Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 18450, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34531467

RESUMO

Ergothioneine (ERGO) is a rare amino acid mostly found in fungi, including mushrooms, with recognized antioxidant activity to protect tissues from damage by reactive oxygen species (ROS) components. Prior to this publication, the biodistribution of ERGO has been performed solely in vitro using extracted tissues. The aim of this study was to develop a feasible chemistry for the synthesis of an ERGO PET radioligand, [11C]ERGO, to facilitate in vivo study. The radioligand probe was synthesized with identical structure to ERGO by employing an orthogonal protection/deprotection approach. [11C]methylation of the precursor was performed via [11C]CH3OTf to provide [11C]ERGO radioligand. The [11C]ERGO was isolated by RP-HPLC with a molar activity of 690 TBq/mmol. To demonstrate the biodistribution of the radioligand, we administered approximately 37 MBq/0.1 mL in 5XFAD mice, a mouse model of Alzheimer's disease via the tail vein. The distribution of ERGO in the brain was monitored using 90-min dynamic PET scans. The delivery and specific retention of [11C]ERGO in an LPS-mediated neuroinflammation mouse model was also demonstrated. For the pharmacokinetic study, the concentration of the compound in the serum started to decrease 10 min after injection while starting to distribute in other peripheral tissues. In particular, a significant amount of the compound was found in the eyes and small intestine. The radioligand was also distributed in several regions of the brain of 5XFAD mice, and the signal remained strong 30 min post-injection. This is the first time the biodistribution of this antioxidant and rare amino acid has been demonstrated in a preclinical mouse model in a highly sensitive and non-invasive manner.


Assuntos
Antioxidantes/farmacocinética , Ergotioneína/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacocinética , Animais , Antioxidantes/química , Radioisótopos de Carbono/química , Ergotioneína/química , Camundongos , Camundongos Endogâmicos C57BL , Compostos Radiofarmacêuticos/química , Distribuição Tecidual
2.
Neuromolecular Med ; 23(1): 184-198, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33067719

RESUMO

Ergothioneine (ET) is a naturally occurring antioxidant that is synthesized by non-yeast fungi and certain bacteria. ET is not synthesized by animals, including humans, but is avidly taken up from the diet, especially from mushrooms. In the current study, we elucidated the effect of ET on the hCMEC/D3 human brain endothelial cell line. Endothelial cells are exposed to high levels of the cholesterol oxidation product, 7-ketocholesterol (7KC), in patients with cardiovascular disease and diabetes, and this process is thought to mediate pathological inflammation. 7KC induces a dose-dependent loss of cell viability and an increase in apoptosis and necrosis in the endothelial cells. A relocalization of the tight junction proteins, zonula occludens-1 (ZO-1) and claudin-5, towards the nucleus of the cells was also observed. These effects were significantly attenuated by ET. In addition, 7KC induces marked increases in the mRNA expression of pro-inflammatory cytokines, IL-1ß IL-6, IL-8, TNF-α and cyclooxygenase-2 (COX2), as well as COX2 enzymatic activity, and these were significantly reduced by ET. Moreover, the cytoprotective and anti-inflammatory effects of ET were significantly reduced by co-incubation with an inhibitor of the ET transporter, OCTN1 (VHCL). This shows that ET needs to enter the endothelial cells to have a protective effect and is unlikely to act via extracellular neutralizing of 7KC. The protective effect on inflammation in brain endothelial cells suggests that ET might be useful as a nutraceutical for the prevention or management of neurovascular diseases, such as stroke and vascular dementia. Moreover, the ability of ET to cross the blood-brain barrier could point to its usefulness in combatting 7KC that is produced in the CNS during neuroinflammation, e.g. after excitotoxicity, in chronic neurodegenerative diseases, and possibly COVID-19-related neurologic complications.


Assuntos
Antioxidantes/farmacologia , COVID-19/complicações , Células Endoteliais/efeitos dos fármacos , Ergotioneína/farmacologia , Cetocolesteróis/toxicidade , Doenças do Sistema Nervoso/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Antioxidantes/farmacocinética , Apoptose/efeitos dos fármacos , Transporte Biológico , Barreira Hematoencefálica , Encéfalo/irrigação sanguínea , Encéfalo/citologia , Linhagem Celular , Colesterol/metabolismo , Claudina-5 , Ciclo-Oxigenase 2/biossíntese , Ciclo-Oxigenase 2/genética , Citocinas/biossíntese , Citocinas/genética , Avaliação Pré-Clínica de Medicamentos , Ergotioneína/farmacocinética , Humanos , Microvasos/citologia , Doenças do Sistema Nervoso/etiologia , Fármacos Neuroprotetores/farmacocinética , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas de Transporte de Cátions Orgânicos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Simportadores , Proteína da Zônula de Oclusão-1
3.
Sci Rep ; 8(1): 1601, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29371632

RESUMO

L-ergothioneine (ET) is a diet-derived amino acid that accumulates at high concentrations in animals and humans. Numerous studies have highlighted its antioxidant abilities in vitro, and possible cytoprotective capabilities in vivo. We investigated the uptake and distribution of ET in various organs by a highly sensitive and specific liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) technique, both before and after oral administration of pure ET (35 and 70 mg/kg/day for 1, 7, and 28 days) to male C57BL6J mice. ET primarily concentrates in the liver and whole blood, and also in spleen, kidney, lung, heart, intestines, eye, and brain tissues. Strong correlations were found between ET and its putative metabolites - hercynine, ET-sulfonate (ET-SO3H), and S-methyl ET. Hercynine accumulates in the brain after prolonged ET administration. This study demonstrates the uptake and distribution of ET and provides a foundation for future studies with ET to target oxidative damage in a range of tissues in human diseases.


Assuntos
Estruturas Animais/química , Antioxidantes/farmacocinética , Ergotioneína/farmacocinética , Administração Oral , Animais , Antioxidantes/administração & dosagem , Cromatografia Líquida , Ergotioneína/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Espectrometria de Massas em Tandem
4.
Antioxid Redox Signal ; 26(5): 193-206, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-27488221

RESUMO

AIM: We investigated the uptake and pharmacokinetics of l-ergothioneine (ET), a dietary thione with free radical scavenging and cytoprotective capabilities, after oral administration to humans, and its effect on biomarkers of oxidative damage and inflammation. RESULTS: After oral administration, ET is avidly absorbed and retained by the body with significant elevations in plasma and whole blood concentrations, and relatively low urinary excretion (<4% of administered ET). ET levels in whole blood were highly correlated to levels of hercynine and S-methyl-ergothioneine, suggesting that they may be metabolites. After ET administration, some decreasing trends were seen in biomarkers of oxidative damage and inflammation, including allantoin (urate oxidation), 8-hydroxy-2'-deoxyguanosine (DNA damage), 8-iso-PGF2α (lipid peroxidation), protein carbonylation, and C-reactive protein. However, most of the changes were non-significant. INNOVATION: This is the first study investigating the administration of pure ET to healthy human volunteers and monitoring its uptake and pharmacokinetics. This compound is rapidly gaining attention due to its unique properties, and this study lays the foundation for future human studies. CONCLUSION: The uptake and retention of ET by the body suggests an important physiological function. The decreasing trend of oxidative damage biomarkers is consistent with animal studies suggesting that ET may function as a major antioxidant but perhaps only under conditions of oxidative stress. Antioxid. Redox Signal. 26, 193-206.


Assuntos
Antioxidantes/administração & dosagem , Biomarcadores , Ergotioneína/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , 8-Hidroxi-2'-Desoxiguanosina , Alantoína/metabolismo , Antioxidantes/química , Antioxidantes/farmacocinética , Betaína/análogos & derivados , Betaína/metabolismo , Proteína C-Reativa/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Monitoramento de Medicamentos , Ergotioneína/química , Ergotioneína/farmacocinética , Voluntários Saudáveis , Histidina/análogos & derivados , Histidina/metabolismo , Humanos , Inflamação/metabolismo
5.
J Pharm Pharmacol ; 68(9): 1160-9, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27350110

RESUMO

OBJECTIVES: Carnitine/organic cation transporter 1 (OCTN1) is involved in gastrointestinal absorption and mitochondrial toxicity of biguanides in rodents, but its pharmacokinetic roles in humans are largely unknown. The purpose of this study was to clarify the transport activities of two major OCTN1 variants, L503F and I306T, for gabapentin and three biguanide drugs, metformin, buformin and phenformin. METHODS: HEK293 cells were transfected with OCTN1 gene, its variants, or vector alone, and the uptake and cytotoxicity of each drug were examined. KEY FINDINGS: Buformin was identified to be an OCTN1 substrate. Uptake of biguanides, especially metformin, mediated by OCTN1 variant L503F, which is commonly found in Caucasians, was much higher than that by the wild-type transporter (WT-OCTN1). Cytotoxicity of metformin was also greater in HEK293 cells expressing the L503F variant, compared with WT-OCTN1. Uptake of gabapentin mediated by OCTN1 variant I306T, which is commonly found in both Asians and Caucasians, was lower than that by WT-OCTN1, although uptake of the typical OCTN1 substrate ergothioneine was similar. CONCLUSION: Organic cation transporter 1 variant L503F transports biguanides, especially metformin, more efficiently than WT-OCTN1, whereas the I306T variant transports gabapentin less efficiently than WT-OCTN1, suggesting that the common OCTN1 variants may alter pharmacokinetics of these drugs.


Assuntos
Absorção Intestinal , Metformina/farmacocinética , Transportador 1 de Cátions Orgânicos/genética , Polimorfismo de Nucleotídeo Único , Aminas/metabolismo , Aminas/farmacocinética , Povo Asiático , Biguanidas/metabolismo , Biguanidas/farmacocinética , Transporte Biológico Ativo , Buformina/metabolismo , Buformina/farmacocinética , Carnitina/metabolismo , Ácidos Cicloexanocarboxílicos/metabolismo , Ácidos Cicloexanocarboxílicos/farmacocinética , Ergotioneína/metabolismo , Ergotioneína/farmacocinética , Gabapentina , Células HEK293 , Humanos , Metformina/metabolismo , Transportador 1 de Cátions Orgânicos/metabolismo , População Branca , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacocinética
6.
Biochim Biophys Acta ; 1860(6): 1334-42, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26994919

RESUMO

BACKGROUND: Organic cation transporters transfer solutes with a positive charge across the plasma membrane. The novel organic cation transporter 1 (OCTN1) and 2 (OCTN2) transport ergothioneine and carnitine, respectively. Mutations in the SLC22A5 gene encoding OCTN2 cause primary carnitine deficiency, a recessive disorders resulting in low carnitine levels and defective fatty acid oxidation. Variations in the SLC22A4 gene encoding OCTN1 are associated with rheumatoid arthritis and Crohn disease. METHODS: Here we evaluate the functional properties of the OCTN1 transporter using chimeric transporters constructed by fusing different portion of the OCTN1 and OCTN2 cDNAs. Their relative abundance and subcellular distribution was evaluated through western blot analysis and confocal microscopy. RESULTS: Substitutions of the C-terminal portion of OCTN1 with the correspondent residues of OCTN2 generated chimeric OCTN transporters more active than wild-type OCTN1 in transporting ergothioneine. Additional single amino acid substitutions introduced in chimeric OCTN transporters further increased ergothioneine transport activity. Kinetic analysis indicated that increased transport activity was due to an increased V(max), with modest changes in K(m) toward ergothioneine. CONCLUSIONS: Our results indicate that the OCTN1 transporter is tolerant to extensive amino acid substitutions. This is in sharp contrast to the OCTN2 carnitine transporter that has been selected for high functional activity through evolution, with almost all substitutions reducing carnitine transport activity. GENERAL SIGNIFICANCE: The widespread tolerance of OCTN1 to amino acid substitutions suggests that the corresponding SLC22A4 gene may have derived from a recent duplication of the SLC22A5 gene and might not yet have a defined physiological role.


Assuntos
Ergotioneína/farmacocinética , Proteínas de Transporte de Cátions Orgânicos/fisiologia , Substituição de Aminoácidos , Animais , Transporte Biológico , Western Blotting , Células CHO , Cricetulus , Humanos , Microscopia Confocal , Proteínas de Transporte de Cátions Orgânicos/química , Relação Estrutura-Atividade , Simportadores
7.
J Mass Spectrom ; 48(3): 406-12, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23494799

RESUMO

A sensitive analytical method has been developed and validated for the quantification of L-ergothioneine in human plasma and erythrocytes by liquid chromatography-tandem mass spectrometry. A commercially available isotope-labeled L-ergothioneine-d9 is used as the internal standard. A simple protein precipitation with acetonitrile is utilized for bio-sample preparation prior to analysis. Chromatographic separation of L-ergothioneine is conducted using gradient elution on Alltime C18 (150 mm × 2.1 mm, 5 µ). The run time is 6 min at a constant flow rate of 0.45 ml/min. The mass spectrometer is operated under a positive electrospray ionization condition with multiple reaction monitoring mode. The mass transitions of L-ergothioneine and L-ergothioneine-d9 are m/z 230 > 127 and m/z 239 > 127, respectively. Excellent linearity [coefficient of determination (r(2)) ≥ 0.9998] can be achieved for L-ergothioneine quantification at the ranges of 10 to 10,000 ng/ml, with the intra-day and inter-day precisions at 0.9-3.9% and 1.3-5.7%, respectively, and the accuracies for all quality control samples between 94.5 and 101.0%. This validated analytical method is suitable for pharmacokinetic monitoring of L-ergothioneine in human and erythrocytes. Based on the determination of bio-samples from five healthy subjects, the mean concentrations of L-ergothioneine in plasma and erythrocytes are 107.4 ± 20.5 ng/ml and 1285.0 ± 1363.0 ng/ml, respectively.


Assuntos
Antioxidantes/farmacocinética , Ergotioneína/farmacocinética , Espectrometria de Massas em Tandem/métodos , Antioxidantes/análise , Cromatografia Líquida de Alta Pressão/métodos , Ergotioneína/análise , Ergotioneína/sangue , Eritrócitos/química , Humanos , Modelos Lineares , Sensibilidade e Especificidade
8.
Prev Med ; 54 Suppl: S75-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22230474

RESUMO

BACKGROUND: Ergothioneine (ET) is a sulfur containing amino acid that functions as an antioxidant. Mushrooms are a primary source of ET containing from 0.4 to 2.0mg/g (dry-weight). The bioavailability of ET from mushrooms in humans remains unclear. OBJECTIVE: We evaluated the bioavailability of ET in healthy men (n=10) in a pilot study, using a randomized, cross-over, dose-response, postprandial time-course design, conducted at the General Clinical Research Center at Pennsylvania State University in 2009. METHOD: ET was administered through a mushroom test meal containing 8 g and 16 g of mushroom powder. Postprandial red blood cell concentrations of ET were measured. Plasma glucose, triglycerides, HDL, LDL and total cholesterol also were monitored. Biomarkers of inflammation and oxidative stress were evaluated using C-reactive protein and ORAC(total). RESULTS: ET was bioavailable after consuming mushrooms and a trend in the postprandial triglyceride response indicated that there was a blunting effect after both the 8 g and 16 g ET doses were compared with the 0 g dose. Despite ET's antioxidant properties, ORAC(total) values decreased after the 8 g and 16 g mushroom meal. CONCLUSIONS: Ergothioneine from A. bisporus mushrooms is bioavailable as assessed by red blood cell uptake postprandially, and consumption is associated with an attenuated postprandial TG response.


Assuntos
Agaricales/química , Antioxidantes/farmacocinética , Biomarcadores/metabolismo , Ergotioneína/farmacocinética , Inflamação/fisiopatologia , Adulto , Antioxidantes/administração & dosagem , Antioxidantes/análise , Antioxidantes/metabolismo , Disponibilidade Biológica , Proteína C-Reativa/análise , Estudos Cross-Over , Ergotioneína/administração & dosagem , Ergotioneína/sangue , Ergotioneína/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade
9.
Food Chem Toxicol ; 48(12): 3492-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20932872

RESUMO

The neuroprotective effects of ergothioneine (EGT) against cisplatin toxicity were investigated both in vitro and in vivo. For in vitro study, two types of neuronal cells, primary cortical neuron (PCN) cells and rat pheochromocytoma (PC12) cells, were incubated with EGT (0.1-10.0 µM) for 2 h followed by incubation with 0.5 µM cisplatin for 72 h. Results show that cisplatin markedly decreased the proliferation of PC12 cells and strongly inhibited the growth of axon and dendrite of PCN cells, but these effects were significantly prevented by EGT. For in vivo study, CBA mice were orally administered with 2 or 8 mg EGT/kg body weight for 58 consecutive days and were injected i.p. with 5mg cisplatin/kg body weight on days 7, 9 and 11. We found that EGT significantly restored the learning and memory deficits in mice treated with cisplatin evaluated by active and passive avoidance tests. EGT also significantly prevented brain lipid peroxidation, restored acetylcholinesterase (AChE) activity and maintained glutathione/glutathione disulfide ratio in brain tissues of mice treated with cisplatin. These results demonstrate that EGT protects against cisplatin-induced neuronal injury and enhances cognition, possibly through the inhibition of oxidative stress and restoration of AChE activity in neuronal cells.


Assuntos
Antineoplásicos/antagonistas & inibidores , Antineoplásicos/toxicidade , Antioxidantes/farmacologia , Cisplatino/antagonistas & inibidores , Cisplatino/toxicidade , Ergotioneína/farmacologia , Neurônios/patologia , Fármacos Neuroprotetores , Acetilcolinesterase/metabolismo , Animais , Antioxidantes/farmacocinética , Aprendizagem da Esquiva/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Química Encefálica/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Ergotioneína/farmacocinética , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos CBA , Neurônios/efeitos dos fármacos , Células PC12 , Ratos , Ratos Sprague-Dawley , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
10.
Drug Metab Dispos ; 38(10): 1665-72, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20601551

RESUMO

Carnitine/organic cation transporter (OCTN1/SLC22A4) accepts various therapeutic agents as substrates in vitro and is expressed ubiquitously, although its function in most organs has not yet been examined. The purpose of the present study was to evaluate functional expression of OCTN1 in small intestine and liver, using octn1 gene knockout [octn1(-/-)] mice. After oral administration of [(3)H]ergothioneine ([(3)H]ERGO), a typical substrate of OCTN1, the amount of [(3)H]ERGO remaining in the small intestinal lumen was much higher in octn1(-/-) mice than in wild-type mice. In addition, uptake of [(3)H]ERGO by human embryonic kidney 293 cells heterologously expressing OCTN1 gene product and uptake of [(3)H]ERGO at the apical surface of intestinal everted sacs from wild-type mice were inhibited by OCTN1 substrates, tetraethylammonium and verapamil. Immunohistochemical analysis revealed that OCTN1 is localized on the apical surface of small intestine in mice and humans. These results suggest that OCTN1 is responsible for small intestinal absorption of [(3)H]ERGO. However, the plasma concentration of [(3)H]ERGO after oral administration was higher in octn1(-/-) mice than in wild-type mice, despite the lower absorption in octn1(-/-) mice. This was probably because of efficient hepatic uptake of [(3)H]ERGO, as revealed by integration plot analysis; the uptake clearance was close to the hepatic plasma flow rate. The uptake of [(3)H]ERGO by isolated hepatocytes was minimal, whereas [(3)H]ERGO uptake was observed in isolated nonparenchymal cells. This finding is consistent with immunostaining of OCTN1 in liver sinusoids. Thus, our results indicate that OCTN1 is functionally expressed in nonparenchymal liver cells.


Assuntos
Carnitina/metabolismo , Proteínas de Transporte/biossíntese , Intestino Delgado/metabolismo , Fígado/metabolismo , Proteínas de Membrana/biossíntese , Animais , Células Cultivadas , Ergotioneína/sangue , Ergotioneína/farmacocinética , Humanos , Imuno-Histoquímica , Absorção Intestinal , Fígado/citologia , Masculino , Camundongos , Camundongos Knockout , Proteínas de Transporte de Cátions Orgânicos , Especificidade por Substrato , Simportadores , Trítio
11.
Pharm Res ; 27(5): 832-40, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20224991

RESUMO

PURPOSE: Solute carrier OCTN1 (SLC22A4) is an orphan transporter, the physiologically important substrate of which is still unidentified. The aim of the present study was to examine physiological roles of OCTN1. METHODS: We first constructed octn1 gene knockout (octn1 ( -/- )) mice. Metabolome analysis was then performed to identify substrates in vivo. The possible association of the substrate identified with diseased conditions was further examined. RESULTS: The metabolome analysis of blood and several organs indicated complete deficiency of a naturally occurring potent antioxidant ergothioneine in octn1 ( -/- ) mice among 112 metabolites examined. Pharmacokinetic analyses after oral administration revealed the highest distribution to small intestines and extensive renal reabsorption of [(3)H]ergothioneine, both of which were much reduced in octn1 ( -/- ) mice. The octn1 ( -/- ) mice exhibited greater susceptibility to intestinal inflammation under the ischemia and reperfusion model. The blood ergothioneine concentration was also much reduced in Japanese patients with Crohn's disease, compared with healthy volunteers and patients with another inflammatory bowel disease, ulcerative colitis. CONCLUSIONS: These results indicate that OCTN1 plays a pivotal role for maintenance of systemic and intestinal exposure of ergothioneine, which could be important for protective effects against intestinal tissue injuries, providing a possible diagnostic tool to distinguish the inflammatory bowel diseases.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Adolescente , Adulto , Idoso , Animais , Antioxidantes/metabolismo , Southern Blotting , Western Blotting , Cromatografia Líquida de Alta Pressão , Doença de Crohn/genética , Doença de Crohn/metabolismo , Ergotioneína/sangue , Ergotioneína/farmacocinética , Feminino , Genótipo , Humanos , Absorção Intestinal/genética , Absorção Intestinal/fisiologia , Intestinos/irrigação sanguínea , Isquemia/patologia , Japão , Masculino , Metabolômica , Camundongos , Camundongos Knockout , Microvilosidades/metabolismo , Pessoa de Meia-Idade , Estresse Oxidativo/fisiologia , Traumatismo por Reperfusão/patologia , Espectrofotometria Ultravioleta , Simportadores , Adulto Jovem
12.
Pharm Res ; 24(9): 1628-35, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17447122

RESUMO

PURPOSE: Recently, it was reported that OCTN1 transporter (SLC22A4) is associated with rheumatoid arthritis (RA) and Crohn's disease. Additionally, we reported that OCTN1 is expressed in hematopoietic cells, preferentially in erythroid cells. Accordingly, we assessed the physiological role of OCTN1 by examining the effect of knockdown of OCTN1 in blood cells using siRNA method. MATERIALS AND METHODS: Vector-based short hairpin RNA (shRNA) was used to establish K562 cell line which shows stably decreased expression of OCTN1. The characteristic of knockdown of OCTN1 in K562 cells was investigated by cell proliferation, cell differentiation, and uptake of ergothioneine that is a good substrate of OCTN1. RESULTS: Several clones of K562 cells exhibited significantly reduced expression of OCTN1 mRNA and protein. They also showed a decreased growth rate and butyrate-dependent differentiation to erythrocytes compared with control-vector transfected cells. In addition, uptake of [(3)H]ergothioneine by K562 cells suggested that Na(+)-dependent and high-affinity transporter which is similar to the characteristics of OCTN1 is functional. Moreover, uptake of ergothioneine by K562 cells which exhibit decreased-expression of OCTN1 was decreased in comparison with wild type K562 cells. CONCLUSIONS: It was suggested that OCTN1 is involved in the transport of physiological compounds that are important for cell proliferation and erythroid differentiation.


Assuntos
Diferenciação Celular , Proliferação de Células , Células Eritroides/citologia , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , RNA Interferente Pequeno/farmacologia , Ergotioneína/farmacocinética , Humanos , Células K562 , Proteínas de Transporte de Cátions Orgânicos/genética , Simportadores
14.
Artigo em Inglês | MEDLINE | ID: mdl-9185334

RESUMO

Ergothioneine (ERT), is a low molecular weight, sulfur-containing antioxidant occurring in up to millimolar amounts in mammalian tissues. Using an improved HPLC assay, ERT levels have been measured and compared in bovine and porcine eyes and erythrocytes. The rank order of ERT levels in bovine ocular tissue was lens > retina = cornea > pigmented retinal epithelium (RPE) > aqueous humor (AQ) > vitreous humor (VIT) > sclera. In porcine ocular tissue, the rank order was retina > AQ > VIT > RPE > cornea > lens > sclera. ERT levels in bovine lens were about 250 x > that in porcine lens. Porcine erythrocyte levels were 5.5 x > bovine levels. Species differences were also observed in the retina, VIT and AQ where porcine levels were 2 to 10-fold greater than bovine levels. ERT in bovine lens and cornea was 35 and 14 times greater than the corresponding level of reduced glutathione (GSH). Porcine lens had 45 times more GSH than ERT. Values for ERT and GSH in other tissues from both species were of the same order of magnitude. These results are consistent with a role for ERT in prevention of oxidative damage to the eye.


Assuntos
Ergotioneína/química , Ergotioneína/farmacocinética , Olho/química , Animais , Antioxidantes , Humor Aquoso/química , Bovinos , Córnea/química , Cricetinae , Ergotioneína/análise , Eritrócitos/química , Glutationa/metabolismo , Oxirredução , Retina/química , Suínos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...