Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.077
Filtrar
1.
Gut Microbes ; 16(1): 2401944, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39292565

RESUMO

Diarrheagenic Escherichia coli serotypes are associated with various clinical syndromes, yet the precise correlation between serotype and pathotype remains unclear. A major barrier to such studies is the reliance on antisera-based serotyping, which is culture-dependent, low-throughput, and cost-ineffective. We have established a highly multiplex PCR-based serotyping assay, termed the MeltArray E. coli serotyping (EST) assay, capable of identifying 163 O-antigen-encoding genes and 53 H-antigen-encoding genes of E. coli. The assay successfully identified serotypes directly from both simulated and real fecal samples, as demonstrated through spike-in validation experiments and a retrospective study. In a multi-province study involving 637 E. coli strains, it revealed that the five major diarrheagenic pathotypes have distinct serotype compositions. Notably, it differentiated 257 Shigella isolates into four major Shigella species, distinguishing them from enteroinvasive E. coli based on their distinct serotype profiles. The assay's universality was further corroborated by in silico analysis of whole-genome sequences from the EnteroBase. We conclude that the MeltArray EST assay represents a paradigm-shifting tool for molecular serotyping of E. coli, with potential routine applications for comprehensive serotype analysis, disease diagnosis, and outbreak detection.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Fezes , Reação em Cadeia da Polimerase Multiplex , Sorogrupo , Sorotipagem , Sorotipagem/métodos , Infecções por Escherichia coli/microbiologia , Humanos , Escherichia coli/genética , Escherichia coli/classificação , Reação em Cadeia da Polimerase Multiplex/métodos , Fezes/microbiologia , Estudos Retrospectivos , Antígenos O/genética , Diarreia/microbiologia , Shigella/genética , Shigella/classificação , Shigella/isolamento & purificação , Antígenos de Bactérias/genética , Proteínas de Escherichia coli/genética
2.
Microb Pathog ; 194: 106843, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39117015

RESUMO

Pathogenic strains of Escherichia coli infecting poultry, commonly called avian pathogenic E. coli (APEC) present significant risks, to the health of both poultry and the general public. This systematic review aimed to examine the prevalence of APEC serotypes, sequence types (ST), phylogenetic groups, virulence factors and antibiotic resistance patterns based on 189 research papers sourced from PubMed, Web of Science, and ProQuest. Then, data were extracted from the selected studies and analyzed to assess the global distribution and characteristics of APEC strains. The metaprop codes in the Meta and Metafor packages of R as implemented in RStudio were then used to conduct meta-analysis. Among APEC strains identified from these different research reports serogroup O78 had the highest overall prevalence (16 %), followed by serogroups O2 (10 %), and O117 (8 %). The most common ST profiles were ST117 (20 %), ST140 (15 %), ST95 (12 %), and ST131 (9 %). ST117 and ST140 are known reservoirs for pathogenic E. coli in humans. Moreover, phylogenetic assessment highlighted the prevalence of phylogroups A, A1, F, D, and B2 among APEC strains indicating diversity in phylogenetic origin within poultry populations. The presence of antimicrobial resistance was notable among APEC strains against antibiotics such as tetracyclines, penicillins, and cephalosporins. This resistance may be linked to use of antimicrobials in poultry production in certain regions presenting challenges for both animal health management and human infection control. Analysis of sequences linked to adherence or virulence indicated that genes encoding adhesins (csg, fimC), iron/metal uptake (sitB, sitC, iroD) and cytotoxicity (estB, hlyF), and serum resistance (traT, iss) were highly prevalent. These factors have been reported to contribute to APEC host colonization and virulence in poultry. In summary, this overview of the characteristics of APEC highlights the pressing importance of monitoring and implementing management approaches to reduce antimicrobial resistance considering that a phylogenetic diversity of E. coli strains causes infections in both poultry and humans and represents a risk to both animal and public health. Further, determining the major conserved aspects and predominant mechanisms of virulence of APEC is critical for improving diagnostics and developing preventative measures to reduce the burden of infection caused by pathogenic E. coli in poultry and lower risks associated with foodborne transmission of E. coli to humans through poultry and poultry products.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Filogenia , Doenças das Aves Domésticas , Aves Domésticas , Sorogrupo , Fatores de Virulência , Animais , Fatores de Virulência/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Escherichia coli/isolamento & purificação , Escherichia coli/classificação , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/epidemiologia , Prevalência , Aves Domésticas/microbiologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Humanos , Virulência/genética , Galinhas
3.
Comp Immunol Microbiol Infect Dis ; 112: 102227, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39173206

RESUMO

The current study aimed to detect virulence, hetero-pathogenicity, and hybridization genes in Escherichia coli strains, previously isolated from cloacal swabs in commercial breeding psittacines and zoological collections, via multiplex PCR. A total of 68 strains of E. coli, previously isolated from psittacines in zoos and commercial breeding facilities in Ceará, Brazil, were assessed for the presence of the following genes and/or probes: eae, bfpA (EPEC - Enteropathogenic E. coli), CVD432 (EAEC - Enteroaggregative E. coli); LT gene and ST gene (ETEC - Enterotoxigenic E. coli); ipaH (EIEC - Enteroinvasive E. coli); stx1 and stx2 (STEC - Shiga toxin-producing E. coli); iroN, ompT, hlyF, iss, and iutA (APEC - Avian pathogenic E. coli). Of the 68 E. coli strains analyzed, 61 (98.7 %) were positive for the following genes and/or probes: Stx1 (61/98.7 %), ST gene (54/79.4 %), CVD432 (49/72 %), bfpA (44/64.7 %), eae (42/61.8 %), Stx2 (41/60.3 %), ipaH (34/50 %), LT gene (33/48.5 %), iroN (21/30.9 %), hlyF (11/6.2 %), iss (06/8.8 %) and iutA (06/8.8 %). The following diarrheagenic pathotypes were identified: 66 (97 %) from STEC, 49 (72 %) from EAEC, 35 (52 %) from EIEC, 25 (37 %) from ETEC, and one (1.5 %) from EPEC. Regarding hetero-pathogenicity, 50 (74 %) heterogeneous strains were identified. Positivity for APEC was seen in four (6 %) strains, all characterized as pathogenic hybrids. This study describes significant associations of virulence factors in E. coli strains DEC/DEC and DEC/APEC, which were isolated from psittacines and may be potentially harmful to One Health.


Assuntos
Animais de Zoológico , Doenças das Aves , Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli , Fatores de Virulência , Animais , Brasil , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Animais de Zoológico/microbiologia , Doenças das Aves/microbiologia , Escherichia coli/genética , Escherichia coli/patogenicidade , Escherichia coli/isolamento & purificação , Escherichia coli/classificação , Proteínas de Escherichia coli/genética , Fatores de Virulência/genética , Virulência/genética , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/patogenicidade , Escherichia coli Enteropatogênica/isolamento & purificação , Escherichia coli Enteropatogênica/classificação , Reação em Cadeia da Polimerase Multiplex , Psittaciformes/microbiologia , Cloaca/microbiologia , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/isolamento & purificação , Escherichia coli Shiga Toxigênica/patogenicidade , Escherichia coli Shiga Toxigênica/classificação , Escherichia coli Enterotoxigênica/genética , Escherichia coli Enterotoxigênica/patogenicidade , Escherichia coli Enterotoxigênica/isolamento & purificação , Escherichia coli Enterotoxigênica/classificação
4.
Diagn Microbiol Infect Dis ; 110(3): 116397, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39126826

RESUMO

Here, we characterize the complete genome sequence of Escherichia coli isolated from a newborn affected by bacterial meningitis in Italy. Genome of E. coli strain 1455 harbored a circular chromosome and two plasmids of 167.740-bp and 4.073-bp in length, respectively. E. coli 1455 belonged to the ST3, serotype O17:H18 and carried different determinants including resistance to B-lactams, tetracyclines, and quinolones. In addition, genome of E. coli strain 1455 harbored 5 integrated pro-phage regions mainly located in the chromosome, while most of the virulence factors associated to the invasiveness and clinical severity and different antimicrobial resistance determinants (blaTEM-1, tet(A) and qnrS1) were located in the 167-Kb plasmid. Taken together, our findings suggest a possible widespread of a virulence factors-carrying plasmid worldwide and highlight the importance of genomic characterization in the diffusion of public health threats.


Assuntos
Escherichia coli , Genoma Bacteriano , Meningite devida a Escherichia coli , Plasmídeos , Fatores de Virulência , Recém-Nascido , Itália , Humanos , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Escherichia coli/patogenicidade , Escherichia coli/classificação , Genoma Bacteriano/genética , Fatores de Virulência/genética , Plasmídeos/genética , Meningite devida a Escherichia coli/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Sequenciamento Completo do Genoma , Meningites Bacterianas/microbiologia , Sorogrupo , Testes de Sensibilidade Microbiana , Genômica
5.
Environ Microbiol Rep ; 16(4): e13319, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39096033

RESUMO

Freshwater samples (n = 199) were obtained from 41 sites with contrasting land-uses (avian, low impact, dairy, urban, sheep and beef, and mixed sheep, beef and dairy) and the E. coli phylotype of 3980 isolates (20 per water sample enrichment) was determined. Eight phylotypes were identified with B1 (48.04%), B2 (14.87%) and A (14.79%) the most abundant. Escherichia marmotae (n = 22), and Escherichia ruysiae (n = 1), were rare (0.68%) suggesting that these environmental strains are unlikely to confound water quality assessments. Phylotypes A and B1 were overrepresented in dairy and urban sites (p < 0.0001), whilst B2 were overrepresented in low impact sites (p < 0.0001). Pathogens ((Salmonella, Campylobacter, Cryptosporidium or Giardia) and the presence of diarrhoeagenic E. coli-associated genes (stx and eae) were detected in 89.9% (179/199) samples, including 80.5% (33/41) of samples with putative non-recent faecal inputs. Quantitative PCR to detect microbial source tracking targets from human, ruminant and avian contamination were concordant with land-use type and E. coli phylotype abundance. This study demonstrated that a potential recreational health risk remains where pathogens occurred in water samples with low E. coli concentration, potential non-recent faecal sources, low impact sites and where human, ruminant and avian faecal sources were absent.


Assuntos
Escherichia coli , Água Doce , Saúde Pública , Qualidade da Água , Nova Zelândia , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Escherichia coli/classificação , Água Doce/microbiologia , Animais , Humanos , Microbiologia da Água , Filogenia , Fezes/microbiologia , Cryptosporidium/genética , Cryptosporidium/isolamento & purificação , Cryptosporidium/classificação , Giardia/genética , Giardia/isolamento & purificação , Giardia/classificação
6.
J Antimicrob Chemother ; 79(9): 2142-2151, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39001716

RESUMO

OBJECTIVES: Escherichia coli can cause infections in the urinary tract and in normally sterile body sites leading to invasive E. coli disease (IED), including bacteraemia and sepsis, with older populations at increased risk. We aimed to estimate the theoretical coverage rate by the ExPEC4V and 9V vaccine candidates. In addition, we aimed at better understanding the diversity of E. coli isolates, including their genetic and phenotypic antimicrobial resistance (AMR), sequence types (STs), O-serotypes and the bacterial population structure. METHODS: Blood and urine culture E. coli isolates (n = 304) were collected from hospitalized patients ≥60 years (n = 238) with IED during a multicentric, observational study across three continents. All isolates were tested for antimicrobial susceptibility, O-serotyped, whole-genome sequenced and bioinformatically analysed. RESULTS: A large diversity of STs and of O-serotypes were identified across all centres, with O25b-ST131, O6-ST73 and O1-ST95 being the most prevalent types. A total of 45.4% and 64.7% of all isolates were found to have an O-serotype covered by the ExPEC4V and ExPEC9V vaccine candidates, respectively. The overall frequency of MDR was 37.4% and ST131 was predominant among MDR isolates. Low in-patient genetic variability was observed in cases where multiple isolates were collected from the same patient. CONCLUSIONS: Our results highlight the predominance of MDR O25b-ST131 E. coli isolates across diverse geographic areas. These findings provide further baseline data on the theoretical coverage of novel vaccines targeting E. coli associated with IED in older adults and their associated AMR levels.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Sequenciamento Completo do Genoma , Humanos , Infecções por Escherichia coli/microbiologia , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Escherichia coli/efeitos dos fármacos , Escherichia coli/classificação , Idoso , Pessoa de Meia-Idade , Feminino , Masculino , Idoso de 80 Anos ou mais , Genoma Bacteriano , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Bacteriemia/microbiologia , Bacteriemia/epidemiologia , Sorogrupo , Hospitalização , Variação Genética , Genômica , Genótipo , Saúde Global
7.
Poult Sci ; 103(10): 104067, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39067129

RESUMO

Avian pathogenic Escherichia coli (APEC) cause avian colibacillosis and accurately distinguishing infectious isolates is critical for controlling its transmission. Multilocus sequence typing (MLST) is an accurate and efficient strain identification method for epidemiological surveillance. This research aimed to develop a fast and high-throughput workflow that simultaneously sequences the Achtman typing scheme's 7 housekeeping genes of multiple E. coli isolates using the Oxford Nanopore Technologies (ONT) platform for large-scale APEC study. E. coli strains were isolated from poultry farms, the housekeeping genes were amplified, and amplicons were sequenced on an R9.4 MinION flow cell using the Nanopore GridION sequencer (ONT, Oxford, UK) following the initial workflow (ONT-MLST). Moreover, the workflow was revised by introducing large-scale DNA extraction and multiplex PCR into the ONT-MLST workflow and applied to 242 new isolates, 18 isolates from the previous workflow, and 5 ATCC reference strains using Flongle flow cell on the Nanopore MinION Mk1C sequencer (ONT, Oxford, UK). Finally, the sequence type (ST) results of the 308 isolates collected from infected chickens and poultry farm environments were reported and analyzed. Data indicated that E. coli belonging to ST159, ST8578, and ST355 have the potential to infect multiple organs in broiler. In addition, zoonotic STs, ST69, ST10, ST38, and ST131, were detected from poultry farms. With the advantages of the high throughput of ONT, this study provides a rapid workflow for large-scale E. coli typing and identified frequently isolated sequence types related to APEC infection in poultry.


Assuntos
Galinhas , Infecções por Escherichia coli , Escherichia coli , Tipagem de Sequências Multilocus , Doenças das Aves Domésticas , Escherichia coli/genética , Escherichia coli/classificação , Escherichia coli/isolamento & purificação , Animais , Tipagem de Sequências Multilocus/veterinária , Tipagem de Sequências Multilocus/métodos , Doenças das Aves Domésticas/microbiologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Sequenciamento por Nanoporos/métodos , Sequenciamento por Nanoporos/veterinária
8.
Microb Pathog ; 193: 106783, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38969188

RESUMO

The current study was conducted to determine the phylogroups and antibiotic susceptibilities of Escherichia coli isolates recovered from fecal samples of Anatolian Ground Squirrels (Spermophilus xanthoprymnus) and to examine the relationship between them. Eighty-two E. coli isolates obtained from 150 fecal samples were investigated. The quadruplex polymerase chain reaction (PCR), phylogroup C-, and E-specific mPCR were subjected to phylogenetic typing of the isolates. The susceptibilities to fifteen antibiotics of the isolates were detected by the disk diffusion method. In the result of phylogenetic typing, phylogroup B2 was most predominant (58.6 %), followed by B1 (25.6 %), E (8.5 %), C (4.9 %), and D (2.4 %). The phylogroup A, F, and Escherichia clades were not detected. The antibiotic susceptibility test revealed that 59.8 % (49/82) and 19.5 % (16/82) of E. coli isolates were resistant to at least one antibiotic and multidrug-resistant (MDR), respectively. Twenty-six (31.7 %), 19 (23.2 %), 11 (13.4 %), and 10 (12.2 %) of the isolates were found to be resistant to gentamicin, tetracycline, amoxicillin-clavulanic acid, and cefoxitin. Of the 49 E. coli isolates that were found to be resistant to any antibiotic analyzed, 30, 13, 4, and 2 were located in phylogroup B2, B1, E, and D, respectively. MDR isolates were mostly located in both phylogroup B1 (31.3 %) and B2 (31.3 %). In conclusion, data from the current study suggest that the isolates may potentially have pathogenic properties, since the majority (69.5 %) of E. coli isolates from fecal samples of Spermophilus xanthoprymnus were located in the pathogenic phylogroup and resistance to various antibiotics was detected.


Assuntos
Antibacterianos , Escherichia coli , Fezes , Testes de Sensibilidade Microbiana , Filogenia , Sciuridae , Animais , Fezes/microbiologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Escherichia coli/classificação , Sciuridae/microbiologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Reação em Cadeia da Polimerase , Genótipo , Farmacorresistência Bacteriana
9.
PLoS One ; 19(7): e0307544, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39052658

RESUMO

Extraintestinal pathogenic Escherichia coli (ExPEC), especially uropathogenic E. coli (UPEC) are responsible for urinary tract infections (UTIs), while diarrheagenic E. coli (DEC) cause foodborne illnesses. These pathogenic E. coli are a serious threat to human health and a public concern worldwide. However, the evidence on pork E. coli (PEC) harboring UPEC virulence-associated genes is currently limited. Therefore, this study aimed to determine the phylogroups, virulence genes, and their association between PEC and UPEC from UTI patients. In this study, 330 E. coli were obtained from archived stock culture isolated from pork (PEC; n = 165) and urine of patients with UTIs (UPEC; n = 165) during 2014-2022. Phylogroups, UPEC- and diarrheagenic E. coli (DEC) associated virulence genes were assessed using PCR assays. The results showed that phylogroups A (50.3%), and B1 (32.1%) were commonly found among PEC whereas phylogroups B2 (41.8%), and C (25.5%) were commonly detected in the UPEC. PEC and UPEC carried similar virulence-associated genes with different percentages. The most frequent UPEC virulence-associated gene among UPEC, and PEC strains was fimH, (93.3%, and 92.1%), followed by iucC (55.2%, and 12.7%), papC (21.8%, and 4.2%), afaC (22.4%, and 0%), hlyCA (17%, and 0.6%), cnf (16.4%, and 0.6%), and sfa/focDE (8.5%, and 4.8%). Additionally, 6 of 27 UPEC virulence-associated gene patterns were found in both PEC and UPEC strains regardless of phylogroups. Furthermore, the DEC virulence-associated genes were found in only 3 strains, one from PEC harboring eae, and two from UPEC carried fimH-bfpA or afaC-CVD432 indicating hybrid strains. Cluster analysis showed a relationship between PEC and UPEC strains and demonstrated that PEC harboring UPEC virulence-associated genes in pork may be associated with UPEC in humans. Food safety and hygiene practices during pork production chain are important procedures for minimizing cross-contamination of these strains that could be transmitted to the consumers.


Assuntos
Infecções por Escherichia coli , Filogenia , Infecções Urinárias , Fatores de Virulência , Infecções Urinárias/microbiologia , Humanos , Tailândia/epidemiologia , Animais , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/epidemiologia , Suínos , Fatores de Virulência/genética , Virulência/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/patogenicidade , Escherichia coli/isolamento & purificação , Escherichia coli/classificação , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/patogenicidade , Escherichia coli Uropatogênica/isolamento & purificação , Escherichia coli Uropatogênica/classificação , Variação Genética
10.
Vet Microbiol ; 296: 110171, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38981202

RESUMO

Intestinal pathogenic Escherichia coli (InPEC) is one of the most common causes of bacterial diarrhea in farm animals, including profuse neonatal diarrhea and post weaning diarrhea (PWD) in piglets. In this study, we investigated the prevalence of InPEC and associated primary virulence factors among 543 non-duplicate E. coli isolates from diarrheal pigs from 15 swine farms in southern China. Six major virulence genes associated with InPEC were identified among 69 (12.71 %) E. coli isolates and included est (6.62 %), K88 (4.79 %), elt (3.68 %), eae (1.47 %), stx2 (0.92 %) and F18 (0.55 %). Three pathotypes of InPEC were identified including ETEC (8.10 %), EPEC (1.29 %) and STEC/ETEC (0.92 %). In particular, K88 was only found in ETEC from breeding farms, whereas F18 was only present in STEC/ETEC hybrid from finishing farms. Whole genome sequence analysis of 37 E. coli isolates revealed that InPEC strains frequently co-carried multiple antibiotic resistance gene (ARG). est, elt and F18 were also found to co-locate with ARGs on a single IncFIB/IncFII plasmid. InPEC isolates from different pathotypes also possessed different profiles of virulence genes and antimicrobial resistance genes. Population structure analysis demonstrated that InPEC isolates from different pathotypes were highly heterogeneous whereas those of the same pathotype were extremely similar. Plasmid analysis revealed that K88 and/or est/elt were found on pGX18-2-like/pGX203-2-like and pGX203-1-like IncFII plasmids, while F18 and elt/est, as well as diverse ARGs were found to co-locate on IncFII/IncFIB plasmids with a non-typical backbone. Moreover, these key virulence genes were flanked by or adjacent to IS elements. Our findings indicated that both clonal expansion and horizontal spread of epidemic IncFII plasmids contributed to the prevalence of InPEC and the specific virulence genes (F4, F18, elt and est) in the tested swine farms.


Assuntos
Diarreia , Infecções por Escherichia coli , Escherichia coli , Doenças dos Suínos , Fatores de Virulência , Animais , Suínos , Doenças dos Suínos/microbiologia , Doenças dos Suínos/epidemiologia , China/epidemiologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/epidemiologia , Diarreia/microbiologia , Diarreia/veterinária , Diarreia/epidemiologia , Prevalência , Fatores de Virulência/genética , Escherichia coli/genética , Escherichia coli/patogenicidade , Escherichia coli/isolamento & purificação , Escherichia coli/classificação , Virulência/genética , Intestinos/microbiologia , Sequenciamento Completo do Genoma , Escherichia coli Enterotoxigênica/genética , Escherichia coli Enterotoxigênica/patogenicidade , Escherichia coli Enterotoxigênica/isolamento & purificação , Proteínas de Escherichia coli/genética
11.
BMC Microbiol ; 24(1): 250, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978012

RESUMO

BACKGROUND: ESBL-producing Escherichia coli pose a growing health risk in community and healthcare settings. We investigated the resistome, virulome, mobilome, and genetic relatedness of multidrug-resistant (MDR) E. coli isolates from patients and their environment in a Ghanaian teaching hospital. MATERIALS AND METHODS: Twenty-three MDR ESBL-producing or carbapenem-resistant E. coli isolates from a collection of MDR Gram-negative bacteria (GNB) from patients and environments were selected for genomic analyses. Whole genome sequencing and bioinformatics tools were used to analyze genomic characteristics and phylogeny. RESULTS: The prevalence and incidence of rectal carriage of ESBL E. coli among patients were 13.65% and 11.32% respectively. The ß-lactamase genes, blaTEM-1B (10 isolates) and blaCTX-M-15 (12 isolates) were commonly associated with IncFIB plasmid replicons and co-occurred with aminoglycoside, macrolide, and sulfamethoxazole/trimethoprim resistance. Insertion sequences, transposons, and class I integrons were found with blaCTX-M-15. Carriage and environmental isolates carried multiple virulence genes, with terC being the most prevalent in 21 isolates. Seventeen sequence types (STs) were identified, including a novel ST (ST13846). Phylogenetic analysis grouped the isolates into four main clusters, with one outlier. High genetic relatedness was observed between two carriage isolates of ST940 and between a carriage isolate and an environmental isolate of ST648. Isolates with different STs, collected at different times and locations, also showed genetic similarities. CONCLUSION: We identified ESBL-producing E. coli with diverse genomic characteristics circulating in different hospital directorates. Clonal relatedness was observed among isolates from patients and the environment, as well as between different patients, suggesting transmission within and between sources.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli , Escherichia coli , Hospitais de Ensino , Filogenia , beta-Lactamases , Humanos , Gana/epidemiologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Escherichia coli/classificação , beta-Lactamases/genética , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/epidemiologia , Antibacterianos/farmacologia , Sequenciamento Completo do Genoma , Plasmídeos/genética , Testes de Sensibilidade Microbiana , Genoma Bacteriano/genética , Genômica , Fatores de Virulência/genética , Masculino , Feminino , Adulto
12.
Int J Med Microbiol ; 316: 151628, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38936338

RESUMO

Enteroaggregative Escherichia coli (EAEC) strains including those of serogroup O111 are important causes of diarrhea in children. In the Czech Republic, no information is available on the etiological role of EAEC in pediatric diarrhea due to the lack of their targeted surveillance. To fill this gap, we determined the proportion of EAEC among E. coli O111 isolates from children with gastrointestinal disorders ≤ 2 years of age submitted to the National Reference Laboratory for E. coli and Shigella during 2013-2022. EAEC accounted for 177 of 384 (46.1 %) E. coli O111 isolates, being the second most frequent E. coli O111 pathotype. Most of them (75.7 %) were typical EAEC that carried aggR, usually with aaiC and aatA marker genes; the remaining 24.3 % were atypical EAEC that lacked aggR but carried aaiC and/or aatA. Whole genome sequencing of 11 typical and two atypical EAEC O111 strains demonstrated differences in serotypes, sequence types (ST), virulence gene profiles, and the core genomes between these two groups. Typical EAEC O111:H21/ST40 strains resembled by their virulence profiles including the presence of the aggregative adherence fimbriae V (AAF/V)-encoding cluster to such strains from other countries and clustered with them in the core genome multilocus sequence typing (cgMLST). Atypical EAEC O111:H12/ST10 strains lacked virulence genes of typical EAEC and differed from them in cgMLST. All tested EAEC O111 strains displayed stacked-brick aggregative adherence to human intestinal epithelial cells. The AAF/V-encoding cluster was located on a plasmid of 95,749 bp or 93,286 bp (pAAO111) which also carried aggR, aap, aar, sepA, and aat cluster. EAEC O111 strains were resistant to antibiotics, in particular to aminopenicillins and cephalosporins; 88.3 % produced AmpC ß-lactamase, and 4.1 % extended spectrum ß-lactamase. We conclude that EAEC are frequent among E. coli O111 strains isolated from children with gastrointestinal disorders in the Czech Republic. To reliably assess the etiological role of EAEC in pediatric diarrhea, a serotype-independent, PCR-based pathotype surveillance system needs to be implemented in the future.


Assuntos
Diarreia , Infecções por Escherichia coli , Escherichia coli , Sequenciamento Completo do Genoma , Humanos , República Tcheca/epidemiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/epidemiologia , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Escherichia coli/patogenicidade , Escherichia coli/classificação , Lactente , Diarreia/microbiologia , Fatores de Virulência/genética , Sorogrupo , Proteínas de Escherichia coli/genética , Gastroenteropatias/microbiologia , Antibacterianos/farmacologia , Pré-Escolar , Genoma Bacteriano , Masculino , Feminino , Recém-Nascido , Tipagem de Sequências Multilocus , Transativadores
13.
Diagn Microbiol Infect Dis ; 110(1): 116340, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38850686

RESUMO

This study focuses on the genomic characterization of a multidrug-resistant Escherichia coli strain responsible for a severe gastrointestinal infection in a 33-year-old male. The patient initially received sulfamethoxazole/trimethoprim treatment, which proved ineffective. Fecal culture confirmed the presence of E. coli displaying a MDR profile to ampicillin, nalidixic acid, ciprofloxacin, sulfamethoxazole, trimethoprim, and tetracycline. Serotyping identified the strain as ONT:H19. Virulence analysis indicated a highly virulent profile with numerous virulence markers. Plasmid analysis uncovered various plasmids carrying both antimicrobial resistance and virulence genes. MLST assigned the strain to ST10955. Phylogenomic analysis revealed similarity to an older Brazilian isolate, suggesting the persistence of a common lineage with evolving antimicrobial resistance. This report highlights the first identification of a multidrug-resistant ST10955 E. coli strain with a wide resistome and virulence potential, emphasizing the importance of ongoing surveillance of E. coli strains due to their potential for severe infections, resistance development, and virulence.


Assuntos
Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli , Escherichia coli , Genoma Bacteriano , Filogenia , Humanos , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Escherichia coli/patogenicidade , Escherichia coli/classificação , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/diagnóstico , Adulto , Masculino , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fezes/microbiologia , Plasmídeos/genética , Tipagem de Sequências Multilocus , Fatores de Virulência/genética , Gastroenteropatias/microbiologia , Gastroenteropatias/diagnóstico , Virulência/genética , Sorotipagem , Brasil
14.
BMC Genomics ; 25(1): 609, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886681

RESUMO

Adhesins are crucial factors in the virulence of bacterial pathogens such as Escherichia coli. However, to date no resources have been dedicated to the detailed analysis of E. coli adhesins. Here, we provide adhesiomeR software that enables characterization of the complete adhesin repertoire, termed the adhesiome. AdhesiomeR incorporates the most comprehensive database of E. coli adhesins and facilitates an extensive analysis of adhesiome. We demonstrate that adhesiomeR achieves 98% accuracy when compared with experimental analyses. Based on analysis of 15,000 E. coli genomes, we define novel adhesiome profiles and clusters, providing a nomenclature for a unified comparison of E. coli adhesiomes.


Assuntos
Adesinas de Escherichia coli , Escherichia coli , Software , Adesinas de Escherichia coli/genética , Adesinas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/classificação , Genoma Bacteriano , Biologia Computacional/métodos
15.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38928363

RESUMO

The pyelonephritis-associated fimbria (P fimbria) is one of the most recognized adhesion determinants of extraintestinal pathogenic Escherichia coli strains (ExPECs). Twelve variants have been described for the gene encoding the P fimbria major structural subunit PapA and three variants for the gene encoding the adhesin subunit PapG. However, their distribution among the ExPEC diversity has not been comprehensively addressed. A complete landscape of that distribution might be valuable for delineating basic studies about the pathogenicity mechanisms of ExPECs and following up on the evolution of ExPEC lineages, particularly those most epidemiologically relevant. Therefore, we performed a massive descriptive study to detect the papA and papG variants along different E. coli genotypes represented by genomic sequences contained in the NCBI Assembly Refseq database. The most common papA variants were F11, F10, F48, F16, F12, and F7-2, which were found in significant association with the most relevant ExPEC genotypes, the phylogroups B2 and D, and the sequence types ST95, ST131, ST127, ST69, ST12, and ST73. On the other hand, the papGII variant was by far the most common followed by papGIII, and both were also found to have a significant association with common ExPEC genotypes. We noticed the presence of genomes, mainly belonging to the sequence type ST12, harboring two or three papA variants and two papG variants. Furthermore, the most common papA and papG variants were also detected in records representing strains isolated from humans and animals such as poultry, bovine, and dogs, supporting previous hypotheses of potential cross-transmission. Finally, we characterized a set of 17 genomes from Chilean uropathogenic E. coli strains and found that ST12 and ST73 were the predominant sequence types. Variants F7-1, F7-2, F8, F9, F11, F13, F14, F16, and F48 were detected for papA, and papGII and papGIII variants were detected for papG. Significant associations with the sequence types observed in the analysis of genomes contained in the NCBI Assembly Refseq database were also found in this collection in 16 of 19 cases for papA variants and 7 of 9 cases for the papG variants. This comprehensive characterization might support future basic studies about P fimbria-mediated ExPEC adherence and future typing or epidemiological studies to monitor the evolution of ExPECs producing P fimbria.


Assuntos
Escherichia coli Extraintestinal Patogênica , Genótipo , Escherichia coli Extraintestinal Patogênica/genética , Escherichia coli Extraintestinal Patogênica/patogenicidade , Escherichia coli Extraintestinal Patogênica/classificação , Humanos , Infecções por Escherichia coli/microbiologia , Adesinas de Escherichia coli/genética , Filogenia , Variação Genética , Proteínas de Fímbrias/genética , Proteínas de Escherichia coli/genética , Animais , Escherichia coli/genética , Escherichia coli/patogenicidade , Escherichia coli/classificação
16.
Microbiol Spectr ; 12(7): e0341523, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38864635

RESUMO

Escherichia coli is the leading cause of urinary tract infections (UTIs) in children and adults. The gastrointestinal tract is the primary reservoir of uropathogenic E. coli, which can be acquired from a variety of environmental exposures, including retail meat. In the current study, we used a novel statistical-genomic approach to estimate the proportion of pediatric UTIs caused by foodborne zoonotic E. coli strains. E. coli urine isolates were collected from DC residents aged 2 months to 17 years from the Children's National Medical Center Laboratory, 2013-2014. During the same period, E. coli isolates were collected from retail poultry products purchased from 15 sites throughout DC. A total of 52 urine and 56 poultry isolates underwent whole-genome sequencing, core genome phylogenetic analysis, and host-origin prediction by a Bayesian latent class model that incorporated data on the presence of mobile genetic elements (MGEs) among E. coli isolates from multiple vertebrate hosts. A total of 56 multilocus sequence types were identified among the isolates. Five sequence types-ST10, ST38, ST69, ST117, and ST131-were observed among both urine and poultry isolates. Using the Bayesian latent class model, we estimated that 19% (10/52) of the clinical E. coli isolates in our population were foodborne zoonotic strains. These data suggest that a substantial portion of pediatric UTIs in the Washington DC region may be caused by E. coli strains originating in food animals and likely transmitted via contaminated poultry meat.IMPORTANCEEscherichia coli UTIs are a heavy public health burden and can have long-term negative health consequences for pediatric patients. E. coli has an extremely broad host range, including humans, chickens, turkeys, pigs, and cattle. E. coli derived from food animals is a frequent contaminant of retail meat products, but little is known about the risk these strains pose to pediatric populations. Quantifying the proportion of pediatric UTIs caused by food-animal-derived E. coli, characterizing the highest-risk strains, and identifying their primary reservoir species could inform novel intervention strategies to reduce UTI burden in this vulnerable population. Our results suggest that retail poultry meat may be an important vehicle for pediatric exposure to zoonotic E. coli strains capable of causing UTIs. Vaccinating poultry against the highest-risk strains could potentially reduce poultry colonization, poultry meat contamination, and downstream pediatric infections.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Filogenia , Aves Domésticas , Infecções Urinárias , Sequenciamento Completo do Genoma , Animais , Infecções Urinárias/microbiologia , Infecções Urinárias/epidemiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/epidemiologia , Humanos , Criança , Aves Domésticas/microbiologia , Adolescente , Pré-Escolar , Lactente , Masculino , Feminino , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Escherichia coli/classificação , Escherichia coli/patogenicidade , Tipagem de Sequências Multilocus , Genoma Bacteriano
17.
Braz J Microbiol ; 55(3): 2401-2409, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38755407

RESUMO

The Rio Grande/Rio Bravo River is used as a major water supply for diverse recreational, household, and industrial activities in Northeast Tamaulipas, Mexico, and South Texas. In this study, we sampled surface water from 38 sites along Rio Grande/Rio Bravo River (Díaz Ordaz, Reynosa and Matamoros). We isolated 105 E. coli strains that were molecularly and phenotypically characterized. The percentage of virulence genes detected in E. coli were: hlyA (15.23%), stx2 (11.42%), stx1 (9.52%), bfp (0.95%), and eae (0.0) and combinations of stx1/stx2 (2.85%), stx2/hlyA (1.90%), stx1/bfp (0.95%) and stx2/bfp (0.95%) were detected in these strains. Resistance to more than one antibiotic was detected in 85.71%, and 5.71% of strains were extended-spectrum ß-lactamase-E. coli (ESBL-EC). These results indicate the presence of potentially pathogenic E. coli strains in the Rio Grande/Rio Bravo River; therefore, it can be considered a reservoir of pathogenic strains and represents a health risk for the population.


Assuntos
Antibacterianos , Escherichia coli , Rios , Fatores de Virulência , beta-Lactamases , México , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Escherichia coli/classificação , Rios/microbiologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Fatores de Virulência/genética , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Virulência/genética , Farmacorresistência Bacteriana
18.
Braz J Microbiol ; 55(3): 2997-3007, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38809497

RESUMO

Antibiotic resistance and virulence factors in avian pathogenic Escherichia coli (APEC) have become significant concerns, contributing to adverse environmental effects. The extensive use of antibiotics in poultry farming has resulted in the emergence of antibiotic-resistant APEC strains. This study prioritizes the molecular screening of APEC to uncover their antibiotic resistance and virulence attributes, with specific attention to their environmental impact. To address the imperative of understanding APEC pathogenesis, our study analyzed 50 poultry waste samples including 10 poultry litter, 15 fecal matter, 15 wastewater, and 10 anatomical waste samples. For the presence of virulence genes, 35 Escherichia coli isolates were subjected to molecular characterization. Amongst these, 27 were APEC strains demonstrating the presence of at least four virulence genes each. Notably, virulence genes such as fimH, ompA, ybjX, waaL, cvaC, hlyF, iss, ompT, and iroN were observed among all the E. coli isolates. Furthermore, eleven of the APEC strains exhibited resistance to tetracycline, ampicillin, sulphonamides, and fluoroquinolones.These findings highlight the role of APEC as a potential source of environmental pollution serving as a reservoir for virulence and resistance genes. Understanding the dynamics of antibiotic resistance and virulence in APEC is essential due to its potential threat to broiler chickens and the broader population through the food chain, intensifying concerns related to environmental pollution. Recognizing the ecological impact of APEC is essential for developing effective strategies to mitigate environmental pollution and safeguard the health of ecosystems and human populations.


Assuntos
Antibacterianos , Galinhas , Infecções por Escherichia coli , Escherichia coli , Fezes , Aves Domésticas , Fatores de Virulência , Animais , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Escherichia coli/isolamento & purificação , Escherichia coli/classificação , Fatores de Virulência/genética , Antibacterianos/farmacologia , Galinhas/microbiologia , Virulência/genética , Fezes/microbiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Aves Domésticas/microbiologia , Farmacorresistência Bacteriana , Águas Residuárias/microbiologia , Doenças das Aves Domésticas/microbiologia , Testes de Sensibilidade Microbiana
19.
Front Cell Infect Microbiol ; 14: 1390966, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38817448

RESUMO

Introduction: Carbapenemase-Producing Escherichia coli (CP-Eco) isolates, though less prevalent than other CP-Enterobacterales, have the capacity to rapidly disseminate antibiotic resistance genes (ARGs) and cause serious difficult-to-treat infections. The aim of this study is phenotypically and genotypically characterizing CP-Eco isolates collected from Spain to better understand their resistance mechanisms and population structure. Methods: Ninety representative isolates received from 2015 to 2020 from 25 provinces and 59 hospitals Spanish hospitals were included. Antibiotic susceptibility was determined according to EUCAST guidelines and whole-genome sequencing was performed. Antibiotic resistance and virulence-associated genes, phylogeny and population structure, and carbapenemase genes-carrying plasmids were analyzed. Results and discussion: The 90 CP-Eco isolates were highly polyclonal, where the most prevalent was ST131, detected in 14 (15.6%) of the isolates. The carbapenemase genes detected were bla OXA-48 (45.6%), bla VIM-1 (23.3%), bla NDM-1 (7.8%), bla KPC-3 (6.7%), and bla NDM-5 (6.7%). Forty (44.4%) were resistant to 6 or more antibiotic groups and the most active antibiotics were colistin (98.9%), plazomicin (92.2%) and cefiderocol (92.2%). Four of the seven cefiderocol-resistant isolates belonged to ST167 and six harbored bla NDM. Five of the plazomicin-resistant isolates harbored rmt. IncL plasmids were the most frequent (45.7%) and eight of these harbored bla VIM-1. bla OXA-48 was found in IncF plasmids in eight isolates. Metallo-ß-lactamases were more frequent in isolates with resistance to six or more antibiotic groups, with their genes often present on the same plasmid/integron. ST131 isolates were associated with sat and pap virulence genes. This study highlights the genetic versatility of CP-Eco and its potential to disseminate ARGs and cause community and nosocomial infections.


Assuntos
Proteínas de Bactérias , Infecções por Escherichia coli , Escherichia coli , Heterogeneidade Genética , beta-Lactamases , Humanos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , beta-Lactamases/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/classificação , Enterobacteriáceas Resistentes a Carbapenêmicos/enzimologia , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/classificação , Escherichia coli/enzimologia , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Genótipo , Testes de Sensibilidade Microbiana , Filogenia , Plasmídeos/genética , Espanha/epidemiologia , Fatores de Virulência/genética
20.
mBio ; 15(6): e0102724, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38742889

RESUMO

Escherichia coli has been attributed to playing a major role in a cascade of events that affect the prevalence and severity of uterine disease in cattle. The objectives of this project were to (i) define the association between the prevalence of specific antimicrobial resistance and virulence factor genes in E. coli with the clinical status related to uterine infection, (ii) identify the genetic relationship between E. coli isolates from cows with diarrhea, with mastitis, and with and without metritis, and (iii) determine the association between the phenotypic and genotypic antimicrobial resistance identified on the E. coli isolated from postpartum cattle. Bacterial isolates (n = 148) were obtained from a larger cross-sectional study. Cows were categorized into one of three clinical groups before enrollment: metritis, cows with purulent discharge, and control cows. For genomic comparison, public genomes (n = 130) from cows with diarrhea, mastitis, and metritis were included in a genome-wide association study, to evaluate differences between the drug classes or the virulence factor category among clinical groups. A distinct E. coli genotype associated with metritis could not be identified. Instead, a high genetic diversity among the isolates from uterine sources was present. A virulence factor previously associated with metritis (fimH) using PCR was not associated with metritis. There was moderate accuracy for whole-genome sequencing to predict phenotypic resistance, which varied depending on the antimicrobial tested. Findings from this study contradict the traditional pathotype classification and the unique intrauterine E. coli genotype associated with metritis in dairy cows.IMPORTANCEMetritis is a common infectious disease in dairy cattle and the second most common reason for treating a cow with antimicrobials. The pathophysiology of the disease is complex and is not completely understood. Specific endometrial pathogenic Escherichia coli have been reported to be adapted to the endometrium and sometimes lead to uterine disease. Unfortunately, the specific genomic details of the endometrial-adapted isolates have not been investigated using enough genomes to represent the genomic diversity of this organism to identify specific virulence genes that are consistently associated with disease development and severity. Results from this study provide key microbial ecological advances by elucidating and challenging accepted concepts for the role of Intrauterine E. coli in metritis in dairy cattle, especially contradicting the existence of a unique intrauterine E. coli genotype associated with metritis in dairy cows, which was not found in our study.


Assuntos
Doenças dos Bovinos , Infecções por Escherichia coli , Escherichia coli , Genótipo , Período Pós-Parto , Fatores de Virulência , Bovinos , Animais , Feminino , Fatores de Virulência/genética , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Escherichia coli/genética , Escherichia coli/patogenicidade , Escherichia coli/isolamento & purificação , Escherichia coli/classificação , Doenças dos Bovinos/microbiologia , Estudos Transversais , Sequenciamento Completo do Genoma , Doenças Uterinas/microbiologia , Doenças Uterinas/veterinária , Doenças Uterinas/genética , Genoma Bacteriano , Útero/microbiologia , Antibacterianos/farmacologia , Estudo de Associação Genômica Ampla , Farmacorresistência Bacteriana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA