Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 687
Filtrar
1.
Biomolecules ; 14(2)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38397451

RESUMO

The protein 4.1R is an essential component of the erythrocyte membrane skeleton, serving as a key structural element and contributing to the regulation of the membrane's physical properties, including mechanical stability and deformability, through its interaction with spectrin-actin. Recent research has uncovered additional roles of 4.1R beyond its function as a linker between the plasma membrane and the membrane skeleton. It has been found to play a crucial role in various biological processes, such as cell fate determination, cell cycle regulation, cell proliferation, and cell motility. Additionally, 4.1R has been implicated in cancer, with numerous studies demonstrating its potential as a diagnostic and prognostic biomarker for tumors. In this review, we provide an updated overview of the gene and protein structure of 4.1R, as well as its cellular functions in both physiological and pathological contexts.


Assuntos
Proteínas do Citoesqueleto , Proteínas de Membrana , Proteínas de Membrana/metabolismo , Proteínas do Citoesqueleto/metabolismo , Espectrina/química , Espectrina/genética , Espectrina/metabolismo , Actinas/metabolismo , Membrana Eritrocítica/metabolismo
2.
Bioelectromagnetics ; 45(2): 58-69, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38013630

RESUMO

Band 3 protein and glycophorin C are the two major integral proteins of the lipid membrane of human red blood cells (RBCs). They are attached from below to a network of elastic filamentous spectrin, the third major RBC membrane protein. The binding properties of the attachments to spectrin affect the shape and deformability of RBCs. We addressed band 3 and glycophorin C attachments to spectrin by measuring the strength of two recently discovered radiofrequency dielectric relaxations, ßsp (1.4 MHz) and γ1sp (9 MHz), that are observable as changes in the complex admittance of RBCs in medium. In medium at pH 5.2, and also in media with protic substances (formamide, methylformamide, or urea), the ßsp relaxation became inhibited that is attributable to detachment of glycophorin C from spectrin. In medium at pH 9.2, we observed inhibition of γ1sp relaxation attributable to detachment of band 3 from spectrin, as also was seen in media with aprotic substances difluoropyridine, dimethylsolfoxide, dimethylformamide, acetone, sodium tetrakis(4-fluorophenyl)borate), chlorpromazine, thioridazine and trifluopiperazine. The viscogenic cosolvents (glycerol, ethylene glycol, or i-erythritol) inhibited both the ßsp and γ1sp relaxations and significantly lowered their characteristic frequencies. Our observations indicate that the glycophorin C attachment to spectrin has nucleophilic centers whose saturation disconnects this attachment and inhibits the ßsp relaxation, whereas at band 3-spectrin attachment site, it is the saturation of electrophilic centers that weakens this attachment and inhibits the γ1sp relaxation.


Assuntos
Glicoforinas , Espectrina , Humanos , Espectrina/química , Espectrina/metabolismo , Espectrina/farmacologia , Glicoforinas/metabolismo , Glicoforinas/farmacologia , Ligação de Hidrogênio , Espectroscopia Dielétrica , Membrana Eritrocítica/metabolismo , Eritrócitos , Esqueleto/metabolismo , Lipídeos/farmacologia , Concentração de Íons de Hidrogênio
3.
Soft Matter ; 19(14): 2514-2528, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36939651

RESUMO

It was recently revealed via super-resolution microscopy experiments that the axon plasma membrane skeleton (APMS) comprises a series of periodically arranged azimuthal actin rings connected via longitudinal spectrin filaments forming an orthotropic network. The common perception is that APMS enhances structural stability of the axon but its impact on axon deformation is unknown. To investigate the response of the APMS to extension, we introduce a coarse-grain molecular dynamics model consisting of actin particles forming rings and chains of particles representing spectrin tetramers with repeats than can unfold. We observe that the shape of force-extension curve is initially linear and the force level depends on the extension rate. Even during the initial deformation stage, unfolding of spectrin repeats occurs, but the saw-tooth shape of the corresponding force-extension curve observed in the case of one spectrin tetramer does not appear in the case of the entire APMS. The reason is that spectrin unfolding is not synchronized across filaments during extension. If actin-spectrin associations remain intact, the force-extension response reaches a perfectly plastic region because of increased spectrin unfolding frequency. However, when actin-spectrin links dissociate, which can happen at moderate and high extension rates, APMS softens and the resistance force decreases linearly as the axon elongates until it reaches a point where the APMS is completely severed. Furthermore, when the ring-to-ring distance is maintained fixed under stretch, the resistance force relaxes exponentially as a function of time due to additional unfolding of spectrin tetramers following the Kelvin-Voigt representation of the Zener model.


Assuntos
Actinas , Espectrina , Actinas/metabolismo , Espectrina/química , Membrana Celular/metabolismo , Microscopia de Força Atômica , Axônios/metabolismo
4.
J Phys Chem B ; 127(6): 1291-1300, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36723393

RESUMO

Understanding the details of a protein folding mechanism can be a challenging and complex task. One system with an interesting folding behavior is the α-spectrin domain, where the R15 folds three-orders of magnitude faster than its homologues R16 and R17, despite having similar structures. The molecular origins that explain these folding rate differences remain unclear, but our previous work revealed that a combined effect produced by non-native interactions could be a reasonable cause for these differences. In this study, we explore further the folding process by identifying the molecular paths, metastable states, and the collective motions that lead these unfolded proteins to their native state conformation. Our results uncovered the differences between the folding pathways for the wild-type R15 and R16 and an R16 mutant. The metastable ensembles that speed down the folding were identified using an energy landscape visualization method (ELViM). These ensembles correspond to similar experimentally reported configurations. Our observations indicate that the non-native interactions are also associated with secondary structure misdocking. This computational methodology can be used as a fast, straightforward protocol for shedding light on systems with unclear folding or conformational traps.


Assuntos
Dobramento de Proteína , Espectrina , Espectrina/química , Cinética , Termodinâmica , Fenômenos Físicos
5.
Biochim Biophys Acta Mol Cell Res ; 1870(4): 119434, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36716822

RESUMO

Efferocytosis of non-viable germ cells by Sertoli cells (SCs) constitutes a sentinel for testis homeostasis, yet how SCs signal for the metabolic and cytoskeletal adaption to this energetically costly process remains unexplored. Spectrin is membrane-associated periodic skeleton assembled into an actin-spectrin-based cytoskeletal structure with an interaction with glucose transporter Glut1. The contribution of spectrin to glucose uptake and efferocytosis is unknown. In this study, we identified a cross-regulation between glucose metabolism and efferocytosis in SCs. Pharmacological or genetic inhibition of glucose uptake or glycolysis compromises efferocytosis activity. We further found that ßII-spectrin is a hitherto unappreciated regulator of glucose metabolism and cytoskeletal architecture. ßII-spectrin deficiency impairs glucose uptake and lactate production in SCs. Moreover, a defective assembly of cytoskeleton and a loss of blood-testis barrier integrity are also featured by SCs deficient in ßII-spectrin. The disruption in glucose metabolism and cytoskeletal organization synergistically lead to a defective efferocytosis. In vivo siRNA-mediated targeting of ßII-spectrin in testis causes an obvious morphological aberration in seminiferous epithelium with the presence of exfoliated germ cells and multinucleated giant cells. Importantly, a decrease in expression of αII/ßII-spectrin was observed in testes of Adjudin-induced infertility model. By exploring the functional relevance of ßII-spectrin to the metabolic and cytoskeletal regulation of efferocytosis, our study proposes a potential link between ßII-spectrin deregulation and male infertility.


Assuntos
Células de Sertoli , Espectrina , Masculino , Humanos , Espectrina/química , Espectrina/genética , Espectrina/metabolismo , Células de Sertoli/metabolismo , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Glucose/metabolismo
6.
J Phys Chem Lett ; 13(49): 11430-11437, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36468973

RESUMO

Protein isoforms are structural variants with changes in the overall flexibility predominantly at the tertiary level. For membrane associated proteins, such structural flexibility or rigidity affects membrane stability by playing modulatory roles in lipid-protein interaction. Herein, we investigate the protein chain flexibility mediated changes in the mechanistic behavior of phospholipid model membranes in the presence of two well-known isoforms, erythroid (ER) and nonerythroid (NER) spectrin. We show dramatic alterations of membrane elasticity and stability induced by spectrin in the Langmuir monolayers of phosphatidylocholine (PC) and phosphatidylethanolamine (PE) by a combination of isobaric relaxation, surface pressure-area isotherm, X-ray scattering, and microscopy measurements. The NER spectrin drives all monolayers to possess an approximately equal stability, and that required 25-fold increase and 5-fold decrease of stability in PC and PE monolayers, respectively. The untilting transition of the PC membrane in the presence of NER spectrin observed in X-ray measurements can explain better membrane packing and stability.


Assuntos
Fosfolipídeos , Espectrina , Espectrina/química , Espectrina/metabolismo , Espectrina/farmacologia , Fosfolipídeos/química , Proteínas de Membrana
7.
Prog Nucl Magn Reson Spectrosc ; 130-131: 47-61, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36113917

RESUMO

Proton detection in solid state NMR is continuously developing and allows one to gain new insights in structural biology. Overall, this progress is a result of the synergy between hardware development, new NMR methodology and new isotope labeling strategies, to name a few factors. Even though current developments are rapid, it is worthwhile to summarize what can currently be achieved employing proton detection in biological solids. We illustrate this by analysing the signal-to-noise ratio (SNR) for spectra obtained for a microcrystalline α-spectrin SH3 domain protein sample by (i) employing different degrees of chemical dilution to replace protons by incorporating deuterons in different sites, by (ii) variation of the magic angle spinning (MAS) frequencies between 20 and 110 kHz, and by (iii) variation of the static magnetic field B0. The experimental SNR values are validated with numerical simulations employing up to 9 proton spins. Although in reality a protein would contain far more than 9 protons, in a deuterated environment this is a sufficient number to achieve satisfactory simulations consistent with the experimental data. The key results of this analysis are (i) with current hardware, deuteration is still necessary to record spectra of optimum quality; (ii) 13CH3 isotopomers for methyl groups yield the best SNR when MAS frequencies above 100 kHz are available; and (iii) sensitivity increases with a factor beyond B0 3/2 with the static magnetic field due to a transition of proton-proton dipolar interactions from a strong to a weak coupling limit.


Assuntos
Terapia com Prótons , Prótons , Deutério/química , Espectrina/química , Domínios de Homologia de src
8.
Channels (Austin) ; 16(1): 216-229, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36082411

RESUMO

The ankyrin proteins (Ankyrin-R, Ankyrin-B, and Ankyrin-G) are a family of scaffolding, or membrane adaptor proteins necessary for the regulation and targeting of several types of ion channels and membrane transporters throughout the body. These include voltage-gated sodium, potassium, and calcium channels in the nervous system, heart, lungs, and muscle. At these sites, ankyrins recruit ion channels, and other membrane proteins, to specific subcellular domains, which are then stabilized through ankyrin's interaction with the submembranous spectrin-based cytoskeleton. Several recent studies have expanded our understanding of both ankyrin expression and their ion channel binding partners. This review provides an updated overview of ankyrin proteins and their known channel and transporter interactions. We further discuss several potential avenues of future research that would expand our understanding of these important organizational proteins.


Assuntos
Anquirinas , Canais Iônicos , Anquirinas/química , Anquirinas/metabolismo , Citoesqueleto/metabolismo , Canais Iônicos/metabolismo , Proteínas de Membrana/metabolismo , Espectrina/química , Espectrina/metabolismo
9.
Biophys J ; 121(18): 3334-3344, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36029000

RESUMO

Recent work has established that axons have a periodic skeleton structure comprising of azimuthal actin rings connected via longitudinal spectrin tetramer filaments. This structure endows the axon with structural integrity and mechanical stability. Additionally, voltage-gated sodium channels follow the periodicity of the active-spectrin arrangement, spaced ∼190 nm segments apart. The impact of this periodic arrangement of sodium channels on the generation and propagation of action potentials is unknown. To address this question, we simulated an action potential using the Hodgkin-Huxley formalism in a cylindrical compartment, but instead of using a homogeneous distribution of voltage-gated sodium channels in the membrane, we applied the experimentally determined periodic arrangement. We found that the periodic distribution of voltage-gated sodium channels does not significantly affect the generation or propagation of action potentials but instead leads to large, localized sodium action currents caused by high-density sodium nanodomains. Additionally, our simulations show that the distance between periodic sodium channel strips could control axonal excitability, suggesting a previously underappreciated mechanism to regulate neuronal firing properties. Together, this work provides a critical new insight into the role of the periodic arrangement of sodium channels in axons, providing a foundation for future experimental studies.


Assuntos
Espectrina , Canais de Sódio Disparados por Voltagem , Actinas/química , Potenciais de Ação/fisiologia , Axônios/fisiologia , Sódio , Espectrina/análise , Espectrina/química
10.
IUBMB Life ; 74(5): 474-487, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35184374

RESUMO

Hemoglobin oxidation due to oxidative stress and disease conditions leads to the generation of ROS (reactive oxygen species) and membrane attachment of hemoglobin in-vivo, where its redox activity leads to peroxidative damage of membrane lipids and proteins. Spectrin, the major component of the red blood cell (RBC) membrane skeleton, is known to interact with hemoglobin and, here this interaction is shown to increase hemoglobin peroxidase activity in the presence of reducing substrate ABTS (2', 2'-Azino-Bis-3-Ethylbenzothiazoline-6-Sulfonic Acid). It is also shown that in the absence of reducing substrate, spectrin forms covalently cross-linked aggregates with hemoglobin which display no peroxidase activity. This may have implications in the clearance of ROS and limiting peroxidative damage. Spectrin is found to modulate the peroxidase activity of different hemoglobin variants like A, E, and S, and of isolated globin chains from each of these variants. This may be of importance in disease states like sickle cell disease and HbE-ß-thalassemia, where increased oxidative damage and free globin subunits are present due to the defects inherent in the hemoglobin variants associated with these diseases. This hypothesis is corroborated by lipid peroxidation experiments. The modulatory role of spectrin is shown to extend to other heme proteins, namely catalase and cytochrome-c. Experiments with free heme and Raman spectroscopy of heme proteins in the presence of spectrin show that structural alterations occur in the heme moiety of the heme proteins on spectrin binding, which may be the structural basis of increased enzyme activity.


Assuntos
Hemeproteínas , Antioxidantes , Catalase/genética , Heme , Hemoglobinas/genética , Hemoglobinas/metabolismo , Peroxidase/genética , Peroxidases/genética , Espécies Reativas de Oxigênio , Espectrina/química , Espectrina/genética , Espectrina/metabolismo
11.
Transl Res ; 243: 78-88, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34979321

RESUMO

Spectrin, as one of the major components of a plasma membrane-associated cytoskeleton, is a cytoskeletal protein composed of the modular structure of α and ß subunits. The spectrin-based skeleton is essential for preserving the integrity and mechanical characteristics of the cell membrane. Moreover, spectrin regulates a variety of cell processes including cell apoptosis, cell adhesion, cell spreading, and cell cycle. Dysfunction of spectrins is implicated in various human diseases including hemolytic anemia, neurodegenerative diseases, ataxia, heart diseases, and cancers. Here, we briefly discuss spectrins function as well as the clinical manifestations and currently known molecular mechanisms of human diseases related to spectrins, highlighting that strategies for targeting regulation of spectrins function may provide new avenues for therapeutic intervention for these diseases.


Assuntos
Espectrina , Adesão Celular , Ciclo Celular , Membrana Celular/metabolismo , Humanos , Espectrina/química , Espectrina/metabolismo
12.
J Phys Chem B ; 126(5): 1045-1053, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34845910

RESUMO

Spectrin is a cytoskeletal protein ubiquitous in metazoan cells that acts as a liaison between the plasma membrane and the cellular interior and imparts mechanical stability to the plasma membrane. Spectrin is known to be highly dynamic, with an appreciable degree of torsional and segmental mobility. In this context, we have earlier utilized the red edge excitation shift (REES) approach to report the retention of restricted solvation dynamics and local structure in the vicinity of spectrin tryptophans on urea denaturation and loss of spectrin secondary structure. As a natural progression of our earlier work, in this work, we carried out a biophysical dissection of tryptophan solvation and rotational dynamics in spectrin and its constituent domains, in order to trace the origin of local structure retention observed in denatured spectrin. Our results show that the ankyrin binding domain (and, to a lesser extent, the ß-tetramerization domain) is capable of retention of local structure, similar to that observed for intact spectrin. However, all α-chain domains studied exhibit negligible retention of local structure on urea denaturation. Such a stark chain-specific retention of local structure could originate from the fact that the ß-chain domains possess specialized functions, where conservation of local (structural) integrity may be a prerequisite for optimum cellular function. To the best of our knowledge, these observations represent one of the first systematic biophysical dissections of spectrin dynamics in terms of its constituent domains and add to emerging literature on comprehensive domain-based analysis of spectrin organization, dynamics, and function.


Assuntos
Espectrina , Triptofano , Animais , Proteínas do Citoesqueleto/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Espectrina/química , Triptofano/química
13.
Int J Mol Sci ; 22(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34681667

RESUMO

Hereditary spherocytosis (HS), the most commonly inherited hemolytic anemia in northern Europeans, comprises a group of diseases whose heterogeneous genetic basis results in a variable clinical presentation. High-throughput genome sequencing methods have made a leading contribution to the recent progress in research on and diagnostics of inherited diseases and inspired us to apply whole exome sequencing (WES) to identify potential mutations in HS. The data presented here reveal a novel mutation probably responsible for HS in a single Polish family. Patients with clinical evidence of HS (clinical symptoms, hematological data, and EMA test) were enrolled in the study. The examination of the resulting WES data showed a number of polymorphisms in 71 genes associated with known erythrocyte pathologies (including membranopathies, enzymopathies, and hemoglobinopathies). Only a single SPTB gene variant indicated the possible molecular mechanism of the disease in the studied family. The new missense mutation p.C183Y was identified using WES in the SPTB gene, which is most likely the cause of clinical symptoms typical of hereditary spherocytosis (membranopathy) due to structural and functional impairments of human ß-spectrin. This mutation allows for a better understanding of the molecular mechanism(s) of one of the membranopathies, hereditary spherocytosis.


Assuntos
Espectrina/genética , Esferocitose Hereditária/diagnóstico , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Espectrina/química , Esferocitose Hereditária/genética , Sequenciamento do Exoma
14.
Biochem Biophys Res Commun ; 581: 68-73, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34656850

RESUMO

A spontaneous missense mutation in the alpha II spectrin (αII) gene, replacing a highly conserved arginine 1098 with the glutamine (R1098Q), causes progressive neurodegeneration in heterozygous mutant mice. The molecular mechanism underlying this phenotype is unknown but the accumulation of 150kD αII breakdown products in brains of homozygous mutant embryos suggests an imbalance in the substrate level control of αII cleavage by calpains. This is further supported by in silico simulation predicting unmasked calpain target site and increased spectrin scaffold bending and flexibility of R1098Q mutant peptide. Here, using spectroscopic and in situ enzymatic techniques, we aimed at obtaining direct experimental support for the impact of R1098Q mutation on the αII stability and its propensity for calpain-mediated degradation. Thermal circular dichroism analyses performed on recombinant wildtype and R1098Q mutant αII peptides, composed of spectrin repeat 9-10 revealed that although both had very similar secondary structure contents, thermal stability curve profiles varied and the observed midpoint of the unfolding transition (Tm) was 5.5 °C lower for the R1098Q peptide. Yet, the dynamic light scattering profiles of both peptides closely overlapped, implying the same thermal propensity to aggregate. Calpain digestion of plate-bound αII peptides with and without added calmodulin revealed an enhancement of the R1098Q peptide digestion rate relative to WT control. In summary, these results support the unstable scaffold structure of the R1098Q peptide as contributing to its enhanced intrinsic sensitivity to calpain and suggest physiologic relevance of a proper calpain/spectrin balance in preventing neurodegeneration.


Assuntos
Arginina/química , Calpaína/química , Glutamina/química , Mutação de Sentido Incorreto , Peptídeos/química , Espectrina/química , Substituição de Aminoácidos , Arginina/metabolismo , Calpaína/metabolismo , Ensaio de Imunoadsorção Enzimática , Expressão Gênica , Glutamina/metabolismo , Humanos , Peptídeos/genética , Peptídeos/metabolismo , Estabilidade Proteica , Proteólise , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Soluções , Espectrina/genética , Espectrina/metabolismo
15.
Int J Mol Sci ; 22(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801522

RESUMO

(1) Background: A non-progressive congenital ataxia (NPCA) phenotype caused by ß-III spectrin (SPTBN2) mutations has emerged, mimicking spinocerebellar ataxia, autosomal recessive type 14 (SCAR14). The pattern of inheritance, however, resembles that of autosomal dominant classical spinocerebellar ataxia type 5 (SCA5). (2) Methods: In-depth phenotyping of two boys studied by a customized gene panel. Candidate variants were sought by structural modeling and protein expression. An extensive review of the literature was conducted in order to better characterize the SPTBN2-associated NPCA. (3) Results: Patients exhibited an NPCA with hypotonia, developmental delay, cerebellar syndrome, and cognitive deficits. Both probands presented with progressive global cerebellar volume loss in consecutive cerebral magnetic resonance imaging studies, characterized by decreasing midsagittal vermis relative diameter measurements. Cortical hyperintensities were observed on fluid-attenuated inversion recovery (FLAIR) images, suggesting a neurodegenerative process. Each patient carried a novel de novo SPTBN2 substitution: c.193A > G (p.K65E) or c.764A > G (p.D255G). Modeling and protein expression revealed that both mutations might be deleterious. (4) Conclusions: The reported findings contribute to a better understanding of the SPTBN2-associated phenotype. The mutations may preclude proper structural organization of the actin spectrin-based membrane skeleton, which, in turn, is responsible for the underlying disease mechanism.


Assuntos
Ataxia Cerebelar/patologia , Mutação , Doenças Neurodegenerativas/patologia , Espectrina/genética , Idade de Início , Sequência de Aminoácidos , Ataxia Cerebelar/complicações , Ataxia Cerebelar/congênito , Ataxia Cerebelar/genética , Criança , Estudos de Coortes , Estudos de Associação Genética , Humanos , Masculino , Doenças Neurodegenerativas/complicações , Doenças Neurodegenerativas/genética , Neuroimagem , Fenótipo , Conformação Proteica , Homologia de Sequência , Espectrina/química , Espectrina/metabolismo , Síndrome
16.
Sci Rep ; 11(1): 7312, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790315

RESUMO

The neuronal membrane-associated periodic spectrin skeleton (MPS) contributes to neuronal development, remodeling, and organization. Post-translational modifications impinge on spectrin, the major component of the MPS, but their role remains poorly understood. One modification targeting spectrin is cleavage by calpains, a family of calcium-activated proteases. Spectrin cleavage is regulated by activated calpain, but also by the calcium-dependent binding of calmodulin (CaM) to spectrin. The physiologic significance of this balance between calpain activation and substrate-level regulation of spectrin cleavage is unknown. We report a strain of C57BL/6J mice harboring a single αII spectrin point mutation (Sptan1 c.3293G > A:p.R1098Q) with reduced CaM affinity and intrinsically enhanced sensitivity to calpain proteolysis. Homozygotes are embryonic lethal. Newborn heterozygotes of either gender appear normal, but soon develop a progressive ataxia characterized biochemically by accelerated calpain-mediated spectrin cleavage and morphologically by disruption of axonal and dendritic integrity and global neurodegeneration. Molecular modeling predicts unconstrained exposure of the mutant spectrin's calpain-cleavage site. These results reveal the critical importance of substrate-level regulation of spectrin cleavage for the maintenance of neuronal integrity. Given that excessive activation of calpain proteases is a common feature of neurodegenerative disease and traumatic encephalopathy, we propose that damage to the spectrin MPS may contribute to the neuropathology of many disorders.


Assuntos
Ataxia Cerebelar/genética , Espectrina/genética , Animais , Calpaína/metabolismo , Cerebelo/metabolismo , Cerebelo/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação Puntual , Ligação Proteica , Proteólise , Espectrina/química , Espectrina/metabolismo
17.
J Biol Chem ; 296: 100215, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33839680

RESUMO

Numerous diseases are linked to mutations in the actin-binding domains (ABDs) of conserved cytoskeletal proteins, including ß-III-spectrin, α-actinin, filamin, and dystrophin. A ß-III-spectrin ABD mutation (L253P) linked to spinocerebellar ataxia type 5 (SCA5) causes a dramatic increase in actin binding. Reducing actin binding of L253P is thus a potential therapeutic approach for SCA5 pathogenesis. Here, we validate a high-throughput screening (HTS) assay to discover potential disrupters of the interaction between the mutant ß-III-spectrin ABD and actin in live cells. This assay monitors FRET between fluorescent proteins fused to the mutant ABD and the actin-binding peptide Lifeact, in HEK293-6E cells. Using a specific and high-affinity actin-binding tool compound, swinholide A, we demonstrate HTS compatibility with an excellent Z'-factor of 0.67 ± 0.03. Screening a library of 1280 pharmacologically active compounds in 1536-well plates to determine assay robustness, we demonstrate high reproducibility across plates and across days. We identified nine Hits that reduced FRET between Lifeact and ABD. Four of those Hits were found to reduce Lifeact cosedimentation with actin, thus establishing the potential of our assay for detection of actin-binding modulators. Concurrent to our primary FRET assay, we also developed a high-throughput compatible counter screen to remove undesirable FRET Hits. Using the FRET Hits, we show that our counter screen is sensitive to undesirable compounds that cause cell toxicity or ABD aggregation. Overall, our FRET-based HTS platform sets the stage to screen large compound libraries for modulators of ß-III-spectrin, or disease-linked spectrin-related proteins, for therapeutic development.


Assuntos
Actinas/metabolismo , Sítios de Ligação/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Proteínas Recombinantes de Fusão/metabolismo , Espectrina/metabolismo , Actinas/química , Actinas/genética , Transferência Ressonante de Energia de Fluorescência , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Cinética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Toxinas Marinhas/farmacologia , Modelos Biológicos , Modelos Moleculares , Mutação , Fármacos Neuroprotetores/farmacologia , Ligação Proteica/efeitos dos fármacos , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Reprodutibilidade dos Testes , Espectrina/química , Espectrina/genética , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/patologia , Proteína Vermelha Fluorescente
18.
Nat Chem Biol ; 17(5): 540-548, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33603247

RESUMO

Precision tools for spatiotemporal control of cytoskeletal motor function are needed to dissect fundamental biological processes ranging from intracellular transport to cell migration and division. Direct optical control of motor speed and direction is one promising approach, but it remains a challenge to engineer controllable motors with desirable properties such as the speed and processivity required for transport applications in living cells. Here, we develop engineered myosin motors that combine large optical modulation depths with high velocities, and create processive myosin motors with optically controllable directionality. We characterize the performance of the motors using in vitro motility assays, single-molecule tracking and live-cell imaging. Bidirectional processive motors move efficiently toward the tips of cellular protrusions in the presence of blue light, and can transport molecular cargo in cells. Robust gearshifting myosins will further enable programmable transport in contexts ranging from in vitro active matter reconstitutions to microfabricated systems that harness molecular propulsion.


Assuntos
Actinina/química , Células Epiteliais/metabolismo , Miosinas/química , Neurônios/metabolismo , Engenharia de Proteínas/métodos , Espectrina/química , Actinina/genética , Actinina/metabolismo , Animais , Avena , Linhagem Celular , Chara , Galinhas , Clonagem Molecular , Dictyostelium , Células Epiteliais/citologia , Células Epiteliais/efeitos da radiação , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Luz , Modelos Moleculares , Movimento (Física) , Miosinas/genética , Miosinas/metabolismo , Neurônios/citologia , Neurônios/efeitos da radiação , Óptica e Fotônica/métodos , Cultura Primária de Células , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Espectrina/genética , Espectrina/metabolismo , Nicotiana
19.
Int J Biol Sci ; 17(1): 32-49, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33390831

RESUMO

ßII spectrin, the most common isoform of non-erythrocyte spectrin, is a cytoskeleton protein present in all nucleated cells. Interestingly, ßII spectrin is essential for the development of various organs such as nerve, epithelium, inner ear, liver and heart. The functions of ßII spectrin include not only establishing and maintaining the cell structure but also regulating a variety of cellular functions, such as cell apoptosis, cell adhesion, cell spreading and cell cycle regulation. Notably, ßII spectrin dysfunction is associated with embryonic lethality and the DNA damage response. More recently, the detection of altered ßII spectrin expression in tumors indicated that ßII spectrin might be involved in the development and progression of cancer. Its mutations and disorders could result in developmental disabilities and various diseases. The versatile roles of ßII spectrin in disease have been examined in an increasing number of studies; nonetheless, the exact mechanisms of ßII spectrin are still poorly understood. Thus, we summarize the structural features and biological roles of ßII spectrin and discuss its molecular mechanisms and functions in development, homeostasis, regeneration and differentiation. This review highlight the potential effects of ßII spectrin dysfunction in cancer and other diseases, outstanding questions for the future investigation of therapeutic targets. The investigation of the regulatory mechanism of ßII spectrin signal inactivation and recovery may bring hope for future therapy of related diseases.


Assuntos
Doença/etiologia , Neoplasias/metabolismo , Espectrina/metabolismo , Animais , Adesão Celular , Ciclo Celular , Instabilidade Genômica , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Espectrina/química
20.
Gen Physiol Biophys ; 39(6): 505-518, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33226360

RESUMO

Previously detected ßsp and γ1sp dielectric relaxations on the spectrin-based membrane skeleton (MS) of human red blood cells (RBCs) have been shown sensitive to the attachment of MS to the lipid-protein membrane. Such relaxations were now detected on the MS of mammal (rat, horse, bovine, sheep and goat) and "unstrained" chicken RBCs. To become "unstrained" chicken RBCs were subjected consecutively to cold (4°C, >20 h) and either colchicine (15 mM) or vinblastine (30 µM) (4°C, 1 h) that led to irreversible disassembly of their marginal band and an additional portion of their cytoskeleton. With the exception of bovine RBCs, the critical frequency (fc) of either relaxation increased, although at different rates, with the decrease in the volume of RBC species. The strong increase in fc of γ1sp relaxation from 2.5 MHz ("unstrained" chicken RBCs) to 13 MHz (goat RBCs) could indicate denser state of MS in smaller RBC species. The low values of fc of γ1sp relaxation in "unstrained" chicken RBCs (2.5 MHz) and bovine RBCs (4.5 instead of 9 MHz) could be related to their extraordinary thermal stability at the temperature of spectrin denaturation.


Assuntos
Membrana Eritrocítica/química , Eritrócitos/citologia , Espectrina/química , Animais , Bovinos , Cabras , Cavalos , Ratos , Ovinos , Especificidade da Espécie , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...