of endophytes in host plants leading to rapid changes in host and endophyte metabolism. This results in the accumulation of secondary metabolites, which play an important role in plant defense against biotic and abiotic stress conditions. Alkaloids are one of the important class of metabolites produced by Epichloë genus and other related classes of endophytes and confer protection against insect and mammalian herbivory. In this context, this review discusses the evolutionary aspects of the Epichloë genus along with key molecular mechanisms determining the lifestyle of Epichloë endophytes in host system. Novel hypothesis is proposed to outline the initial cellular signaling events during colonization of Epichloë in cool season grasses. Complex clustering of alkaloid biosynthetic genes and molecular mechanisms involved in the production of alkaloids have been elaborated in detail. The natural defense and advantages of the endophyte derived metabolites have also been extensively discussed. Finally, this review highlights the importance of endophyte-arbitrated plant immunity to develop novel approaches for eco-friendly agriculture.


Assuntos
Endófitos/metabolismo , Epichloe/metabolismo , Imunidade Vegetal , Poaceae/microbiologia , Alcaloides/metabolismo , Aspergillus/classificação , Aspergillus/metabolismo , Calcineurina/metabolismo , Endófitos/isolamento & purificação , Epichloe/isolamento & purificação , Ergolinas/metabolismo , Alcaloides de Claviceps/metabolismo , Evolução Molecular , Proteínas Fúngicas/metabolismo , Alcaloides Indólicos/metabolismo , Ácido Lisérgico/metabolismo , Família Multigênica , NADPH Oxidases/metabolismo , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Simbiose , Transcriptoma
18.
Mycologia ; 112(3): 474-490, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32412888

RESUMO

Many efforts have been made to select and isolate naturally occurring animal-friendly Epichloë strains for later reinfection into elite cultivars. Often this process involves large-scale screening of Epichloë-infected wild grass populations where strains are characterized and alkaloids measured. Here, we describe for the first time the use of genotyping-by-sequencing (GBS) on a collection of 217 Epichloë-infected grasses (7 S. arundinaceum, 4 L. perenne, and 206 S. pratensis). This genotyping strategy is cheaper than complete genome sequencing, is suitable for a large number of individuals, and, when applied to endophyte-infected grasses, conveniently genotypes both organisms. In total, 6273 single nucleotide polymorphisms (SNPs) in the endophyte data set and 38 323 SNPs in the host data set were obtained. Our findings reveal a composite structure with three distinct endophyte clusters unrelated to the three main S. pratensis gene pools that have most likely spread from different glacial refugia in Eurasia. All three gene pools can establish symbiosis with E. uncinata. A comparison of the endophyte clusters with microsatellite-based fingerprinting of the same samples allows a quick test to discriminate between these clusters using two simple sequence repeats (SSRs). Concentrations of loline alkaloids and mycelial biomass are correlated and differ significantly among the plant and endophyte subpopulations; one endophyte strain has higher levels of lolines than others, and one specific host genotype is particularly suitable to host E. uncinata. These findings pave the way for targeted artificial inoculations of specific host-endophyte combinations to boost loline production in the symbiota and for genome association studies with the aim of isolating genes involved in the compatibility between meadow fescue and E. uncinata.


Assuntos
Endófitos/genética , Endófitos/fisiologia , Epichloe/química , Epichloe/genética , Epichloe/metabolismo , Festuca/fisiologia , Lolium/fisiologia , Alcaloides/análise , Festuca/química , Festuca/microbiologia , Técnicas de Genotipagem , Lolium/química , Lolium/microbiologia , Micélio/química , Micélio/crescimento & desenvolvimento , Micélio/metabolismo
19.
J Chem Ecol ; 46(4): 410-421, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32125583

RESUMO

The symbiotic Epichloë festucae var. lolii endophyte produces alkaloids which can provide its host grass, perennial ryegrass (Lolium perenne L), with a selective advantage in both natural and agricultural managed ecosystems. This study focuses on understanding the alkaloid concentrations that occur in endophyte-infected perennial ryegrass during the early establishment phase. In a glasshouse experiment fungal alkaloid concentrations (peramine, lolitrem B, ergovaline, and epoxy-janthitrems) were measured in perennial ryegrass seedlings infected with E. festucae var. lolii proprietary strains AR1, AR37, NEA2, and NZ common toxic for 69 days after sowing. The endophyte becomes metabolically active, starting alkaloid production, as early as 6 days after sowing. Alkaloid concentrations peaked in 8- to 10- day-old seedlings due to a seedling growth slowdown. This study provides data showing that the loss of insect protection in endophyte-infected seedlings is linked to a reduction in chemical defence after seed-stored, maternally synthesised alkaloids are diluted by seedling dry matter accumulation.


Assuntos
Alcaloides/metabolismo , Endófitos/metabolismo , Epichloe/metabolismo , Lolium/crescimento & desenvolvimento , Lolium/microbiologia , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Simbiose
20.
J Agric Food Chem ; 68(5): 1169-1185, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31922733

RESUMO

Epichloë endophytes in forage grasses have attracted widespread attention and interest of chemistry researchers as a result of the various unique chemical structures and interesting biological activities of their secondary metabolites. This review describes the diversity of unique chemical structures of taxa from Epichloë endophytes and grass infected with Epichloë endophytes and demonstrates their reported biological activities. Until now, nearly 160 secondary metabolites (alkaloids, peptides, indole derivatives, pyrimidines, sesquiterpenoids, flavonoids, phenol and phenolic acid derivatives, aliphatic metabolites, sterols, amines and amides, and others) have been reported from Epichloë endophytes and grass infected with Epichloë endophytes. Among these, non-alkaloids account for half of the population of total metabolites, indicating that they also play an important role in Epichloë endophytes and grass infected with Epichloë endophytes. Also, a diverse array of secondary metabolites isolated from Epichloë endophytes and symbionts is a rich source for developing new pesticides and drugs. Bioassays disclose that, in addition to toxic alkaloids, the other metabolites isolated from Epichloë endophytes and symbionts have notable biological activities, such as antifungal, anti-insect, and phytotoxic activities. Accordingly, the biological functions of non-alkaloids should not be neglected in the future investigation of Epichloë endophytes and symbionts.


Assuntos
Alcaloides/metabolismo , Endófitos/química , Epichloe/química , Poaceae/microbiologia , Simbiose , Alcaloides/química , Alcaloides/toxicidade , Animais , Endófitos/fisiologia , Epichloe/metabolismo , Insetos/efeitos dos fármacos , Gado/metabolismo , Poaceae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...