Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Nat Chem Biol ; 18(11): 1253-1262, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36229681

RESUMO

Fungal transcription factor Upc2 senses ergosterol levels and regulates sterol biosynthesis and uptake. Constitutive activation of Upc2 causes azole resistance in Candida species. We determined the structure of ergosterol-bound Upc2, revealing the ligand specificity and transcriptional regulation. Ergosterol binding involves conformational changes of the ligand-binding domain, creating a shape-complementary hydrophobic pocket. The conserved helix α12 and glycine-rich loop are critical for sterol recognition by forming the pocket wall. The mutations of the glycine-rich loop inhibit ligand binding by steric clashes and constitutively activate Upc2. The translocation of Upc2 is regulated by Hsp90 chaperone in a sterol-dependent manner. Ergosterol-bound Upc2 associates with Hsp90 using the C-terminal tail, which retains the inactive Upc2 in the cytosol. Ergosterol dissociation induces a conformational change of the C-terminal tail, releasing Upc2 from Hsp90 for nuclear transport by importin α. The understanding of the regulatory mechanism provides an antifungal target for the treatment of azole-resistant Candida infections.


Assuntos
Antifúngicos , Azóis , Azóis/farmacologia , Antifúngicos/farmacologia , Farmacorresistência Fúngica/genética , Esteróis , Ligantes , alfa Carioferinas/genética , alfa Carioferinas/metabolismo , Ergosterol/genética , Ergosterol/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Glicina/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica
2.
mSphere ; 7(3): e0007522, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35531664

RESUMO

Fungal infections contribute to over 1.5 million deaths annually, with Candida albicans representing one of the most concerning human fungal pathogens. While normally commensal in nature, compromise of host immunity can result in C. albicans disseminating into the human bloodstream, causing infections with mortality rates of up to 40%. A contributing factor to this high mortality rate is the limited arsenal of antifungals approved to treat systemic infections. The most widely used antifungal class, the azoles, inhibits ergosterol biosynthesis by targeting Erg11. The rise of drug resistance among C. albicans clinical isolates, particularly against the azoles, has escalated the need to explore novel antifungal strategies. To address this challenge, we screened a 9,600-compound subset of the University of Tokyo Core Chemical Library to identify molecules with novel antifungal activity against C. albicans. The most potent hit molecule was CpdLC-6888, a 2,5-disubstituted pyridine compound, which inhibited growth of C. albicans and closely-related species. Chemical-genetic, biochemical, and modeling analyses suggest that CpdLC-6888 inhibits Erg11 in a manner similar to the azoles despite lacking the canonical five-membered nitrogen-containing azole ring. This work characterizes the antifungal activity of a 2,5-disubstituted pyridine against C. albicans, supporting the mining of existing chemical collections to identify compounds with novel antifungal activity. IMPORTANCE Pathogenic fungi represent a serious but underacknowledged threat to human health. The treatment and management of these infections relies heavily on the use of azole antifungals, a class of molecules that contain a five-membered nitrogen-containing ring and inhibit the biosynthesis of the key membrane sterol ergosterol. By employing a high-throughput chemical screen, we identified a 2,5-disubstituted pyridine, termed CpdLC-6888, as possessing antifungal activity against the prominent human fungal pathogen Candida albicans. Upon further investigation, we determined this molecule exhibits azole-like activity despite being structurally divergent. Specifically, transcriptional repression of the azole target gene ERG11 resulted in hypersensitivity to CpdLC-6888, and treatment of C. albicans with this molecule blocked the production of the key membrane sterol ergosterol. Therefore, this work describes a chemical scaffold with novel antifungal activity against a prevalent and threatening fungal pathogen affecting human health, expanding the repertoire of compounds that can inhibit this useful antifungal drug target.


Assuntos
Antifúngicos , Candida albicans , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Azóis/farmacologia , Candida albicans/genética , Farmacorresistência Fúngica/genética , Ergosterol/genética , Humanos , Nitrogênio , Piridinas/farmacologia , Esteróis
3.
mSphere ; 6(6): e0083021, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34935446

RESUMO

Two of the major classes of antifungal drugs in clinical use target ergosterol biosynthesis. Despite its importance, our understanding of the transcriptional regulation of ergosterol biosynthesis genes in pathogenic fungi is essentially limited to the role of hypoxia and sterol-stress-induced transcription factors such as Upc2 and Upc2A as well as homologs of sterol response element binding (SREB) factors. To identify additional regulators of ergosterol biosynthesis in Candida glabrata, an important human fungal pathogen with reduced susceptibility to ergosterol biosynthesis inhibitors relative to other Candida spp., we used a serial passaging strategy to isolate suppressors of the fluconazole hypersusceptibility of a upc2AΔ deletion mutant. This led to the identification of loss-of-function mutations in two genes: ROX1, the homolog of a hypoxia gene transcriptional suppressor in Saccharomyces cerevisiae, and CST6, a transcription factor that is involved in the regulation of carbon dioxide response in C. glabrata. Here, we describe a detailed analysis of the genetic interaction of ROX1 and UPC2A. In the presence of fluconazole, loss of Rox1 function restores ERG11 expression to the upc2AΔ mutant and inhibits the expression of ERG3 and ERG6, leading to increased levels of ergosterol and decreased levels of the toxic sterol 14α methyl-ergosta-8,24(28)-dien-3ß, 6α-diol, relative to the upc2AΔ mutant. Our observations establish that Rox1 is a negative regulator of ERG gene biosynthesis and indicate that a least one additional positive transcriptional regulator of ERG gene biosynthesis must be present in C. glabrata. IMPORTANCE Candida glabrata is one of the most important human fungal pathogens and has reduced susceptibility to azole-class inhibitors of ergosterol biosynthesis. Although ergosterol is the target of two of the three classes of antifungal drugs, relatively little is known about the regulation of this critical cellular pathway. Sterols are both essential components of the eukaryotic plasma membrane and potential toxins; therefore, sterol homeostasis is critical for cell function. Here, we identified two new negative regulators in C. glabrata of ergosterol (ERG) biosynthesis gene expression. Our results also indicate that in addition to Upc2A, the only known activator of ERG genes, additional positive regulators of this pathway must exist.


Assuntos
Candida glabrata/efeitos dos fármacos , Ergosterol/biossíntese , Fluconazol/farmacologia , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Transativadores/genética , Antifúngicos/farmacologia , Candida glabrata/genética , Candida glabrata/metabolismo , Ergosterol/genética , Regulação Fúngica da Expressão Gênica , Metiltransferases/genética , Metiltransferases/metabolismo , Mutação , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo
4.
J Microbiol Biotechnol ; 30(12): 1835-1842, 2020 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-33263334

RESUMO

Ergosterol, an essential constituent of membrane lipids of yeast, is distributed in both the cell membrane and intracellular endomembrane components such as vacuoles. Honokiol, a major polyphenol isolated from Magnolia officinalis, has been shown to inhibit the growth of Candida albicans. Here, we assessed the effect of honokiol on ergosterol biosynthesis and vacuole function in C. albicans. Honokiol could decrease the ergosterol content and upregulate the expression of genes related with the ergosterol biosynthesis pathway. The exogenous supply of ergosterol attenuated the toxicity of honokiol against C. albicans. Honokiol treatment could induce cytosolic acidification by blocking the activity of the plasma membrane Pma1p H+-ATPase. Furthermore, honokiol caused abnormalities in vacuole morphology and function. Concomitant ergosterol feeding to some extent restored the vacuolar morphology and the function of acidification in cells treated by honokiol. Honokiol also disrupted the intracellular calcium homeostasis. Amiodarone attenuated the antifungal effects of honokiol against C. albicans, probably due to the activation of the calcineurin signaling pathway which is involved in honokiol tolerance. In conclusion, this study demonstrated that honokiol could inhibit ergosterol biosynthesis and decrease Pma 1p H+-ATPase activity, which resulted in the abnormal pH in vacuole and cytosol.


Assuntos
Compostos de Bifenilo/farmacologia , Candida albicans/efeitos dos fármacos , Ergosterol/biossíntese , Lignanas/farmacologia , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Antifúngicos/farmacologia , Calcineurina/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Farmacorresistência Fúngica/efeitos dos fármacos , Ergosterol/genética , Magnolia/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia
5.
Genes (Basel) ; 11(7)2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679672

RESUMO

Ergosterol is an essential component of fungal cell membranes that determines the fluidity, permeability and activity of membrane-associated proteins. Ergosterol biosynthesis is a complex and highly energy-consuming pathway that involves the participation of many enzymes. Deficiencies in sterol biosynthesis cause pleiotropic defects that limit cellular proliferation and adaptation to stress. Thereby, fungal ergosterol levels are tightly controlled by the bioavailability of particular metabolites (e.g., sterols, oxygen and iron) and environmental conditions. The regulation of ergosterol synthesis is achieved by overlapping mechanisms that include transcriptional expression, feedback inhibition of enzymes and changes in their subcellular localization. In the budding yeast Saccharomyces cerevisiae, the sterol regulatory element (SRE)-binding proteins Upc2 and Ecm22, the heme-binding protein Hap1 and the repressor factors Rox1 and Mot3 coordinate ergosterol biosynthesis (ERG) gene expression. Here, we summarize the sterol biosynthesis, transport and detoxification systems of S. cerevisiae, as well as its adaptive response to sterol depletion, low oxygen, hyperosmotic stress and iron deficiency. Because of the large number of ERG genes and the crosstalk between different environmental signals and pathways, many aspects of ergosterol regulation are still unknown. The study of sterol metabolism and its regulation is highly relevant due to its wide applications in antifungal treatments, as well as in food and pharmaceutical industries.


Assuntos
Farmacorresistência Fúngica/genética , Ergosterol/biossíntese , Saccharomyces cerevisiae/genética , Esteróis/metabolismo , Proteínas de Ligação a DNA/genética , Ergosterol/genética , Ergosterol/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transativadores/genética , Fatores de Transcrição/genética
6.
Fungal Genet Biol ; 140: 103368, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32201128

RESUMO

Ergosterol is the most important membrane sterol in fungal cells and a component not found in the membranes of human cells. We identified the ERG6 gene in the AIDS-associated fungal pathogen, Cryptococcus neoformans, encoding the sterol C-24 methyltransferase of fungal ergosterol biosynthesis. In this work, we have explored its relationship with high-temperature growth and virulence of C. neoformans by the construction of a loss-of-function mutant. In contrast to other genes involved in ergosterol biosynthesis, C. neoformans ERG6 is not essential for growth under permissive conditions in vitro. However, the erg6 mutant displayed impaired thermotolerance and increased susceptibility to osmotic and oxidative stress, as well as to different antifungal drugs. Total lipid analysis demonstrated a decrease in the erg6Δ strain membrane ergosterol content. In addition, this mutant strain was avirulent in an invertebrate model of C. neoformans infection. C. neoformans Erg6 was cyto-localized in the endoplasmic reticulum and Golgi complex. Our results demonstrate that Erg6 is crucial for growth at high temperature and virulence, likely due to its effects on C. neoformans membrane integrity and dynamics. These pathogen-focused investigations into ergosterol biosynthetic pathway components reinforce the multiple roles of ergosterol in the response of diverse fungal species to alterations in the environment, especially that of the infected host. These studies open perspectives to understand the participation of ergosterol in mechanism of resistance to azole and polyene drugs. Observed synergistic growth defects with co-inhibition of Erg6 and other components of the ergosterol biosynthesis pathway suggests novel approaches to treatment in human fungal infections.


Assuntos
Criptococose/genética , Cryptococcus neoformans/genética , Ergosterol/biossíntese , Metiltransferases/genética , Antifúngicos/farmacologia , Azóis/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Criptococose/tratamento farmacológico , Criptococose/microbiologia , Cryptococcus neoformans/patogenicidade , Retículo Endoplasmático/efeitos dos fármacos , Ergosterol/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Humanos , Mutação/efeitos dos fármacos , Virulência/genética
7.
FASEB J ; 34(4): 4870-4889, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32077151

RESUMO

The COP9 signalosome (CSN) is a conserved eukaryotic complex, essential for vitality in all multicellular organisms and critical for the turnover of key cellular proteins through catalytic and non-catalytic activities. Saccharomyces cerevisiae is a powerful model organism for studying fundamental aspects of the CSN complex, since it includes a conserved enzymatic core but lacks non-catalytic activities, probably explaining its non-essentiality for life. A previous transcriptomic analysis of an S. cerevisiae strain deleted in the CSN5/RRI1 gene, encoding to the CSN catalytic subunit, revealed a downregulation of genes involved in lipid metabolism. We now show that the S. cerevisiae CSN holocomplex is essential for cellular lipid homeostasis. Defects in CSN assembly or activity lead to decreased quantities of ergosterol and unsaturated fatty acids (UFA); vacuole defects; diminished lipid droplets (LDs) size; and to accumulation of endoplasmic reticulum (ER) stress. The molecular mechanism behind these findings depends on CSN involvement in upregulating mRNA expression of SPT23. Spt23 is a novel activator of lipid desaturation and ergosterol biosynthesis. Our data reveal for the first time a functional link between the CSN holocomplex and Spt23. Moreover, CSN-dependent upregulation of SPT23 transcription is necessary for the fine-tuning of lipid homeostasis and for cellular health.


Assuntos
Complexo do Signalossomo COP9/metabolismo , Ergosterol/biossíntese , Ácidos Graxos Insaturados/metabolismo , Proteínas de Membrana/metabolismo , Metaloendopeptidases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Complexo do Signalossomo COP9/genética , Estresse do Retículo Endoplasmático , Ergosterol/genética , Ácidos Graxos Insaturados/genética , Deleção de Genes , Gotículas Lipídicas/metabolismo , Proteínas de Membrana/genética , Metaloendopeptidases/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
8.
J Appl Microbiol ; 129(2): 256-265, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32011049

RESUMO

AIMS: In this study, the antifungal effect of cinnamaldehyde against Fusarium sambucinum and its underlying mechanisms were determined. METHODS AND RESULTS: Minimum inhibitory concentration and minimal fungicidal concentration of cinnamaldehyde were 3 and 4 mmol l-1 on spore germination and colony development assays in vitro, respectively. Furthermore, the lesion diameter of potato tubers and tuber slices inoculated with F. sambucinum was reduced by 76·9 and 69% after treatment with 4 mmol l-1 cinnamaldehyde. Cytometric analyses revelled that cinnamaldehyde significantly affected the integrity of cell membrane firstly, then decreased mitochondrial membrane potential and induced the accumulation of intracellular reactive oxygen species. Meanwhile, high-performance liquid chromatography results indicated that 3 mmol l-1 cinnamaldehyde could reduce the ergosterol content by 67·94%. This effect was accompanied by a down-regulation of ERG11, ERG6 and ERG4 which were involved in ergosterol biosynthesis. CONCLUSION: Theses results suggest that cinnamaldehyde exerts strong antifungal activity against F. sambucinum, probably by affecting the ergosterol biosynthetic processes what leads to the disruption of cell membrane integrity. SIGNIFICANCE AND IMPACT OF THE STUDY: Cinnamaldehyde is a predominant constituent and key flavour compound of cinnamon essential oil. It has been used as a food additive and flavorant. It is expected to be a novel and safe fungicide for controlling dry rot in potato tubes.


Assuntos
Acroleína/análogos & derivados , Ergosterol/biossíntese , Fungicidas Industriais/farmacologia , Fusarium/efeitos dos fármacos , Acroleína/farmacologia , Membrana Celular/efeitos dos fármacos , Ergosterol/genética , Fusarium/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Óleos Voláteis/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Solanum tuberosum/microbiologia
9.
Gene ; 718: 144073, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31446096

RESUMO

Cell morphology of the oleaginous fungus, Aspergillus oryzae BCC7051, was genetically engineered by disruption of non-essential genes involved in cell wall biosynthesis. Comparative phenotypic analysis of two disruptant strains defective either in α-1,3-glucan synthase 1 (ΔAoAgs1) or chitin synthase B (ΔAoChsB), and the wild type showed that the ΔAoAgs1 strain had no alterations in colonial growth and sporulation when grown on agar medium whereas the ΔAoChsB disruptant showed growth retardation and lower sporulation. However, tiny and loose pellets were found in the ΔAoAgs1 culture grown in liquid medium, where fungal pellet size was decreased by 35-50% of the wild type size. Further investigation of the ΔAoAgs1 mutant grown under stress-induced conditions, including high salt concentration, ionic strength and osmolarity, showed that its growth and development remained similar to that of the wild type. When cultivating the ΔAoAgs1 strain in a stirred-tank bioreactor, lipid production in terms of titer and productivity was significantly improved. As compared to the wild type, an increase of triacylglycerol and ergosterol contents with a proportional decrease in steryl ester content was observed in the ΔAoAgs1 strain. These results suggest that the morphologically engineered strain of A. oryzae is a robust cell chassis useful for exploitation in further production development of functional lipids with industrial significance.


Assuntos
Aspergillus oryzae/metabolismo , Ergosterol/biossíntese , Engenharia Metabólica , Microrganismos Geneticamente Modificados/metabolismo , Triglicerídeos/biossíntese , Aspergillus oryzae/genética , Quitina Sintase/genética , Quitina Sintase/metabolismo , Ergosterol/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Genes Fúngicos , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Microrganismos Geneticamente Modificados/genética , Triglicerídeos/genética
10.
J Biol Chem ; 294(40): 14757-14767, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31409644

RESUMO

In fungi, ergosterol is an essential component of the plasma membrane. Its biosynthesis from acetyl-CoA is the primary target of the most commonly used antifungal drugs. Here, we show that the pantothenate kinase Cab1p, which catalyzes the first step in the metabolism of pantothenic acid for CoA biosynthesis in budding yeast (Saccharomyces cerevisiae), significantly regulates the levels of sterol intermediates and the activities of ergosterol biosynthesis-targeting antifungals. Using genetic and pharmacological analyses, we show that altered pantothenate utilization dramatically alters the susceptibility of yeast cells to ergosterol biosynthesis inhibitors. Genome-wide transcription and MS-based analyses revealed that this regulation is mediated by changes both in the expression of ergosterol biosynthesis genes and in the levels of sterol intermediates. Consistent with these findings, drug interaction experiments indicated that inhibition of pantothenic acid utilization synergizes with the activity of the ergosterol molecule-targeting antifungal amphotericin B and antagonizes that of the ergosterol pathway-targeting antifungal drug terbinafine. Our finding that CoA metabolism controls ergosterol biosynthesis and susceptibility to antifungals could set the stage for the development of new strategies to manage fungal infections and to modulate the potency of current drugs against drug-sensitive and -resistant fungal pathogens.


Assuntos
Farmacorresistência Fúngica/genética , Ergosterol/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Esteróis/metabolismo , Anfotericina B/farmacologia , Antifúngicos/farmacologia , Coenzima A/biossíntese , Coenzima A/efeitos dos fármacos , Ergosterol/biossíntese , Ergosterol/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genoma Fúngico/efeitos dos fármacos , Ácido Pantotênico/biossíntese , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Esteróis/biossíntese , Terbinafina/farmacologia
11.
Fungal Genet Biol ; 122: 31-46, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30439446

RESUMO

Production of trichothecene toxins occurs in phylogenetically diverse fungi with different lifestyles. In these fungi, most homologs of the trichothecene biosynthetic gene cluster include the transcription factor genes tri6 and tri10. Analyses of phytopathogenic species of Fusarium indicate that the TRI6 and TRI10 proteins positively regulate genes required for synthesis of trichothecenes as well as farnesyl diphosphate (FPP), a precursor of the trichothecene and other terpenoids (e.g., ergosterol). However, the apparent absence of tri6 and tri10 in some trichothecene-producing fungi, and the presence of multiple paralogs of the genes in others suggest considerable variability in genetic regulation of trichothecene biosynthesis. To begin to investigate this variability, we functionally characterized tri10 in the saprotrophic fungus Trichoderma arundinaceum. We found that TRI10 is required for wild-type expression of tri genes and trichothecene production during the first 12 h of growth of T. arundinaceum. Comparison of the effect of tri10 deletion in T. arundinaceum and Fusarium species has provided evidence for similarities in the genetic regulation of trichothecene biosynthesis in these two fungi with different lifestyles. In contrast to trichothecenes, tri10 deletion increased production of ergosterol and the polyketide-derived metabolites aspinolides, which is more likely caused by an increase in the intracellular pool of FPP resulting from loss of trichothecene production. Furthermore, although it is unclear how TRI10 affects polyketide production, one possibility is that it does so by rechanneling terpene precursors.


Assuntos
Vias Biossintéticas/genética , Proteínas Fúngicas/genética , Terpenos/metabolismo , Trichoderma/genética , Ergosterol/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Deleção de Sequência , Trichoderma/metabolismo
12.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(3): 290-303, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30553056

RESUMO

Sterols are essential lipids, involved in many biological processes. In Saccharomyces cerevisiae, the enzymes of the ergosterol biosynthetic pathway (Erg proteins) are localized in different cellular compartments. With the aim of studying organelle interactions, we discovered that Erg27p resides mainly in Lipid Droplets (LDs) in respiratory competent cells, while in absence of respiration, is found mostly in the ER. The results presented in this paper demonstrate an interplay between the mitochondrial respiration and ergosterol production: on the one hand, rho° cells show lower ergosterol content when compared with wild type respiratory competent cells, on the other hand, the ergosterol biosynthetic pathway influences the mitochondrial status, since treatment with ketoconazole, which blocks the ergosterol pathway, or the absence of the ERG27 gene, induced rho° production in S. cerevisiae. The loss of mitochondrial DNA in the ∆erg27 strain is fully suppressed by exogenous addition of ergosterol. These data suggest the notion that ergosterol is essential for maintaining the mitochondrial DNA attached to the inner mitochondrial membrane.


Assuntos
DNA Mitocondrial/efeitos dos fármacos , Ergosterol/genética , Ergosterol/metabolismo , Vias Biossintéticas , DNA Mitocondrial/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Cetoconazol/farmacologia , Gotículas Lipídicas/metabolismo , Mitocôndrias/metabolismo , Oxirredutases/metabolismo , Oxirredutases/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Esteróis/metabolismo
13.
Appl Microbiol Biotechnol ; 102(12): 5255-5264, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29691631

RESUMO

The increase of fungal infectious diseases and lack of safe and efficacious antifungal drugs result in the urgent need of new therapeutic strategies. Here, we repurposed the lovastatin (LOV) as a synergistic antifungal potentiator to itraconazole (ITZ) against Candida albicans planktonic cells and biofilms in vitro for the first time. Mutants from ergosterol biosynthesis pathway were employed and key gene expression profiles of ergosterol pathway were also measured. LOV single treatment was unable to inhibit C. albicans strains except the ERG3 and ERG11 double mutant. LOV and ITZ combination was capable of inhibiting the C. albicans planktonic cells and biofilms synergistically including the ITZ resistant mutants. The synergistic antifungal ability was stronger in either ERG11 or ERG3 dysfunctional mutants compared to wild type. The combination lost the synergistic activities in the ERG11 and ERG3 double mutant, while it was sensitive to LOV single treatment. The expression of HMG1, encoding HMG-CoA the target of LOV, was significantly upregulated in ERG11 and ERG3 double mutant strain by the treatment of the combination at 1.5 and 3 h. The combination also significantly increased the HMG1 expression in mutants from ergosterol pathway compared with wild type. The ERG11 and ERG3 gene expressions were upregulated by ITZ and its combination with LOV, but seemingly not by LOV single treatment after 1.5 and 3 h. The combination of LOV and ITZ on C. albicans planktonic cells and biofilms highlights its potential clinical practice especially against the azole drug-resistant mutants.


Assuntos
Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Itraconazol/química , Itraconazol/farmacologia , Lovastatina/química , Lovastatina/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Candida albicans/genética , Ergosterol/biossíntese , Ergosterol/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Testes de Sensibilidade Microbiana , Mutação
14.
Mol Med Rep ; 17(5): 6585-6597, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29532896

RESUMO

Pathogenic fungi, including Candida glabrata, develop strategies to grow and survive both in vitro and in vivo under azole stress. However, the mechanisms by which yeast cells counteract the inhibitory effects of azoles are not completely understood. In the current study, it was demonstrated that the expression of the ergosterol biosynthetic genes ERG2, ERG3, ERG4, ERG10, and ERG11 was significantly upregulated in C. glabrata following fluconazole treatment. Inhibiting ergosterol biosynthesis using fluconazole also increased the expression of the sterol influx transporter AUS1 and the sterol metabolism regulators SUT1 and UPC2 in fungal cells. The microarray study quantified 35 genes with elevated mRNA levels, including AUS1, TIR3, UPC2, and 8 ERG genes, in a C. glabrata mutant strain lacking ERG1, indicating that sterol importing activity is increased to compensate for defective sterol biosynthesis in cells. Bioinformatic analyses further revealed that those differentially expressed genes were involved in multiple cellular processes and biological functions, such as sterol biosynthesis, lipid localization, and sterol transport. Finally, to assess whether sterol uptake affects yeast susceptibility to azoles, we generated a C. glabrata aus1∆ mutant strain. It was shown that loss of Aus1p in C. glabrata sensitized the pathogen to azoles and enhanced the efficacy of drug exposure under low oxygen tension. In contrast, the presence of exogenous cholesterol or ergosterol in medium rendered the C. glabrata AUS1 wild­type strain highly resistant to fluconazole and voriconazole, suggesting that the sterol importing mechanism is augmented when ergosterol biosynthesis is suppressed in the cell, thus allowing C. glabrata to survive under azole pressure. On the basis of these results, it was concluded that sterol uptake and sterol biosynthesis may act coordinately and collaboratively to sustain growth and to mediate antifungal resistance in C. glabrata through dynamic gene expression in response to azole stress and environmental challenges.


Assuntos
Azóis/farmacologia , Candida glabrata , Farmacorresistência Fúngica/genética , Ergosterol , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Candida glabrata/genética , Candida glabrata/metabolismo , Farmacorresistência Fúngica/efeitos dos fármacos , Ergosterol/biossíntese , Ergosterol/genética , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética
15.
J Antibiot (Tokyo) ; 71(4): 467-476, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29391532

RESUMO

In a previous study on discovering new antimicrobial agents from microbial sources, nine bafilomycins were isolated from the fermentation broth of Streptomyces albolongus. Among them, bafilomycin C1 (Baf C1) showed strong antifungal activity against Candida albicans, with MIC value of 1.56 µg/mL. The aim of this study was to evaluate the action mechanism of Baf C1 against C. albicans. Quantitative PCR analysis revealed that ergosterol biosynthesis-related genes of C. albicans ACS1, HMG1, IDI1, ERG1, ERG2, ERG6, ERG7, ERG8, ERG9, ERG12, ERG13, ERG20, ERG24, ERG251, ERG252, ERG26, ERG27, and ERG28 were all down-regulated (Log2fold change < -1) after Baf C1(4 µg/mL) exposure. Moreover, the expression of MET6 gene, encoded methionine synthase, was also down-regulated (2.7-fold). It is corresponding with the quantitative PCR result, the content of ergosterol has dropped about 41% compared with the control. Transmission electron microscope examination also revealed that the Baf C1 strongly destroyed the cell membrane of C. albicans. In addition, the content of farnesol was significantly increased, about 2.1-fold compared with the control. The results indicated Baf C1 caused aberrations in sterol biosynthesis, leaded to the lack of ergosterol of the fungal membrane.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/metabolismo , Macrolídeos/farmacologia , Esteróis/biossíntese , Candida albicans/genética , Membrana Celular/efeitos dos fármacos , Membrana Celular/ultraestrutura , Ergosterol/biossíntese , Ergosterol/genética , Farneseno Álcool/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genes Fúngicos
16.
Folia Microbiol (Praha) ; 63(3): 363-371, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29234974

RESUMO

Farnesol (FAR) has already demonstrated an inhibitory effect on Candida albicans biofilm. The aim of this work was to determine the effectiveness of externally added FAR in combination with fluconazole (FLC) on Candida albicans biofilm and on regulation of the ergosterol genes ERG20, ERG9, and ERG11. The effectiveness of compounds was determined by MTT assay and evaluated by the minimal inhibitory concentrations reducing a sessile biofilm to 50% activity (0.5 µg/mL and 200 µmol/L for FLC and FAR, respectively). These concentrations as well as 30 and 100 µmol/L FAR were selected for a study of the effectiveness of the FAR/FLC combination. The reduction in biofilm robustness mainly caused by the presence of 200 µmol/L FAR-alone or in combination with FLC-was accompanied by a significant inhibition of the yeast-to-hyphae transition that was observed by light microscopy and CLSM. Results from qRT-PCR indicated that while 30 µmol/L FAR only slightly regulated the expression of all 3 genes in the 48-h biofilm, the presence of 200 µmol/L FAR downregulated all the tested genes. However, the addition of 0.5 µg/mL of FLC to the samples with 200 µmol/L FAR restored the downregulation of the ERG20 and ERG11 genes to the control level. Moreover, the gene ERG9 was slightly upregulated. In summary, FAR acted via multiple effects on the C. albicans biofilm, but only a higher concentration of FAR proved to be effective.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Farneseno Álcool/farmacologia , Fluconazol/farmacologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Ergosterol/genética , Ergosterol/metabolismo , Genes Fúngicos/genética , Hifas/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Testes de Sensibilidade Microbiana
17.
Artigo em Inglês | MEDLINE | ID: mdl-29238700

RESUMO

Candida albicans is one of the most common fungal pathogens. Our previous study demonstrated that concomitant use of berberine (BBR) and fluconazole (FLC) showed a synergistic action against FLC-resistant C. albicans in vitro and BBR had a major antifungal effect in the synergism, while FLC played a role of increasing the intracellular BBR concentration. Since the antifungal activity of BBR alone is very weak (MIC > 128 µg/mL), it was assumed that FLC-resistant C. albicans was naturally tolerant to BBR, and this tolerance could be reversed by FLC. The present study aimed to elucidate the mechanism underlying BBR tolerance in FLC-resistant C. albicans and its disruption by FLC. The ergosterol quantitative analysis showed that the BBR monotreatment could increase the content of cellular ergosterol. Real-time RT-PCR revealed a global upregulation of ergosterol synthesis genes in response to BBR exposure. In addition, exogenous ergosterol could decrease intracellular BBR concentration and increase the expression of drug efflux pump genes, further reducing the susceptibility of C. albicans to BBR. Similar to FLC, other antifungal agents acting on ergosterol were able to synergize with BBR against FLC-resistant C. albicans. However, the antifungal agents not acting on ergosterol were not synergistic with BBR. These results suggested that ergosterol was required for BBR tolerance, and FLC could enhance the susceptibility of FLC-resistant C. albicans to BBR by inhibiting ergosterol synthesis.


Assuntos
Berberina/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/fisiologia , Farmacorresistência Fúngica/efeitos dos fármacos , Sinergismo Farmacológico , Ergosterol/metabolismo , Antifúngicos/farmacologia , Candida albicans/crescimento & desenvolvimento , Candida albicans/ultraestrutura , Ergosterol/genética , Fluconazol/farmacologia , Humanos , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Testes de Sensibilidade Microbiana , RNA Mensageiro/biossíntese , Regulação para Cima
18.
World J Microbiol Biotechnol ; 33(11): 206, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29101531

RESUMO

Saccharomyces cerevisiae has been widely used for wine fermentation and bio-fuels production. A S. cerevisiae strain Sc131 isolated from tropical fruit shows good fermentation properties and ethanol tolerance, exhibiting significant potential in Chinese bayberry wine fermentation. In this study, RNA-sequence and RT-qPCR was used to investigate the transcriptome profile of Sc131 in response to ethanol stress. Scanning Electron Microscopy were carried out to observe surface morphology of yeast cells. Totally, 937 genes were identified differential expressed, including 587 up-regulated and 350 down-regulated genes, after 4-h ethanol stress (10% v/v). Transcriptomic analysis revealed that, most genes involved in regulating filamentous growth or pseudohyphal growth were significantly up-regulated in response to ethanol stress. The complex protein quality control machineries, Hsp90/Hsp70 and Hsp104/Hsp70/Hsp40 based chaperone system combining with ubiquitin-proteasome proteolytic pathway were both activated to recognize and degrade misfolding proteins. Genes related to biosynthesis and metabolism of two well-known stress-responsive substances trehalose and ergosterol were generally up-regulated, while genes associated with amino acids biosynthesis and metabolism processes were differentially expressed. Moreover, thiamine was also important in response to ethanol stress. This research may promote the potential applications of Sc131 in the fermentation of Chinese bayberry wine.


Assuntos
Etanol/metabolismo , RNA/genética , Saccharomyces cerevisiae/fisiologia , Estresse Fisiológico/genética , Aminoácidos/genética , Aminoácidos/metabolismo , Regulação para Baixo/genética , Ergosterol/genética , Ergosterol/metabolismo , Fermentação/fisiologia , Perfilação da Expressão Gênica/métodos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico/fisiologia , Transcriptoma/genética , Trealose/genética , Trealose/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Regulação para Cima/genética , Vinho/microbiologia
19.
Mol Biol Cell ; 28(20): 2637-2649, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28768829

RESUMO

Changes in cellular sterol species and concentrations can have profound effects on the transcriptional profile. In yeast, mutants defective in sterol biosynthesis show a wide range of changes in transcription, including a coinduction of anaerobic genes and ergosterol biosynthesis genes, biosynthesis of basic amino acids, and several stress genes. However the mechanisms underlying these changes are unknown. We identified mutations in the SAGA complex, a coactivator of transcription, which abrogate the ability to carry out most of these sterol-dependent transcriptional changes. In the erg3 mutant, the SAGA complex increases its occupancy time on many of the induced ergosterol and anaerobic gene promoters, increases its association with several relevant transcription factors and the SWI/SNF chromatin remodeling complex, and surprisingly, associates with an endocytic protein, Rvs167p, suggesting a moonlighting function for this protein in the sterol-regulated induction of the heat shock protein, HSP42 and HSP102, mRNAs.


Assuntos
Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transativadores/genética , Transativadores/metabolismo , Montagem e Desmontagem da Cromatina , Ergosterol/genética , Ergosterol/metabolismo , Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas , Esteróis/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
20.
Microbiol Spectr ; 5(3)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28643626

RESUMO

The application of environmental DNA techniques and increased genome sequencing of microbial diversity, combined with detailed study of cellular characters, has consistently led to the reexamination of our understanding of the tree of life. This has challenged many of the definitions of taxonomic groups, especially higher taxonomic ranks such as eukaryotic kingdoms. The Fungi is an example of a kingdom which, together with the features that define it and the taxa that are grouped within it, has been in a continual state of flux. In this article we aim to summarize multiple lines of data pertinent to understanding the early evolution and definition of the Fungi. These include ongoing cellular and genomic comparisons that, we will argue, have generally undermined all attempts to identify a synapomorphic trait that defines the Fungi. This article will also summarize ongoing work focusing on taxon discovery, combined with phylogenomic analysis, which has identified novel groups that lie proximate/adjacent to the fungal clade-wherever the boundary that defines the Fungi may be. Our hope is that, by summarizing these data in the form of a discussion, we can illustrate the ongoing efforts to understand what drove the evolutionary diversification of fungi.


Assuntos
Fungos/classificação , Fungos/genética , Filogenia , Aminoácidos/biossíntese , Biodiversidade , Evolução Biológica , Parede Celular/química , DNA Fúngico/genética , Ecologia , Ergosterol/genética , Ergosterol/metabolismo , Eucariotos/genética , Evolução Molecular , Fungos/isolamento & purificação , Fungos/metabolismo , Genes Fúngicos , Genômica/métodos , Interações Microbianas , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...