Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.585
Filtrar
1.
Sci Rep ; 14(1): 16452, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013958

RESUMO

The recent surge in the plant-based protein market has resulted in high demands for soybean genotypes with improved grain yield, seed protein and oil content, and essential amino acids (EAAs). Given the quantitative nature of these traits, complex interactions among seed components, as well as between seed components and environmental factors and management practices, add complexity to the development of desired genotypes. In this study, the across-environment seed protein stability of 449 genetically diverse plant introductions was assessed, revealing that genotypes may display varying sensitivities to such environmental stimuli. The EAAs valine, phenylalanine, and threonine showed the highest variable importance toward the variation in stability, while both seed protein and oil contents were among the explanatory variables with the lowest importance. In addition, 56 single nucleotide polymorphism (SNP) markers were significantly associated with various seed components. Despite the strong phenotypic Pearson's correlation observed among most seed components, many independent genomic regions associated with one or few seed components were identified. These findings provide insights for improving the seed concentration of specific EAAs and reducing the negative correlation between seed protein and oil contents.


Assuntos
Glycine max , Polimorfismo de Nucleotídeo Único , Sementes , Glycine max/genética , Glycine max/metabolismo , Glycine max/crescimento & desenvolvimento , Sementes/genética , Sementes/metabolismo , Genótipo , Estabilidade Proteica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fenótipo , Locos de Características Quantitativas , Interação Gene-Ambiente , Aminoácidos Essenciais/genética , Aminoácidos Essenciais/análise , Aminoácidos Essenciais/metabolismo , Proteínas de Armazenamento de Sementes/genética , Proteínas de Armazenamento de Sementes/metabolismo
2.
Oncol Res ; 32(7): 1185-1195, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948024

RESUMO

Background: Long non-coding RNAs are important regulators in cancer biology and function either as tumor suppressors or as oncogenes. Their dysregulation has been closely associated with tumorigenesis. LINC00265 is upregulated in lung adenocarcinoma and is a prognostic biomarker of this cancer. However, the mechanism underlying its function in cancer progression remains poorly understood. Methods: Here, the regulatory role of LINC00265 in lung adenocarcinoma was examined using lung cancer cell lines, clinical samples, and xenografts. Results: We found that high levels of LINC00265 expression were associated with shorter overall survival rate of patients, whereas knockdown of LINC00265 inhibited proliferation of cancer cell lines and tumor growth in xenografts. Western blot and flow cytometry analyses indicated that silencing of LINC00265 induced autophagy and apoptosis. Moreover, we showed that LINC00265 interacted with and stabilized the transcriptional co-repressor Switch-independent 3a (SIN3A), which is a scaffold protein functioning either as a tumor repressor or as an oncogene in a context-dependent manner. Silencing of SIN3A also reduced proliferation of lung cancer cells, which was correlated with the induction of autophagy. These observations raise the possibility that LINC00265 functions to promote the oncogenic activity of SIN3A in lung adenocarcinoma. Conclusions: Our findings thus identify SIN3A as a LINC00265-associated protein and should help to understand the mechanism underlying LINC00265-mediated oncogenesis.


Assuntos
Apoptose , Autofagia , Proliferação de Células , Neoplasias Pulmonares , RNA Longo não Codificante , Complexo Correpressor Histona Desacetilase e Sin3 , Humanos , RNA Longo não Codificante/genética , Autofagia/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Apoptose/genética , Animais , Camundongos , Complexo Correpressor Histona Desacetilase e Sin3/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Regulação Neoplásica da Expressão Gênica , Estabilidade Proteica , Inativação Gênica , Oncogenes , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
PLoS One ; 19(7): e0306856, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38991013

RESUMO

Site-specific modifications of aspartate residues spontaneously occur in crystallin, the major protein in the lens. One of the primary modification sites is Asp151 in αA-crystallin. Isomerization and racemization alter the crystallin backbone structure, reducing its stability by inducing abnormal crystallin-crystallin interactions and ultimately leading to the insolubilization of crystallin complexes. These changes are considered significant factors in the formation of senile cataracts. However, the mechanisms driving spontaneous isomerization and racemization have not been experimentally demonstrated. In this study, we generated αA-crystallins with different homo-oligomeric sizes and/or containing an asparagine residue at position 151, which is more prone to isomerization and racemization. We characterized their structure, hydrophobicity, chaperone-like function, and heat stability, and examined their propensity for isomerization and racemization. The results show that the two differently sized αA-crystallin variants possessed similar secondary structures but exhibited different chaperone-like functions depending on their oligomeric sizes. The rate of isomerization and racemization of Asp151, as assessed by the deamidation of Asn151, was also found to depend on the oligomeric sizes of αA-crystallin. The predominant isomerization product via deamidation of Asn151 in the different-sized αA-crystallin variants was L-ß-Asp in vitro, while various modifications occurred around Asp151 in vivo. The disparity between the findings of this in vitro study and in vivo studies suggests that the isomerization of Asp151 in vivo may be more complex than what occurs in vitro.


Assuntos
Ácido Aspártico , Multimerização Proteica , Cadeia A de alfa-Cristalina , Humanos , Isomerismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Cadeia A de alfa-Cristalina/química , Cadeia A de alfa-Cristalina/metabolismo , Cadeia A de alfa-Cristalina/genética , Interações Hidrofóbicas e Hidrofílicas , Estabilidade Proteica , Estrutura Secundária de Proteína , Asparagina/química , Asparagina/metabolismo
4.
Sci Rep ; 14(1): 16043, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992051

RESUMO

FtsZ is highly conserved among bacteria and plays an essential role in bacterial cell division. The tense conformation of FtsZ bound to GTP assembles into a straight filament via head-to-tail associations, and then the upper subunit of FtsZ hydrolyzes GTP bound to the lower FtsZ subunit. The subunit with GDP bound disassembles accompanied by a conformational change in the subunit from the tense to relaxed conformation. Although crystal structures of FtsZ derived from several bacterial species have been determined, the conformational change from the relaxed to tense conformation has only been observed in Staphylococcus aureus FtsZ (SaFtsZ). Recent cryo-electron microscopy analyses revealed the three-dimensional reconstruction of the protofilament, in which tense molecules assemble via head-to-tail associations. However, the lower resolution of the protofilament suggested that the flexibility of the FtsZ protomers between the relaxed and tense conformations caused them to form in less-strict alignments. Furthermore, this flexibility may also prevent FtsZs other than SaFtsZ from crystalizing in the tense conformation, suggesting that the flexibility of bacterial FtsZs differs. In this study, molecular dynamics simulations were performed using SaFtsZ and Bacillus subtilis FtsZ in several situations, which suggested that different features of the FtsZs affect their conformational stability.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Proteínas do Citoesqueleto , Simulação de Dinâmica Molecular , Conformação Proteica , Staphylococcus aureus , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/química , Bacillus subtilis/metabolismo , Bacillus subtilis/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus aureus/química , Estabilidade Proteica , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/química
5.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39000450

RESUMO

GdmCl and NaSCN are two strong chaotropic salts commonly used in protein folding and stability studies, but their microscopic mechanisms remain enigmatic. Here, by CD and NMR, we investigated their effects on conformations, stability, binding and backbone dynamics on ps-ns and µs-ms time scales of a 39-residue but well-folded WW4 domain at salt concentrations ≤200 mM. Up to 200 mM, both denaturants did not alter the tertiary packing of WW4, but GdmCl exerted more severe destabilization than NaSCN. Intriguingly, GdmCl had only weak binding to amide protons, while NaSCN showed extensive binding to both hydrophobic side chains and amide protons. Neither denaturant significantly affected the overall ps-ns backbone dynamics, but they distinctively altered µs-ms backbone dynamics. This study unveils that GdmCl and NaSCN destabilize a protein before the global unfolding occurs with differential binding properties and µs-ms backbone dynamics, implying the absence of a simple correlation between thermodynamic stability and backbone dynamics of WW4 at both ps-ns and µs-ms time scales.


Assuntos
Estabilidade Proteica , Espectroscopia de Ressonância Magnética/métodos , Termodinâmica , Dobramento de Proteína , Desnaturação Proteica , Domínios WW , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Simulação de Dinâmica Molecular
6.
Molecules ; 29(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38998901

RESUMO

Long-range HNCO NMR spectra for proteins show crosspeaks due to 1JNC', 2JNC', 3JNCγ, and h3JNC' couplings. The h3JNC' couplings are transmitted through hydrogen bonds and their sizes are correlated to hydrogen bond lengths. We collected long-range HNCO data at a series of temperatures for four protein structures. P22i and CUS-3i are six-stranded beta-barrel I-domains from phages P22 and CUS-3 that share less than 40% sequence identity. The cis and trans states of the C-terminal domain from pore-forming toxin hemolysin ΙΙ (HlyIIC) arise from the isomerization of a single G404-P405 peptide bond. For P22i and CUS-3i, hydrogen bonds detected by NMR agree with those observed in the corresponding domains from cryoEM structures of the two phages. Hydrogen bond lengths derived from the h3JNC' couplings, however, are poorly conserved between the distantly related CUS-3i and P22i domains and show differences even between the closely related cis and trans state structures of HlyIIC. This is consistent with hydrogen bond lengths being determined by local differences in structure rather than the overall folding topology. With increasing temperature, hydrogen bonds typically show an apparent increase in length that has been attributed to protein thermal expansion. Some hydrogen bonds are invariant with temperature, however, while others show apparent decreases in length, suggesting they become stabilized with increasing temperature. Considering the data for the three proteins in this study and previously published data for ubiquitin and GB3, lowered protein folding stability and cooperativity corresponds with a larger range of temperature responses for hydrogen bonds. This suggests a partial uncoupling of hydrogen bond energetics from global unfolding cooperativity as protein stability decreases.


Assuntos
Ligação de Hidrogênio , Temperatura , Ressonância Magnética Nuclear Biomolecular , Modelos Moleculares , Estabilidade Proteica , Conformação Proteica , Proteínas/química , Espectroscopia de Ressonância Magnética/métodos , Proteínas Hemolisinas/química
7.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38999969

RESUMO

Secretory IgA (SIgA) presents a promising avenue for mucosal immunotherapy yet faces challenges in expression, purification, and stability. IgA exists in two primary isotypes, IgA1 and IgA2, with IgA2 further subdivided into two common allotypes: IgA2m(1) and IgA2m(2). The major differences between IgA1 and IgA2 are located in the hinge region, with IgA1 featuring a 13-amino acid elongation that includes up to six O-glycosylation sites. Furthermore, the IgA2m(1) allotype lacks a covalent disulfide bond between heavy and light chains, which is present in IgA1 and IgA2m(2). While IgA1 demonstrates superior epitope binding and pathogen neutralization, IgA2 exhibits enhanced effector functions and stability against mucosal bacterial degradation. However, the noncovalent linkage in the IgA2m(1) allotype raises production and stability challenges. The introduction of distinct single mutations aims to facilitate an alternate disulfide bond formation to mitigate these challenges. We compare four different IgA2 versions with IgA1 to further develop secretory IgA antibodies against SARS-CoV-2 for topical delivery to mucosal surfaces. Our results indicate significantly improved expression levels and assembly efficacy of SIgA2 (P221R) in Nicotiana benthamiana. Moreover, engineered SIgA2 displays heightened thermal stability under physiological as well as acidic conditions and can be aerosolized using a mesh nebulizer. In summary, our study elucidates the benefits of stability-enhancing mutations in overcoming hurdles associated with SIgA expression and stability.


Assuntos
Imunoglobulina A Secretora , Estabilidade Proteica , Proteínas Recombinantes , SARS-CoV-2 , Imunoglobulina A Secretora/metabolismo , Imunoglobulina A Secretora/imunologia , Proteínas Recombinantes/genética , Humanos , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Nicotiana/genética , Nicotiana/metabolismo , Engenharia de Proteínas/métodos , COVID-19/imunologia , COVID-19/virologia
8.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38999987

RESUMO

The actin cytoskeleton is one of the most important players in cell motility, adhesion, division, and functioning. The regulation of specific microfilament formation largely determines cellular functions. The main actin-binding protein in animal cells is tropomyosin (Tpm). The unique structural and functional diversity of microfilaments is achieved through the diversity of Tpm isoforms. In our work, we studied the properties of the cytoplasmic isoforms Tpm1.8 and Tpm1.9. The results showed that these isoforms are highly thermostable and differ in the stability of their central and C-terminal fragments. The properties of these isoforms were largely determined by the 6th exons. Thus, the strength of the end-to-end interactions, as well as the affinity of the Tpm molecule for F-actin, differed between the Tpm1.8 and Tpm1.9 isoforms. They were determined by whether an alternative internal exon, 6a or 6b, was included in the Tpm isoform structure. The strong interactions of the Tpm1.8 and Tpm1.9 isoforms with F-actin led to the formation of rigid actin filaments, the stiffness of which was measured using an optical trap. It is quite possible that the structural and functional features of the Tpm isoforms largely determine the appearance of these isoforms in the rigid actin structures of the cell cortex.


Assuntos
Citoesqueleto de Actina , Actinas , Isoformas de Proteínas , Tropomiosina , Tropomiosina/metabolismo , Tropomiosina/química , Tropomiosina/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Citoesqueleto de Actina/metabolismo , Animais , Actinas/metabolismo , Actinas/química , Citoplasma/metabolismo , Humanos , Éxons , Ligação Proteica , Estabilidade Proteica
9.
Protein Expr Purif ; 222: 106542, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38969281

RESUMO

Human ZC3H11A is an RNA-binding zinc finger protein involved in mRNA export and required for the efficient growth of human nuclear replicating viruses. Its biochemical properties are largely unknown so our goal has been to produce the protein in a pure and stable form suitable for its characterization. This has been challenging since the protein is large (810 amino acids) and with only the N-terminal zinc finger domain (amino acids 1-86) being well structured, the remainder is intrinsically disordered. Our production strategies have encompassed recombinant expression of full-length, truncated and mutated ZC3H11A variants with varying purification tags and fusion proteins in several expression systems, with or without co-expression of chaperones and putative interaction partners. A range of purification schemes have been explored. Initially, only truncated ZC3H11A encompassing the zinc finger domain could successfully be produced in a stable form. It required recombinant expression in insect cells since expression in E. coli gave a protein that aggregated. To reduce problematic nucleic acid contaminations, Cys8, located in one of the zinc fingers, was substituted by Ala and Ser. Interestingly, this did not affect nucleic acid binding, but the full-length protein was stabilised while the truncated version was insoluble. Ultimately, we discovered that when using alkaline buffers (pH 9) for purification, full-length ZC3H11A expressed in Sf9 insect cells was obtained in a stable and >90 % pure form, and as a mixture of monomers, dimers, tetramers and hexamers. Many of the challenges experienced are consistent with its predicted structure and unusual charge distribution.


Assuntos
Escherichia coli , Proteínas de Ligação a RNA , Humanos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , Animais , Dedos de Zinco , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Células Sf9 , Estabilidade Proteica , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/isolamento & purificação , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/biossíntese
10.
Sci Rep ; 14(1): 16092, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997408

RESUMO

Thermally stable full-length scorpion toxin peptides and partially degraded peptides with complete disulfide bond pairing are valuable natural peptide resources in traditional Chinese scorpion medicinal material. However, their pharmacological activities are largely unknown. This study discovered BmKcug1a-P1, a novel N-terminal degraded peptide, in this medicinal material. BmKcug1a-P1 inhibited hKv1.2 and hKv1.3 potassium channels with IC50 values of 2.12 ± 0.27 µM and 1.54 ± 0.28 µM, respectively. To investigate the influence of N-terminal amino acid loss on the potassium channel inhibiting activities, three analogs (i.e., full-length BmKcug1a, BmKcug1a-P1-D2 and BmKcug1a-P1-D4) of BmKcug1a-P1 were prepared, and their potassium channel inhibiting activities on hKv1.3 channel were verified by whole-cell patch clamp technique. Interestingly, the potassium channel inhibiting activity of full-length BmKcug1a on the hKv1.3 channel was significantly improved compared to its N-terminal degraded form (BmKcug1a-P1), while the activities of two truncated analogs (i.e., BmKcug1a-P1-D2 and BmKcug1a-P1-D4) were similar to that of BmKcug1a-P1. Extensive alanine-scanning experiments identified the bonding interface (including two key functional residues, Asn30 and Arg34) of BmKcug1a-P1. Structural and functional dissection further elucidated whether N-terminal residues of the peptide are located at the bonding interface is important in determining whether the N-terminus significantly influences the potassium channel inhibiting activity of the peptide. Altogether, this research identified a novel N-terminal degraded active peptide, BmKcug1a-P1, from traditional Chinese scorpion medicinal material and elucidated how the N-terminus of peptides influences their potassium channel inhibiting activity, contributing to the functional identification and molecular truncation optimization of full-length and degraded peptides from traditional Chinese scorpion medicinal material Buthus martensii Karsch.


Assuntos
Peptídeos , Bloqueadores dos Canais de Potássio , Venenos de Escorpião , Escorpiões , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/farmacologia , Escorpiões/química , Venenos de Escorpião/química , Venenos de Escorpião/farmacologia , Animais , Peptídeos/química , Peptídeos/farmacologia , Humanos , Canal de Potássio Kv1.3/antagonistas & inibidores , Canal de Potássio Kv1.3/metabolismo , Canal de Potássio Kv1.3/química , Proteólise , Canal de Potássio Kv1.2/metabolismo , Canal de Potássio Kv1.2/antagonistas & inibidores , Canal de Potássio Kv1.2/química , Estabilidade Proteica , Sequência de Aminoácidos , Técnicas de Patch-Clamp , Células HEK293
11.
Sci Adv ; 10(28): eadk6580, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38985864

RESUMO

The functional properties of RNA binding proteins (RBPs) require allosteric regulation through interdomain communication. Despite the importance of allostery to biological regulation, only a few studies have been conducted to describe the biophysical nature by which interdomain communication manifests in RBPs. Here, we show for hnRNP A1 that interdomain communication is vital for the unique stability of its amino-terminal domain, which consists of two RNA recognition motifs (RRMs). These RRMs exhibit drastically different stability under pressure. RRM2 unfolds as an individual domain but remains stable when appended to RRM1. Variants that disrupt interdomain communication between the tandem RRMs show a significant decrease in stability. Carrying these mutations over to the full-length protein for in vivo experiments revealed that the mutations affected the ability of the disordered carboxyl-terminal domain to engage in protein-protein interactions and influenced the protein's RNA binding capacity. Collectively, this work reveals that thermodynamic coupling between the tandem RRMs of hnRNP A1 accounts for its allosteric regulatory functions.


Assuntos
Ribonucleoproteína Nuclear Heterogênea A1 , Ligação Proteica , Motivo de Reconhecimento de RNA , RNA , Termodinâmica , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/genética , Ribonucleoproteína Nuclear Heterogênea A1/química , RNA/metabolismo , RNA/química , RNA/genética , Humanos , Mutação , Regulação Alostérica , Domínios Proteicos , Modelos Moleculares , Estabilidade Proteica
12.
Cell Death Dis ; 15(7): 502, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003255

RESUMO

Dysfunction of the ubiquitin-proteasome system (UPS) is involved in the pathogenesis of various malignancies including colorectal cancer (CRC). Ubiquitin domain containing 1 (UBTD1), a ubiquitin-like protein, regulates UPS-mediated protein degradation and tumor progression in some cancer types. However, the biological function and mechanism of UBTD1 are far from being well elucidated, and its role in CRC has not been explored yet. In our study, we analyzed CRC patients' clinical information and UBTD1 expression data, and found that the expression of UBTD1 in cancer tissue was significantly higher than that in adjacent normal tissue. Higher UBTD1 expression was significantly associated with poorer survival and more lymph node metastasis. Overexpression of UBTD1 could facilitate, while knockdown could inhibit CRC cell proliferation and migration, respectively. RNA-seq and proteomics indicated that c-Myc is an important downstream target of UBTD1. Metabolomics showed the products of the glycolysis pathway were significantly increased in UBTD1 overexpression cells. In vitro, we verified UBTD1 upregulating c-Myc protein and promoting CRC cell proliferation and migration via regulating c-Myc. UBTD1 promoted CRC cells' glycolysis, evidenced by the increased lactate production and glucose uptake following UBTD1 overexpression. Mechanistically, UBTD1 prolonged the half-life of the c-Myc protein by binding to E3 ligase ß-transducin repeat-containing protein (ß-TrCP), thereby upregulated the expression of glycolysis rate-limiting enzyme hexokinase II (HK2), and enhanced glycolysis and promoted CRC progression. In conclusion, our study revealed that UBTD1 promotes CRC progression by upregulating glycolysis via the ß-TrCP/c-Myc/HK2 pathway, suggesting its potential as a prognostic biomarker and therapeutic target in CRC.


Assuntos
Proliferação de Células , Neoplasias Colorretais , Progressão da Doença , Glicólise , Proteínas Proto-Oncogênicas c-myc , Regulação para Cima , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Ubiquitinas/metabolismo , Ubiquitinas/genética , Masculino , Feminino , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Pessoa de Meia-Idade , Camundongos Nus , Animais , Hexoquinase/metabolismo , Hexoquinase/genética , Camundongos , Estabilidade Proteica
13.
J Agric Food Chem ; 72(28): 15920-15932, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38973096

RESUMO

The objective of this work was to investigate the effect of succinylation treatment on the physicochemical properties of black bean proteins (BBPI), and the relationship mechanism between BBPI structure and gel properties was further analyzed. The results demonstrated that the covalent formation of higher-molecular-weight complexes with BBPI could be achieved by succinic anhydride (SA). With the addition of SA at 10% (v/v), the acylation of proteins amounted to 92.53 ± 1.10%, at which point there was a minimized particle size of the system (300.90 ± 9.57 nm). Meanwhile, the protein structure was stretched with an irregular curl content of 34.30% and the greatest processable flexibility (0.381 ± 0.004). The dense three-dimensional mesh structure of the hydrogel as revealed by scanning electron microscopy was the fundamental prerequisite for the ability to resist external extrusion. The thermally induced hydrogels of acylated proteins with 10% (v/v) addition of SA showed excellent gel elastic behavior (1.44 ± 0.002 nm) and support capacity. Correlation analysis showed that the hydrogel strength and stability of hydrogels were closely related to the changes in protein conformation. This study provides theoretical guidance for the discovery of flexible proteins and their application in hydrogels.


Assuntos
Proteínas de Plantas , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Anidridos Succínicos/química , Acilação , Hidrogéis/química , Géis/química , Phaseolus/química , Conformação Proteica , Estabilidade Proteica
15.
Sci Rep ; 14(1): 15091, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956220

RESUMO

Fibulin-2 is a multidomain, disulfide-rich, homodimeric protein which belongs to a broader extracellular matrix family. It plays an important role in the development of elastic fiber structures. Malfunction of fibulin due to mutation or poor expression can result in a variety of diseases including synpolydactyly, limb abnormalities, eye disorders leading to blindness, cardiovascular diseases and cancer. Traditionally, fibulins have either been produced in mammalian cell systems or were isolated from the extracellular matrix, a procedure that results in poor availability for structural and functional studies. Here, we produced seven fibulin-2 constructs covering 62% of the mature protein (749 out of 1195 residues) using a prokaryotic expression system. Biophysical studies confirm that the purified constructs are folded and that the presence of disulfide bonds within the constructs makes them extremely thermostable. In addition, we solved the first crystal structure for any fibulin isoform, a structure corresponding to the previously suggested three motifs related to anaphylatoxin. The structure reveals that the three anaphylatoxins moieties form a single-domain structure.


Assuntos
Proteínas de Ligação ao Cálcio , Humanos , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/genética , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Estabilidade Proteica , Domínios Proteicos
16.
Nature ; 631(8021): 544-548, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39020036

RESUMO

A long-standing challenge is how to formulate proteins and vaccines to retain function during storage and transport and to remove the burdens of cold-chain management. Any solution must be practical to use, with the protein being released or applied using clinically relevant triggers. Advanced biologic therapies are distributed cold, using substantial energy, limiting equitable distribution in low-resource countries and placing responsibility on the user for correct storage and handling. Cold-chain management is the best solution at present for protein transport but requires substantial infrastructure and energy. For example, in research laboratories, a single freezer at -80 °C consumes as much energy per day as a small household1. Of biological (protein or cell) therapies and all vaccines, 75% require cold-chain management; the cost of cold-chain management in clinical trials has increased by about 20% since 2015, reflecting this complexity. Bespoke formulations and excipients are now required, with trehalose2, sucrose or polymers3 widely used, which stabilize proteins by replacing surface water molecules and thereby make denaturation thermodynamically less likely; this has enabled both freeze-dried proteins and frozen proteins. For example, the human papilloma virus vaccine requires aluminium salt adjuvants to function, but these render it unstable against freeze-thaw4, leading to a very complex and expensive supply chain. Other ideas involve ensilication5 and chemical modification of proteins6. In short, protein stabilization is a challenge with no universal solution7,8. Here we designed a stiff hydrogel that stabilizes proteins against thermal denaturation even at 50 °C, and that can, unlike present technologies, deliver pure, excipient-free protein by mechanically releasing it from a syringe. Macromolecules can be loaded at up to 10 wt% without affecting the mechanism of release. This unique stabilization and excipient-free release synergy offers a practical, scalable and versatile solution to enable the low-cost, cold-chain-free and equitable delivery of therapies worldwide.


Assuntos
Excipientes , Excipientes/química , Proteínas/química , Proteínas/metabolismo , Humanos , Estabilidade Proteica , Liofilização , Hidrogéis/química , Géis/química , Trealose/química
17.
Nat Commun ; 15(1): 5583, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961085

RESUMO

The function of many bacterial processes depends on the formation of functional membrane microdomains (FMMs), which resemble the lipid rafts of eukaryotic cells. However, the mechanism and the biological function of these membrane microdomains remain unclear. Here, we show that FMMs in the pathogen methicillin-resistant Staphylococcus aureus (MRSA) are dedicated to confining and stabilizing proteins unfolded due to cellular stress. The FMM scaffold protein flotillin forms a clamp-shaped oligomer that holds unfolded proteins, stabilizing them and favoring their correct folding. This process does not impose a direct energy cost on the cell and is crucial to survival of ATP-depleted bacteria, and thus to pathogenesis. Consequently, FMM disassembling causes the accumulation of unfolded proteins, which compromise MRSA viability during infection and cause penicillin re-sensitization due to PBP2a unfolding. Thus, our results indicate that FMMs mediate ATP-independent stabilization of unfolded proteins, which is essential for bacterial viability during infection.


Assuntos
Proteínas de Bactérias , Microdomínios da Membrana , Proteínas de Membrana , Staphylococcus aureus Resistente à Meticilina , Proteínas de Membrana/metabolismo , Microdomínios da Membrana/metabolismo , Staphylococcus aureus Resistente à Meticilina/metabolismo , Proteínas de Bactérias/metabolismo , Desdobramento de Proteína , Trifosfato de Adenosina/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/química , Humanos , Estabilidade Proteica , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/metabolismo , Animais , Camundongos
18.
Protein Sci ; 33(8): e5120, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39022918

RESUMO

Deamidation frequently is invoked as an important driver of crystallin aggregation and cataract formation. Here, we characterized the structural and biophysical consequences of cumulative Asn to Asp changes in γD-crystallin. Using NMR spectroscopy, we demonstrate that N- or C-terminal domain-confined or fully Asn to Asp changed γD-crystallin exhibits essentially the same 1H-15N HSQC spectrum as the wild-type protein, implying that the overall structure is retained. Only a very small thermodynamic destabilization for the overall Asn to Asp γD-crystallin variants was noted by chaotropic unfolding, and assessment of the colloidal stability, by measuring diffusion interaction parameters, yielded no substantive differences in association propensities. Furthermore, using molecular dynamics simulations, no significant changes in dynamics for proteins with Asn to Asp or iso-Asp changes were detected. Our combined results demonstrate that substitution of all Asn by Asp residues, reflecting an extreme case of deamidation, did not affect the structure and biophysical properties of γD-crystallin. This suggests that these changes alone cannot be the major determinant in driving cataract formation.


Assuntos
Asparagina , Ácido Aspártico , Simulação de Dinâmica Molecular , Estabilidade Proteica , gama-Cristalinas , gama-Cristalinas/química , gama-Cristalinas/metabolismo , gama-Cristalinas/genética , Asparagina/química , Asparagina/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Humanos , Ressonância Magnética Nuclear Biomolecular , Termodinâmica , Catarata/metabolismo , Catarata/genética , Substituição de Aminoácidos
19.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928023

RESUMO

We analyzed the thermal stability of the BstHPr protein through the site-directed point mutation Lys62 replaced by Ala residue using molecular dynamics simulations at five different temperatures: 298, 333, 362, 400, and 450 K, for periods of 1 µs and in triplicate. The results from the mutant thermophilic BstHPrm protein were compared with those of the wild-type thermophilic BstHPr protein and the mesophilic BsHPr protein. Structural and molecular interaction analyses show that proteins lose stability as temperature increases. Mutant and wild-type proteins behave similarly up to 362 K. However, at 400 K the mutant protein shows greater structural instability, losing more buried hydrogen bonds and exposing more of its non-polar residues to the solvent. Therefore, in this study, we confirmed that the salt bridge network of the Glu3-Lys62-Glu36 triad, made up of the Glu3-Lys62 and Glu36-Lys62 ion pairs, provides thermal stability to the thermophilic BstHPr protein.


Assuntos
Simulação de Dinâmica Molecular , Estabilidade Proteica , Ligação de Hidrogênio , Temperatura , Mutação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Substituição de Aminoácidos , Conformação Proteica , Mutagênese Sítio-Dirigida
20.
Int J Mol Sci ; 25(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38928076

RESUMO

A high alkaline pH was previously demonstrated to enhance the extraction yield of brewer's spent grains (BSG) proteins. The effects of extraction pH beyond the extraction yield, however, has not been investigated before. The present work examined the effects of extraction pH (pH 8-12) on BSG proteins' (1) amino acid compositions, (2) secondary structures, (3) thermal stability, and (4) functionalities (i.e., water/oil holding capacity, emulsifying, and foaming properties). The ideal extraction temperature (60 °C) and BSG-to-solvent ratio (1:20 w/v) for maximizing the extraction yield were first determined to set the conditions for the pH effect study. The results showed that a higher extraction pH led to more balanced compositions between hydrophilic and hydrophobic amino acids and higher proportions of random coils structures indicating increased protein unfolding. This led to superior emulsifying properties of the extracted proteins with more than twofold improvement between pH 8 and a pH larger than 10. The extraction pH, nevertheless, had minimal impact on the water/oil holding capacity, foaming properties, and thermal denaturation propensity of the proteins. The present work demonstrated that a high alkaline pH at pH 11-12 was indeed ideal for both maximizing the extraction yield (37-46 wt.%) and proteins' functionalities.


Assuntos
Aminoácidos , Estabilidade Proteica , Estrutura Secundária de Proteína , Concentração de Íons de Hidrogênio , Aminoácidos/química , Aminoácidos/análise , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Grãos/química , Temperatura , Grão Comestível/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...