Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928162

RESUMO

Polyamine (PA) spermidine (SPD) plays a crucial role in aging. Since SPD accumulates in glial cells, particularly in Müller retinal cells (MCs), the expression of the SPD-synthesizing enzyme spermidine synthase (SpdS) in Müller glia and age-dependent SpdS activity are not known. We used immunocytochemistry, Western blot (WB), and image analysis on rat retinae at postnatal days 3, 21, and 120. The anti-glutamine synthetase (GS) antibody was used to identify glial cells. In the neonatal retina (postnatal day 3 (P3)), SpdS was expressed in almost all progenitor cells in the neuroblast. However, by day 21 (P21), the SpdS label was pronouncedly expressed in multiple neurons, while GS labels were observed only in radial Müller glial cells. During early cell adulthood, at postnatal day 120 (P120), SpdS was observed solely in ganglion cells and a few other neurons. Western blot and semi-quantitative analyses of SpdS labeling showed a dramatic decrease in SpdS at P21 and P120 compared to P3. In conclusion, the redistribution of SpdS with aging indicates that SPD is first synthesized in all progenitor cells and then later in neurons, but not in glia. However, MCs take up and accumulate SPD, regardless of the age-associated decrease in SPD synthesis in neurons.


Assuntos
Células Ependimogliais , Retina , Espermidina Sintase , Animais , Ratos , Espermidina Sintase/metabolismo , Espermidina Sintase/genética , Retina/metabolismo , Células Ependimogliais/metabolismo , Envelhecimento/metabolismo , Espermidina/metabolismo , Neuroglia/metabolismo , Animais Recém-Nascidos
2.
J Biol Chem ; 300(5): 107281, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588807

RESUMO

Spermine synthase is an aminopropyltransferase that adds an aminopropyl group to the essential polyamine spermidine to form tetraamine spermine, needed for normal human neural development, plant salt and drought resistance, and yeast CoA biosynthesis. We functionally identify for the first time bacterial spermine synthases, derived from phyla Bacillota, Rhodothermota, Thermodesulfobacteriota, Nitrospirota, Deinococcota, and Pseudomonadota. We also identify bacterial aminopropyltransferases that synthesize the spermine same mass isomer thermospermine, from phyla Cyanobacteriota, Thermodesulfobacteriota, Nitrospirota, Dictyoglomota, Armatimonadota, and Pseudomonadota, including the human opportunistic pathogen Pseudomonas aeruginosa. Most of these bacterial synthases were capable of synthesizing spermine or thermospermine from the diamine putrescine and so possess also spermidine synthase activity. We found that most thermospermine synthases could synthesize tetraamine norspermine from triamine norspermidine, that is, they are potential norspermine synthases. This finding could explain the enigmatic source of norspermine in bacteria. Some of the thermospermine synthases could synthesize norspermidine from diamine 1,3-diaminopropane, demonstrating that they are potential norspermidine synthases. Of 18 bacterial spermidine synthases identified, 17 were able to aminopropylate agmatine to form N1-aminopropylagmatine, including the spermidine synthase of Bacillus subtilis, a species known to be devoid of putrescine. This suggests that the N1-aminopropylagmatine pathway for spermidine biosynthesis, which bypasses putrescine, may be far more widespread than realized and may be the default pathway for spermidine biosynthesis in species encoding L-arginine decarboxylase for agmatine production. Some thermospermine synthases were able to aminopropylate N1-aminopropylagmatine to form N12-guanidinothermospermine. Our study reveals an unsuspected diversification of bacterial polyamine biosynthesis and suggests a more prominent role for agmatine.


Assuntos
Bactérias , Proteínas de Bactérias , Espermidina Sintase , Espermina Sintase , Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Espermidina/metabolismo , Espermidina/análogos & derivados , Espermidina/biossíntese , Espermidina Sintase/metabolismo , Espermidina Sintase/genética , Espermina/metabolismo , Espermina/análogos & derivados , Espermina/biossíntese , Espermina Sintase/metabolismo , Espermina Sintase/genética , Poliaminas/metabolismo , Alquil e Aril Transferases/biossíntese , Alquil e Aril Transferases/genética , Agmatina/química , Agmatina/metabolismo
3.
Redox Biol ; 72: 103151, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593631

RESUMO

Salmonella infection entails a cascade of attacks and defence measures. After breaching the intestinal epithelial barrier, Salmonella is phagocytosed by macrophages, where the bacteria encounter multiple stresses, to which it employs relevant countermeasures. Our study shows that, in Salmonella, the polyamine spermidine activates a stress response mechanism by regulating critical antioxidant genes. Salmonella Typhimurium mutants for spermidine transport and synthesis cannot mount an antioxidative response, resulting in high intracellular ROS levels. These mutants are also compromised in their ability to be phagocytosed by macrophages. Furthermore, it regulates a novel enzyme in Salmonella, Glutathionyl-spermidine synthetase (GspSA), which prevents the oxidation of proteins in E. coli. Moreover, the spermidine mutants and the GspSA mutant show significantly reduced survival in the presence of hydrogen peroxide in vitro and reduced organ burden in the mouse model of Salmonella infection. Conversely, in macrophages isolated from gp91phox-/- mice, we observed a rescue in the attenuated fold proliferation previously observed upon infection. We found that Salmonella upregulates polyamine biosynthesis in the host through its effectors from SPI-1 and SPI-2, which addresses the attenuated proliferation observed in spermidine transport mutants. Thus, inhibition of this pathway in the host abrogates the proliferation of Salmonella Typhimurium in macrophages. From a therapeutic perspective, inhibiting host polyamine biosynthesis using an FDA-approved chemopreventive drug, D, L-α-difluoromethylornithine (DFMO), reduces Salmonella colonisation and tissue damage in the mouse model of infection while enhancing the survival of infected mice. Therefore, our work provides a mechanistic insight into the critical role of spermidine in stress resistance of Salmonella. It also reveals a bacterial strategy in modulating host metabolism to promote their intracellular survival and shows the potential of DFMO to curb Salmonella infection.


Assuntos
Proteínas de Bactérias , Macrófagos , Proteínas de Membrana , NADPH Oxidase 2 , Espécies Reativas de Oxigênio , Salmonella typhimurium , Espermidina , Animais , Salmonella typhimurium/metabolismo , Salmonella typhimurium/efeitos dos fármacos , Espermidina/metabolismo , Camundongos , Macrófagos/microbiologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Poliaminas/metabolismo , Fagocitose/efeitos dos fármacos , Infecções por Salmonella/microbiologia , Infecções por Salmonella/metabolismo , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Interações Hospedeiro-Patógeno , Espermidina Sintase/metabolismo , Espermidina Sintase/genética , Estresse Oxidativo/efeitos dos fármacos
4.
Biomolecules ; 14(3)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38540790

RESUMO

Diatoms, efficient carbon capture organisms, contribute to 20% of global carbon fixation and 40% of ocean primary productivity, garnering significant attention to their growth. Despite their significance, the synthesis mechanism of polyamines (PAs), especially spermidine (Spd), which are crucial for growth in various organisms, remains unexplored in diatoms. This study reveals the vital role of Spd, synthesized through the spermidine synthase (SDS)-based pathway, in the growth of the diatom Phaeodactylum tricornutum. PtSDS1 and PtSDS2 in the P. tricornutum genome were confirmed as SDS enzymes through enzyme-substrate selectivity assays. Their distinct activities are governed primarily by the Y79 active site. Overexpression of a singular gene revealed that PtSDS1, PtSDS2, and PtSAMDC from the SDS-based synthesis pathway are all situated in the cytoplasm, with no significant impact on PA content or diatom growth. Co-overexpression of PtSDS1 and PtSAMDC proved essential for elevating Spd levels, indicating multifactorial regulation. Elevated Spd content promotes diatom growth, providing a foundation for exploring PA functions and regulation in diatoms.


Assuntos
Diatomáceas , Diatomáceas/genética , Diatomáceas/metabolismo , Espermidina Sintase/genética , Espermidina Sintase/metabolismo , Poliaminas/metabolismo , Vias Biossintéticas , Genoma
5.
Int J Mol Sci ; 24(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36902443

RESUMO

Spermidine synthase (SPDS) is a key enzyme in the polyamine anabolic pathway. SPDS genes help regulate plant response to environmental stresses, but their roles in pepper remain unclear. In this study, we identified and cloned a SPDS gene from pepper (Capsicum annuum L.), named CaSPDS (LOC107847831). Bioinformatics analysis indicated that CaSPDS contains two highly conserved domains: an SPDS tetramerisation domain and a spermine/SPDS domain. Quantitative reverse-transcription polymerase chain reaction results showed that CaSPDS was highly expressed in the stems, flowers, and mature fruits of pepper and was rapidly induced by cold stress. The function of CaSPDS in cold stress response was studied by silencing and overexpressing it in pepper and Arabidopsis, respectively. Cold injury was more serious and reactive oxygen species levels were greater in the CaSPDS-silenced seedlings than in the wild-type (WT) seedlings after cold treatment. Compared with the WT plants, the CaSPDS-overexpression Arabidopsis plants were more tolerant to cold stress and showed higher antioxidant enzyme activities, spermidine content, and cold-responsive gene (AtCOR15A, AtRD29A, AtCOR47, and AtKIN1) expression. These results indicate that CaSPDS plays important roles in cold stress response and is valuable in molecular breeding to enhance the cold tolerance of pepper.


Assuntos
Arabidopsis , Capsicum , Resposta ao Choque Frio , Capsicum/genética , Espermidina Sintase/genética , Espermidina Sintase/metabolismo , Arabidopsis/genética , Estresse Fisiológico/genética , Plântula/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética
6.
Med Sci (Basel) ; 10(2)2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35645240

RESUMO

Parasites of the genus Leishmania cause a variety of devastating and often fatal diseases in humans and domestic animals worldwide. The need for new therapeutic strategies is urgent because no vaccine is available, and treatment options are limited due to a lack of specificity and the emergence of drug resistance. Polyamines are metabolites that play a central role in rapidly proliferating cells, and recent studies have highlighted their critical nature in Leishmania. Numerous studies using a variety of inhibitors as well as gene deletion mutants have elucidated the pathway and routes of transport, revealing unique aspects of polyamine metabolism in Leishmania parasites. These studies have also shed light on the significance of polyamines for parasite proliferation, infectivity, and host-parasite interactions. This comprehensive review article focuses on the main polyamine biosynthetic enzymes: ornithine decarboxylase, S-adenosylmethionine decarboxylase, and spermidine synthase, and it emphasizes recent discoveries that advance these enzymes as potential therapeutic targets against Leishmania parasites.


Assuntos
Leishmania , Parasitos , Animais , Leishmania/genética , Leishmania/metabolismo , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo , Parasitos/metabolismo , Poliaminas/metabolismo , Espermidina Sintase/metabolismo
7.
Cells ; 11(5)2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269459

RESUMO

Biotechnological application of the green microalga Chlamydomonas reinhardtii hinges on the availability of selectable markers for effective expression of multiple transgenes. However, biological safety concerns limit the establishment of new antibiotic resistance genes and until today, only a few auxotrophic markers exist for C. reinhardtii. The recent improvements in gene editing via CRISPR/Cas allow directed exploration of new endogenous selectable markers. Since editing frequencies remain comparably low, a Cas9-sgRNA ribonucleoprotein (RNP) delivery protocol was strategically optimized by applying nitrogen starvation to the pre-culture, which improved successful gene edits from 10% to 66% after pre-selection. Probing the essential polyamine biosynthesis pathway, the spermidine synthase gene (SPD1) is shown to be a potent selectable marker with versatile biotechnological applicability. Very low levels of spermidine (0.75 mg/L) were required to maintain normal mixotrophic and phototrophic growth in newly designed spermidine auxotrophic strains. Complementation of these strains with a synthetic SPD1 gene was achieved when the mature protein was expressed in the cytosol or targeted to the chloroplast. This work highlights the potential of new selectable markers for biotechnology as well as basic research and proposes an effective pipeline for the identification of new auxotrophies in C. reinhardtii.


Assuntos
Chlamydomonas reinhardtii , Edição de Genes , Sistemas CRISPR-Cas/genética , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Edição de Genes/métodos , Espermidina/metabolismo , Espermidina Sintase/genética , Espermidina Sintase/metabolismo
8.
Med Sci (Basel) ; 9(2)2021 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-34063217

RESUMO

Polyamines are small organic cations that are important for several biological processes such as cell proliferation, cell cycle progression, and apoptosis. The dysregulation of intracellular polyamines is often associated with diseases such as cancer, diabetes, and developmental disorders. Although polyamine metabolism has been well studied, the effects of key enzymes in the polyamine pathway on lipid metabolism are not well understood. Here, we determined metabolic effects resulting from the absence of spermidine synthase (SpdS) and spermine synthase (Sms) in Drosophila. While SpdS mutants developed normally and accumulated triglycerides, Sms mutants had reduced viability and stored less triglyceride than the controls. Interestingly, when decreasing SpdS and Sms, specifically in the fat body, triglyceride storage increased. While there was no difference in triglycerides stored in heads, thoraxes and abdomen fat bodies, abdomen fat body DNA content increased, and protein/DNA decreased in both SpdS- and Sms-RNAi flies, suggesting that fat body-specific knockdown of SpdS and Sms causes the production of smaller fat body cells and triglycerides to accumulate in non-fat body tissues of the abdomen. Together, these data provide support for the role that polyamines play in the regulation of metabolism and can help enhance our understanding of polyamine function in metabolic diseases.


Assuntos
Fenômenos Biológicos , Proteínas de Drosophila/genética , Drosophila/fisiologia , Espermidina Sintase , Espermina Sintase/metabolismo , Triglicerídeos/metabolismo , Animais , DNA , Drosophila/genética , Poliaminas , Espermidina Sintase/genética , Espermidina Sintase/metabolismo , Espermina Sintase/genética
9.
Am J Physiol Cell Physiol ; 320(6): C987-C999, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33881936

RESUMO

Polyamines have been shown to be absolutely required for protein synthesis and cell growth. The serine/threonine kinase, the mechanistic target of rapamycin complex 1 (mTORC1), also plays a fundamental role in the regulation of protein turnover and cell size, including in skeletal muscle, where mTORC1 is sufficient to increase protein synthesis and muscle fiber size, and is necessary for mechanical overload-induced muscle hypertrophy. Recent evidence suggests that mTORC1 may regulate the polyamine metabolic pathway, however, there is currently no evidence in skeletal muscle. This study examined changes in polyamine pathway proteins during muscle hypertrophy induced by mechanical overload (7 days), with and without the mTORC1 inhibitor, rapamycin, and during muscle atrophy induced by food deprivation (48 h) and denervation (7 days) in mice. Mechanical overload induced an increase in mTORC1 signaling, protein synthesis and muscle mass, and these were associated with rapamycin-sensitive increases in adenosylmethione decarboxylase 1 (Amd1), spermidine synthase (SpdSyn), and c-Myc. Food deprivation decreased mTORC1 signaling, protein synthesis, and muscle mass, accompanied by a decrease in spermidine/spermine acetyltransferase 1 (Sat1). Denervation, resulted increased mTORC1 signaling and protein synthesis, and decreased muscle mass, which was associated with an increase in SpdSyn, spermine synthase (SpmSyn), and c-Myc. Combined, these data show that polyamine pathway enzymes are differentially regulated in models of altered mechanical and metabolic stress, and that Amd1 and SpdSyn are, in part, regulated in a mTORC1-dependent manner. Furthermore, these data suggest that polyamines may play a role in the adaptive response to stressors in skeletal muscle.


Assuntos
Hipertrofia/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Poliaminas/metabolismo , Transdução de Sinais/fisiologia , Acetiltransferases/metabolismo , Adenosilmetionina Descarboxilase/metabolismo , Animais , Feminino , Camundongos , Proteínas Musculares/metabolismo , Espermidina Sintase/metabolismo
10.
J Bacteriol ; 203(10)2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33685971

RESUMO

Polyamines are essential for biofilm formation in Escherichia coli, but it is still unclear which polyamines are primarily responsible for this phenomenon. To address this issue, we constructed a series of E. coli K-12 strains with mutations in genes required for the synthesis and metabolism of polyamines. Disruption of the spermidine synthase gene (speE) caused a severe defect in biofilm formation. This defect was rescued by the addition of spermidine to the medium but not by putrescine or cadaverine. A multidrug/spermidine efflux pump membrane subunit (MdtJ)-deficient strain was anticipated to accumulate more spermidine and result in enhanced biofilm formation compared to the MdtJ+ strain. However, the mdtJ mutation did not affect intracellular spermidine or biofilm concentrations. E. coli has the spermidine acetyltransferase (SpeG) and glutathionylspermidine synthetase/amidase (Gss) to metabolize intracellular spermidine. Under biofilm-forming conditions, not Gss but SpeG plays a major role in decreasing the too-high intracellular spermidine concentrations. Additionally, PotFGHI can function as a compensatory importer of spermidine when PotABCD is absent under biofilm-forming conditions. Last, we report here that, in addition to intracellular spermidine, the periplasmic binding protein (PotD) of the spermidine preferential ABC transporter is essential for stimulating biofilm formation.IMPORTANCE Previous reports have speculated on the effect of polyamines on bacterial biofilm formation. However, the regulation of biofilm formation by polyamines in Escherichia coli has not yet been assessed. The identification of polyamines that stimulate biofilm formation is important for developing novel therapies for biofilm-forming pathogens. This study sheds light on biofilm regulation in E. coli Our findings provide conclusive evidence that only spermidine can stimulate biofilm formation in E. coli cells, not putrescine or cadaverine. Last, ΔpotD inhibits biofilm formation even though the spermidine is synthesized inside the cells from putrescine. Since PotD is significant for biofilm formation and there is no ortholog of the PotABCD transporter in humans, PotD could be a target for the development of biofilm inhibitors.


Assuntos
Biofilmes/crescimento & desenvolvimento , Escherichia coli K12/fisiologia , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Espermidina/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Acetiltransferases/metabolismo , Amida Sintases/metabolismo , Cadaverina/farmacologia , Meios de Cultura , Escherichia coli K12/efeitos dos fármacos , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Deleção de Genes , Proteínas de Membrana Transportadoras/genética , Mutação , Óperon , Proteínas Periplásmicas de Ligação/genética , Putrescina/farmacologia , Espermidina/farmacologia , Espermidina Sintase/genética , Espermidina Sintase/metabolismo
11.
J Agric Food Chem ; 69(1): 267-274, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33356220

RESUMO

Spermidine is a biologically active polyamine with extensive application potential in functional foods. However, previously reported spermidine titers by biosynthesis methods are relatively low, which hinders its industrial application. To improve the spermidine titer, key genes affecting the spermidine production were mined to modify Bacillus amyloliquefaciens. Genes of S-adenosylmethionine decarboxylase (speD) and spermidine synthase (speE) from different microorganisms were expressed and compared in B. amyloliquefaciens. Therein, the speD from Escherichia coli and speE from Saccharomyces cerevisiae were confirmed to be optimal for spermidine synthesis, respectively. Gene and amino acid sequence analysis further confirmed the function of speD and speE. Then, these two genes were co-expressed to generate a recombinant strain B. amyloliquefaciens HSAM2(PDspeD-SspeE) with a spermidine titer of 105.2 mg/L, improving by 11.0-fold compared with the control (HSAM2). Through optimization of the fermentation medium, the spermidine titer was increased to 227.4 mg/L, which was the highest titer among present reports. Moreover, the consumption of the substrate S-adenosylmethionine was consistent with the accumulation of spermidine, which contributed to understanding its synthesis pattern. In conclusion, two critical genes for spermidine synthesis were obtained, and an engineering B. amyloliquefaciens strain was constructed for enhanced spermidine production.


Assuntos
Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Espermidina/biossíntese , Adenosilmetionina Descarboxilase/genética , Adenosilmetionina Descarboxilase/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Engenharia Metabólica , Análise de Sequência , Espermidina Sintase/genética , Espermidina Sintase/metabolismo
12.
Sci Rep ; 10(1): 8976, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32488145

RESUMO

High temperatures (HT) before heading strongly inhibit the development of spikelets in rice. Spermidine (Spd) can improve rice's resistance to HT stress; however, the mechanism underlying this effect has not been elucidated. This study investigated several parameters, including yield, superoxide anion (O2.-), protective enzyme activities, and polyamine content, in a heat-sensitive genotype, Shuanggui 1. The yield and yield components decreased dramatically when subjected to HT stress, while this reduction could be partially recovered by exogenous Spd. Spd also slowed the generation rate of O2.- and increased protective enzyme, superoxide dismutase (SOD) and catalase (CAT) activities both under normal and high temperatures, which suggested that Spd may participate in the antioxidant system. Furthermore, genes involved in polyamine synthesis were analyzed. The results show that HT before heading significantly increased the expression of arginine decarboxylase OsADC1, Spd synthase OsSPDS1 and OsSPDS3 and had little effect on the expression of the S-adenosylmethionine decarboxylase OsSAMDC2 and ornithine decarboxylase OsODC1. In addition, exogenous Spd considerably reduced the expression of OsSAMDC2, OsSPDS1 and OsSPDS3 under HT but not the expression of OsADC1. The above mentioned results indicate that the exogenous Spd could help young rice spikelets to resist HT stress by reducing the expression of OsSAMDC2, OsSPDS1 and OsSPDS3, resulting in higher levels of endogenous Spd and Spm, which were also positively correlated with yield. In conclusion, the adverse effect of HT stress on young spikelets seems to be alleviated by increasing the amounts of Spd and Spm, which provides guidance for adaptation to heat stress during rice production.


Assuntos
Carboxiliases/metabolismo , Catalase/metabolismo , Oryza/genética , Oryza/metabolismo , Fenômenos Fisiológicos Vegetais , Poliaminas/metabolismo , Espermidina Sintase/metabolismo , Espermidina/farmacologia , Superóxido Dismutase/metabolismo , Termotolerância/genética , Termotolerância/fisiologia , Carboxiliases/genética , Expressão Gênica/efeitos dos fármacos , Genótipo , Espermidina Sintase/genética , Superóxidos/metabolismo
13.
J Agric Food Chem ; 68(8): 2366-2372, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32017555

RESUMO

Spermidine possesses multiple healthy functions, and soybeans contain the most abundant spermidine. In this study, spermidine contents of soybeans from different varieties and production regions in China were evaluated, and a spermidine synthase gene (speE) was identified by recombinant expression, transcriptional verification, and sequence analysis. Spermidine contents of soybean samples from 18 varieties ranged 72.38-228.82 mg/kg, and those from 19 production regions ranged 134.64-242.32 mg/kg. The highest-spermidine sample GZ was used to clone four predicted speE genes. Expressing the gene speE5 improved the spermidine titer by 54% in Bacillus amyloliquefaciens, confirming that speE5 was involved in spermidine synthesis. Transcriptional verification was performed through a soybean germination model. Germination for 48 h led to a onefold increase of spermidine in samples SHX and HB, and corresponding speE5 transcriptional levels were improved by 26-fold and 18-fold, respectively, further verifying the function of speE5. Finally, the sequences of the speE5 gene and deduced amino acids were analyzed, and the conserved sites and catalysis mechanisms were presented. This study identified an active spermidine synthase gene from soybean for the first time, which provided an important gene resource for genetic breeding of spermidine-rich soybean or microbial cell factory.


Assuntos
Glycine max/enzimologia , Proteínas de Plantas/genética , Espermidina Sintase/genética , Sequência de Aminoácidos , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Germinação , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sementes/enzimologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Alinhamento de Sequência , Glycine max/genética , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Espermidina/metabolismo , Espermidina Sintase/química , Espermidina Sintase/metabolismo , Transcrição Gênica
14.
J Exp Bot ; 70(19): 5343-5354, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31587071

RESUMO

Bacterial wilt (BW) caused by Ralstonia solanacearum is a serious disease affecting the production of Solanaceae species, including eggplant (Solanum melongena). However, few resistance genes have been identified in eggplant, and therefore the underlying mechanism of BW resistance remains unclear. Hence, we investigated a spermidine synthase (SPDS) gene from eggplant and created knock-down lines with virus-induced gene silencing. After eggplant was infected with R. solanacearum, the SmSPDS gene was induced, concurrent with increased spermidine (Spd) content, especially in the resistant line. We speculated that Spd plays a significant role in the defense response of eggplant to BW. Moreover, using the yeast one-hybrid approach and dual luciferase-based transactivation assay, an R2R3-MYB transcription factor, SmMYB44, was identified as directly binding to the SmSPDS promoter, activating its expression. Overexpression of SmMYB44 in eggplant induced the expression of SmSPDS and Spd content, increasing the resistance to BW. In contrast, the SmMYB44-RNAi transgenic plants showed more susceptibility to BW compared with the control plants. Our results provide insight into the SmMYB44-SmSPDS-Spd module involved in the regulation of resistance to R. solanacearum. This research also provides candidates to enhance resistance to BW in eggplant.


Assuntos
Regulação da Expressão Gênica , Doenças das Plantas/genética , Proteínas de Plantas/genética , Ralstonia solanacearum/fisiologia , Solanum melongena/genética , Espermidina Sintase/genética , Fatores de Transcrição/genética , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/microbiologia , Solanum melongena/enzimologia , Solanum melongena/microbiologia , Espermidina Sintase/metabolismo , Fatores de Transcrição/metabolismo
15.
mSphere ; 4(5)2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578245

RESUMO

Colibactin is a polyketide/nonribosomal peptide produced by Escherichia coli strains that harbor the pks island. This toxin induces DNA double-strand breaks and DNA interstrand cross-links in infected eukaryotic cells. Colibactin-producing strains are found associated with colorectal cancer biopsy specimens and promote intestinal tumor progression in various murine models. Polyamines are small polycationic molecules produced by both microorganisms and eukaryotic cells. Their levels are increased in malignancies, where they contribute to disease progression and metastasis. In this study, we demonstrated that the endogenous spermidine synthase SpeE is required for full genotoxic activity of colibactin-producing E. coli Supplying spermidine in a ΔspeE pks+E. coli strain restored genotoxic activity. Spermidine is involved in the autotoxicity linked to colibactin and is required for direct damaging activity on DNA. The production of the colibactin prodrug motif is impaired in ΔspeE mutants. Therefore, we demonstrated that spermidine has a direct impact on colibactin synthesis.IMPORTANCE Colibactin-producing Escherichia coli strains are associated with cancerous and precancerous colorectal tissues and are suspected of promoting colorectal carcinogenesis. In this study, we describe a new interplay between the synthesis of the genotoxin colibactin and the polyamine spermidine. Polyamines are highly abundant in cancer tissue and are associated with cell proliferation. The need for spermidine in genotoxic activity provides a new perspective on the role of these metabolites in the pathogenicity of colibactin-producing E. coli strains in colorectal cancer.


Assuntos
Escherichia coli/patogenicidade , Mutagênicos/metabolismo , Peptídeos/metabolismo , Policetídeos/metabolismo , Espermidina Sintase/metabolismo , Espermidina/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Células HeLa , Humanos , Mutação , Poliaminas/metabolismo , Espermidina Sintase/genética
16.
FEBS J ; 286(19): 3926-3940, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31162806

RESUMO

Branched-chain polyamine synthase (BpsA) catalyzes sequential aminopropyl transfer from the donor, decarboxylated S-adenosylmethionine (dcSAM), to the acceptor, linear-chain polyamine, resulting in the production of a quaternary-branched polyamine via tertiary branched polyamine intermediates. Here, we analyzed the catalytic properties and X-ray crystal structure of Tth-BpsA from Thermus thermophilus and compared them with those of Tk-BpsA from Thermococcus kodakarensis, which revealed differences in acceptor substrate specificity and C-terminal structure between these two enzymes. To investigate the role of the C-terminal flexible region in acceptor recognition, a region (QDEEATTY) in Tth-BpsA was replaced with that in Tk-BpsA (YDDEESSTT) to create chimeric Tth-BpsA C9, which showed a severe reduction in catalytic efficiency toward N4 -aminopropylnorspermidine, but not toward N4 -aminopropylspermidine, mimicking Tk-BpsA substrate specificity. Tth-BpsA C9 Tyr346 and Thr354 contributed to discrimination between tertiary branched-chain polyamine substrates, suggesting that the C-terminal region of BpsA recognizes acceptor substrates. Liquid chromatography-tandem mass spectrometry analysis on a Tk-BpsA reaction mixture with dcSAM revealed two aminopropyl groups bound to two of five aspartate/glutamate residues (Glu339 , Asp342 , Asp343 , Glu344 , and Glu345 ) in the C-terminal flexible region. Mutating each of these five amino acid residues to asparagine/glutamine resulted in a slight decrease in activity. The quadruple mutant D342N/D343N/E344Q/E345Q exhibited a severe reduction in catalytic efficiency, suggesting that these aspartate/glutamate residues function to receive aminopropyl chains. In addition, the X-ray crystal structure of the Tk-BpsA ternary complex bound to N4 -bis(aminopropyl)spermidine revealed that Asp126 and Glu259 interacted with the aminopropyl moiety in N4 -aminopropylspermidine.


Assuntos
Poliaminas/metabolismo , Espermidina Sintase/metabolismo , Catálise , Cromatografia Líquida , Espermidina Sintase/química , Especificidade por Substrato , Espectrometria de Massas em Tandem , Thermococcus/enzimologia , Thermus thermophilus/enzimologia
17.
Ann Bot ; 121(6): 1243-1256, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29462244

RESUMO

Background and Aims: Polyamines are small metabolites present in all living cells and play fundamental roles in numerous physiological events in plants. The aminopropyltransferases (APTs), spermidine synthase (SPDS), spermine synthase (SPMS) and thermospermine synthase (ACL5), are essential enzymes in the polyamine biosynthesis pathway. In angiosperms, SPMS has evolved from SPDS via gene duplication, whereas in gymnosperms APTs are mostly unexplored and no SPMS gene has been reported. The present study aimed to investigate the functional properties of the SPDS and ACL5 proteins of Scots pine (Pinus sylvestris L.) in order to elucidate the role and evolution of APTs in higher plants. Methods: Germinating Scots pine seeds and seedlings were analysed for polyamines by high-performance liquid chromatography (HPLC) and the expression of PsSPDS and PsACL5 genes by in situ hybridization. Recombinant proteins of PsSPDS and PsACL5 were produced and investigated for functional properties. Also gene structures, promoter regions and phylogenetic relationships of PsSPDS and PsACL5 genes were analysed. Key Results: Scots pine tissues were found to contain spermidine, spermine and thermospermine. PsSPDS enzyme catalysed synthesis of both spermidine and spermine. PsACL5 was found to produce thermospermine, and PsACL5 gene expression was localized in the developing procambium in embryos and tracheary elements in seedlings. Conclusions: Contrary to previous views, our results demonstrate that SPMS activity is not a novel feature developed solely in the angiosperm lineage of seed plants but also exists as a secondary property in the Scots pine SPDS enzyme. The discovery of bifunctional SPDS from an evolutionarily old conifer reveals the missing link in the evolution of the polyamine biosynthesis pathway. The finding emphasizes the importance of pre-existing secondary functions in the evolution of new enzyme activities via gene duplication. Our results also associate PsACL5 with the development of vascular structures in Scots pine.


Assuntos
Evolução Biológica , Pinus sylvestris/metabolismo , Poliaminas/metabolismo , Sementes/metabolismo , Espermidina Sintase/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Hibridização In Situ , Redes e Vias Metabólicas , Pinus sylvestris/enzimologia , Pinus sylvestris/genética , Regiões Promotoras Genéticas/genética , Sementes/enzimologia , Espermidina Sintase/genética , Espermina/análogos & derivados , Espermina/metabolismo , Espermina Sintase/genética , Espermina Sintase/metabolismo
18.
J Biomol Struct Dyn ; 36(10): 2678-2693, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28797195

RESUMO

Visceral leishmaniasis caused by the protozoan Leishmania donovani is the most severe form of leishmaniasis and it is potentially lethal if untreated. Despite the availability of drugs for treating the disease, the current drug regime suffers from drawbacks like antibiotic resistance and toxicity. New drugs have to be discovered in order to overcome these limitations. Our aim is to identify natural compounds from plant sources as putative inhibitors considering the occurrence of structural diversity in plant sources. Spermidine Synthase (SpdS) was chosen as the target enzyme as it plays a vital role in growth, survival, and due to its contribution in virulence. Our initial investigation started with a literature survey in identifying natural compounds that showed antileishmanial activity. Subsequently, we identified two monoterpenoid compounds, namely Geraniol and Linalool, that were structurally analogous to one of the substrates (putrescine) of SpdS. In the present study, homology model of L. donovani SpdS was generated and the binding affinity of the identified compounds was analyzed and also compared with the putrescine through molecular docking and dynamic studies. The pharmacokinetic properties of the identified compounds were validated and the binding efficiency of these ligands over the original substrate has been demonstrated. Based on these studies, Geraniol and Linalool can be considered as lead molecules for future investigations targeting SpdS. This study further emphasizes the choice of natural compounds as a good source of therapeutic agents.


Assuntos
Produtos Biológicos/farmacologia , Inibidores Enzimáticos/farmacologia , Leishmania donovani/enzimologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Espermidina Sintase/antagonistas & inibidores , Sequência de Aminoácidos , Sítios de Ligação , Produtos Biológicos/química , Inibidores Enzimáticos/química , Leishmania donovani/química , Ligantes , Reprodutibilidade dos Testes , Espermidina Sintase/química , Espermidina Sintase/metabolismo , Especificidade por Substrato , Termodinâmica
19.
Methods Mol Biol ; 1694: 81-94, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29080158

RESUMO

Thermophiles are organisms that grow optimally at temperatures higher than 55 °C. They contain two types of unusual longer/branched-chain polyamines in addition to common polyamines such as spermidine and putrescine. These unusual polyamines contribute to the survival of hyperthermophiles at high temperatures. Recently, the novel aminopropyltransferase BpsA was found to be responsible for the biosynthesis of branched-chain polyamines in the hyperthermophilic archaeon Thermococcus kodakarensis, which contains N 4-bis(aminopropyl)spermidine as the major polyamine. This compound is synthesized by the sequential addition of decarboxylated S-adenosylmethionine (dcSAM) aminopropyl groups to spermidine via the bifunctional catalytic action of BpsA. In this chapter, methods for the extraction and identification of branched-chain polyamines are presented, along with methods for the production and characterization of recombinant T. kodakarensis BpsA as a model aminopropyltransferase.


Assuntos
Poliaminas/análise , Thermococcus/química , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Genes Arqueais , Estrutura Molecular , Filogenia , Poliaminas/química , Espermidina Sintase/metabolismo , Thermococcus/classificação , Thermococcus/genética , Thermococcus/metabolismo
20.
Mol Microbiol ; 106(5): 690-703, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28868744

RESUMO

The flagellar motor is an important virulence factor in infection by many bacterial pathogens. Motor function can be modulated by chemotactic proteins and recently appreciated proteins that are not part of the flagellar or chemotaxis systems. How these latter proteins affect flagellar activity is not fully understood. Here, we identified spermidine synthase SpeE as an interacting partner of switch protein FliM in Helicobacter pylori using pull-down assay and mass spectrometry. To understand how SpeE contributes to flagellar motility, a speE-null mutant was generated and its motility behavior was evaluated. We found that deletion of SpeE did not affect flagellar formation, but induced clockwise rotation bias. We further determined the crystal structure of the FliM-SpeE complex at 2.7 Å resolution. SpeE dimer binds to FliM with micromolar binding affinity, and their interaction is mediated through the ß1' and ß2' region of FliM middle domain. The FliM-SpeE binding interface partially overlaps with the FliM surface that interacts with FliG and is essential for proper flagellar rotational switching. By a combination of protein sequence conservation analysis and pull-down assays using FliM and SpeE orthologues in E. coli, our data suggest that FliM-SpeE association is unique to Helicobacter species.


Assuntos
Proteínas de Bactérias/metabolismo , Espermidina Sintase/metabolismo , Sítios de Ligação , Movimento Celular , Escherichia coli/metabolismo , Flagelos/metabolismo , Helicobacter pylori/metabolismo , Espectrometria de Massas , Proteínas de Membrana/metabolismo , Modelos Moleculares , Ligação Proteica , Elementos Estruturais de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...