Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Am Heart Assoc ; 13(14): e034621, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38979789

RESUMO

BACKGROUND: The primary genetic risk factor for heritable pulmonary arterial hypertension is the presence of monoallelic mutations in the BMPR2 gene. The incomplete penetrance of BMPR2 mutations implies that additional triggers are necessary for pulmonary arterial hypertension occurrence. Pulmonary artery stenosis directly raises pulmonary artery pressure, and the redirection of blood flow to unobstructed arteries leads to endothelial dysfunction and vascular remodeling. We hypothesized that right pulmonary artery occlusion (RPAO) triggers pulmonary hypertension (PH) in rats with Bmpr2 mutations. METHODS AND RESULTS: Male and female rats with a 71 bp monoallelic deletion in exon 1 of Bmpr2 and their wild-type siblings underwent acute and chronic RPAO. They were subjected to full high-fidelity hemodynamic characterization. We also examined how chronic RPAO can mimic the pulmonary gene expression pattern associated with installed PH in unobstructed territories. RPAO induced precapillary PH in male and female rats, both acutely and chronically. Bmpr2 mutant and male rats manifested more severe PH compared with their counterparts. Although wild-type rats adapted to RPAO, Bmpr2 mutant rats experienced heightened mortality. RPAO induced a decline in cardiac contractility index, particularly pronounced in male Bmpr2 rats. Chronic RPAO resulted in elevated pulmonary IL-6 (interleukin-6) expression and decreased Gdf2 expression (corrected P value<0.05 and log2 fold change>1). In this context, male rats expressed higher pulmonary levels of endothelin-1 and IL-6 than females. CONCLUSIONS: Our novel 2-hit rat model presents a promising avenue to explore the adaptation of the right ventricle and pulmonary vasculature to PH, shedding light on pertinent sex- and gene-related effects.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II , Modelos Animais de Doenças , Hemodinâmica , Mutação , Artéria Pulmonar , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Feminino , Masculino , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/metabolismo , Ratos , Ratos Sprague-Dawley , Remodelação Vascular/genética , Hipertensão Arterial Pulmonar/fisiopatologia , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/etiologia , Estenose de Artéria Pulmonar/genética , Estenose de Artéria Pulmonar/fisiopatologia , Estenose de Artéria Pulmonar/metabolismo , Pressão Arterial , Contração Miocárdica/fisiologia
2.
Catheter Cardiovasc Interv ; 104(1): 61-70, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38736246

RESUMO

BACKGROUND: Stent implantation has become standard of care in older children and adults for treatment of branch pulmonary artery stenosis (BPAS) and coarctation aorta (CoAo). There are no stents approved or available for infants that have the potential to be dilated to adult diameters. The Minima stent was designed to fulfill this unmet need. METHODS: Multicenter, prospective, nonrandomized early feasibility study evaluating safety and effectiveness of the Minima stent for treatment of BPAS and CoAo. Primary endpoints included: (1) successful deployment across lesion, (2) stenosis relief defined by an increase in angiographic diameter of >50% and (3) freedom from stent explant, embolization or migration at 30 days and 6 months. RESULTS: Between 2/2022 and 5/2022, 10 pts underwent Minima stent implantation with a median age and weight of 9 months (4-43 months) and 7.6 kg (5.1-16.9 kg). Procedural success and predefined stenosis relief was achieved in all cases (CoAo [n = 4], BPAS [n = 6]). Adverse events occurred in 3 pts: transient diminished lower extremity pulse (n = 2), distal stent on-balloon displacement successfully managed in the catheterization suite (n = 1). There were no deaths or major adverse events. All patients were free from stent explant and migration at 30 days and 6 months with no evidence for significant restenosis at latest follow-up. CONCLUSIONS: Implantation of the Renata Minima stent was safe and effective for the treatment of BPAS and CoAo in this small cohort of infants and young children during early follow-up. Based on these early results, an expanded study with longer follow-up is warranted.


Assuntos
Coartação Aórtica , Estudos de Viabilidade , Desenho de Prótese , Estenose de Artéria Pulmonar , Stents , Humanos , Coartação Aórtica/diagnóstico por imagem , Coartação Aórtica/terapia , Coartação Aórtica/fisiopatologia , Lactente , Estudos Prospectivos , Masculino , Feminino , Resultado do Tratamento , Estenose de Artéria Pulmonar/diagnóstico por imagem , Estenose de Artéria Pulmonar/fisiopatologia , Estenose de Artéria Pulmonar/terapia , Estenose de Artéria Pulmonar/etiologia , Fatores de Tempo , Pré-Escolar , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/fisiopatologia , Fatores Etários , Angioplastia com Balão/instrumentação , Angioplastia com Balão/efeitos adversos
3.
Catheter Cardiovasc Interv ; 103(6): 943-948, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38577955

RESUMO

BACKGROUND: Unilateral pulmonary artery (PA) stenosis is common in the transposition of the great arteries (TGA) after arterial switch operation (ASO) but the effects on the right ventricle (RV) remain unclear. AIMS: To assess the effects of unilateral PA stenosis on RV afterload and function in pediatric patients with TGA-ASO. METHODS: In this retrospective study, eight TGA patients with unilateral PA stenosis underwent heart catheterization and cardiac magnetic resonance (CMR) imaging. RV pressures, RV afterload (arterial elastance [Ea]), PA compliance, RV contractility (end-systolic elastance [Ees]), RV-to-PA (RV-PA) coupling (Ees/Ea), and RV diastolic stiffness (end-diastolic elastance [Eed]) were analyzed and compared to normal values from the literature. RESULTS: In all TGA patients (mean age 12 ± 3 years), RV afterload (Ea) and RV pressures were increased whereas PA compliance was reduced. RV contractility (Ees) was decreased resulting in RV-PA uncoupling. RV diastolic stiffness (Eed) was increased. CMR-derived RV volumes, mass, and ejection fraction were preserved. CONCLUSION: Unilateral PA stenosis results in an increased RV afterload in TGA patients after ASO. RV remodeling and function remain within normal limits when analyzed by CMR but RV pressure-volume loop analysis shows impaired RV diastolic stiffness and RV contractility leading to RV-PA uncoupling.


Assuntos
Transposição das Grandes Artérias , Cateterismo Cardíaco , Artéria Pulmonar , Estenose de Artéria Pulmonar , Transposição dos Grandes Vasos , Função Ventricular Direita , Adolescente , Criança , Feminino , Humanos , Masculino , Transposição das Grandes Artérias/efeitos adversos , Complacência (Medida de Distensibilidade) , Contração Miocárdica , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/diagnóstico por imagem , Estudos Retrospectivos , Estenose de Artéria Pulmonar/fisiopatologia , Estenose de Artéria Pulmonar/diagnóstico por imagem , Estenose de Artéria Pulmonar/etiologia , Volume Sistólico , Transposição dos Grandes Vasos/fisiopatologia , Transposição dos Grandes Vasos/cirurgia , Transposição dos Grandes Vasos/complicações , Transposição dos Grandes Vasos/diagnóstico por imagem , Resultado do Tratamento , Rigidez Vascular , Disfunção Ventricular Direita/fisiopatologia , Disfunção Ventricular Direita/etiologia , Disfunção Ventricular Direita/diagnóstico por imagem , Pressão Ventricular
4.
Int J Numer Method Biomed Eng ; 40(5): e3820, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38544354

RESUMO

The substantial computational cost of high-fidelity models in numerical hemodynamics has, so far, relegated their use mainly to offline treatment planning. New breakthroughs in data-driven architectures and optimization techniques for fast surrogate modeling provide an exciting opportunity to overcome these limitations, enabling the use of such technology for time-critical decisions. We discuss an application to the repair of multiple stenosis in peripheral pulmonary artery disease through either transcatheter pulmonary artery rehabilitation or surgery, where it is of interest to achieve desired pressures and flows at specific locations in the pulmonary artery tree, while minimizing the risk for the patient. Since different degrees of success can be achieved in practice during treatment, we formulate the problem in probability, and solve it through a sample-based approach. We propose a new offline-online pipeline for probabilistic real-time treatment planning which combines offline assimilation of boundary conditions, model reduction, and training dataset generation with online estimation of marginal probabilities, possibly conditioned on the degree of augmentation observed in already repaired lesions. Moreover, we propose a new approach for the parametrization of arbitrarily shaped vascular repairs through iterative corrections of a zero-dimensional approximant. We demonstrate this pipeline for a diseased model of the pulmonary artery tree available through the Vascular Model Repository.


Assuntos
Estenose de Artéria Pulmonar , Humanos , Estenose de Artéria Pulmonar/cirurgia , Estenose de Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/fisiopatologia , Modelos Cardiovasculares , Hemodinâmica/fisiologia , Redes Neurais de Computação
5.
Circ Cardiovasc Imaging ; 14(7): e012484, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34182771
6.
Ann Biomed Eng ; 49(9): 2365-2376, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33948748

RESUMO

Branch pulmonary artery stenosis (PAS) commonly occurs in congenital heart disease and the pressure gradient over a stenotic PA lesion is an important marker for re-intervention. Image based computational fluid dynamics (CFD) has shown promise for non-invasively estimating pressure gradients but one limitation of CFD is long simulation times. The goal of this study was to compare accelerated predictions of PAS pressure gradients from 3D CFD with instantaneous adaptive mesh refinement (AMR) versus a recently developed 0D distributed lumped parameter CFD model. Predictions were then experimentally validated using a swine PAS model (n = 13). 3D CFD simulations with AMR improved efficiency by 5 times compared to fixed grid CFD simulations. 0D simulations further improved efficiency by 6 times compared to the 3D simulations with AMR. Both 0D and 3D simulations underestimated the pressure gradients measured by catheterization (- 1.87 ± 4.20 and - 1.78 ± 3.70 mmHg respectively). This was partially due to simulations neglecting the effects of a catheter in the stenosis. There was good agreement between 0D and 3D simulations (ICC 0.88 [0.66-0.96]) but only moderate agreement between simulations and experimental measurements (0D ICC 0.60 [0.11-0.86] and 3D ICC 0.66 [0.21-0.88]). Uncertainty assessment indicates that this was likely due to limited medical imaging resolution causing uncertainty in the segmented stenosis diameter in addition to uncertainty in the outlet resistances. This study showed that 0D lumped parameter models and 3D CFD with instantaneous AMR both improve the efficiency of hemodynamic modeling, but uncertainty from medical imaging resolution will limit the accuracy of pressure gradient estimations.


Assuntos
Modelos Cardiovasculares , Estenose de Artéria Pulmonar/fisiopatologia , Animais , Pressão Sanguínea , Simulação por Computador , Hidrodinâmica , Masculino , Reprodutibilidade dos Testes , Suínos
7.
Comput Math Methods Med ; 2021: 2618625, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868449

RESUMO

With the help of computational fluid dynamics (CFD), hemodynamics of the pulmonary arteries (PA's) can be studied in detail and varying physiological circumstances and treatment options can be simulated. This offers the opportunity to improve the diagnostics and treatment of PA stenosis in biventricular congenital heart disease (CHD). The aim of this review was to evaluate the methods of computational studies for PA's in biventricular CHD and the level of validation of the numerical outcomes. A total of 34 original research papers were selected. The literature showed a great variety in the used methods for (re) construction of the geometry as well as definition of the boundary conditions and numerical setup. There were 10 different methods identified to define inlet boundary conditions and 17 for outlet boundary conditions. A total of nine papers verified their CFD outcomes by comparing results to clinical data or by an experimental mock loop. The diversity in used methods and the low level of validation of the outcomes result in uncertainties regarding the reliability of numerical studies. This limits the current clinical utility of CFD for the study of PA flow in CHD. Standardization and validation of the methods are therefore recommended.


Assuntos
Cardiopatias Congênitas/fisiopatologia , Modelos Cardiovasculares , Artéria Pulmonar/fisiopatologia , Estenose de Artéria Pulmonar/fisiopatologia , Animais , Biologia Computacional , Simulação por Computador , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/patologia , Hemodinâmica/fisiologia , Humanos , Hidrodinâmica , Modelos Anatômicos , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/patologia , Estenose de Artéria Pulmonar/diagnóstico por imagem , Estenose de Artéria Pulmonar/patologia
8.
Transplantation ; 105(4): 711-722, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33760790

RESUMO

BACKGROUND: Pulmonary artery obstruction is an uncommon but significant complication after lung transplantation. Although numerous reports have documented its occurrence, the hemodynamic parameters associated with its presentation and diagnostic considerations remain ill-defined. This systematic review summarizes evidence in the literature surrounding pulmonary artery obstruction after lung transplantation surgery. METHODS: Databases were searched for all articles and abstracts reporting on pulmonary artery obstruction. Data collected included the number of patients studied, patient characteristics, incidences of pulmonary artery obstruction, and timing and imaging modality used for diagnosis. RESULTS: Thirty-four full-text citations were included in this review. The point prevalence of pulmonary artery obstruction was 3.66%. The peak pulmonary artery velocity associated with obstruction was found to be 2.60 ± 0.58 m/s. The diameter of the obstructed pulmonary artery predictive of poor outcomes was noted to be 0.78 ± 0.40 cm. The majority of diagnoses were made in the late postoperative period using pulmonary angiogram and transesophageal echocardiography. Overall, 76% of patients (47 of 62) required emergent procedural reintervention, and 23% of patients (14 of 62) diagnosed with pulmonary artery obstruction died during their hospital stay. CONCLUSIONS: This systematic review underscores the importance of identifying pulmonary artery obstruction immediately after lung transplant surgery. The clinical implications of these results warrant the development of identification and management strategies for early detection of irregularities in pulmonary artery anastomosis in lung transplant patients.


Assuntos
Transplante de Pulmão/efeitos adversos , Artéria Pulmonar/cirurgia , Estenose de Artéria Pulmonar/cirurgia , Adolescente , Adulto , Feminino , Hemodinâmica , Mortalidade Hospitalar , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/fisiopatologia , Circulação Pulmonar , Reoperação , Medição de Risco , Fatores de Risco , Estenose de Artéria Pulmonar/diagnóstico por imagem , Estenose de Artéria Pulmonar/mortalidade , Estenose de Artéria Pulmonar/fisiopatologia , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
9.
J Cardiovasc Magn Reson ; 23(1): 13, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33627121

RESUMO

BACKGROUND: Branch pulmonary artery (PA) stenosis (PAS) commonly occurs in patients with congenital heart disease (CHD). Prior studies have documented technical success and clinical outcomes of PA stent interventions for PAS but the impact of PA stent interventions on ventricular function is unknown. The objective of this study was to utilize 4D flow cardiovascular magnetic resonance (CMR) to better understand the impact of PAS and PA stenting on ventricular contraction and ventricular flow in a swine model of unilateral branch PA stenosis. METHODS: 18 swine (4 sham, 4 untreated left PAS, 10 PAS stent intervention) underwent right heart catheterization and CMR at 20 weeks age (55 kg). CMR included ventricular strain analysis and 4D flow CMR. RESULTS: 4D flow CMR measured inefficient right ventricular (RV) and left ventricular (LV) flow patterns in the PAS group (RV non-dimensional (n.d.) vorticity: sham 82 ± 47, PAS 120 ± 47; LV n.d. vorticity: sham 57 ± 5, PAS 78 ± 15 p < 0.01) despite the PAS group having normal heart rate, ejection fraction and end-diastolic volume. The intervention group demonstrated increased ejection fraction that resulted in more efficient ventricular flow compared to untreated PAS (RV n.d. vorticity: 59 ± 12 p < 0.01; LV n.d. vorticity: 41 ± 7 p < 0.001). CONCLUSION: These results describe previously unknown consequences of PAS on ventricular function in an animal model of unilateral PA stenosis and show that PA stent interventions improve ventricular flow efficiency. This study also highlights the sensitivity of 4D flow CMR biomarkers to detect earlier ventricular dysfunction assisting in identification of patients who may benefit from PAS interventions.


Assuntos
Procedimentos Endovasculares/instrumentação , Artéria Pulmonar/fisiopatologia , Estenose de Artéria Pulmonar/terapia , Stents , Disfunção Ventricular Direita/terapia , Função Ventricular Esquerda , Função Ventricular Direita , Animais , Angiografia por Tomografia Computadorizada , Modelos Animais de Doenças , Imagem Cinética por Ressonância Magnética , Contração Miocárdica , Imagem de Perfusão do Miocárdio , Artéria Pulmonar/diagnóstico por imagem , Recuperação de Função Fisiológica , Estenose de Artéria Pulmonar/diagnóstico por imagem , Estenose de Artéria Pulmonar/fisiopatologia , Sus scrofa , Disfunção Ventricular Direita/diagnóstico por imagem , Disfunção Ventricular Direita/fisiopatologia
10.
Ann Biomed Eng ; 49(6): 1477-1492, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33398618

RESUMO

Branch pulmonary artery stenosis (PAS) commonly occurs in congenital heart disease and it has previously been hypothesized that in branch PAS the pulmonary arteries (PAs) remodel their lumen diameter to maintain constant wall shear stress (WSS). We quantified the longitudinal progression of PA WSS in a swine model of unilateral PAS and two different intervention time courses to test this hypothesis. To quantify WSS in the entire pulmonary tree we used 4D Flow MRI for the large-proximal PAs and a structured tree model for the small-distal PAs. Our results only partially supported the hypothesis that in branch PAS the PAs remodel their lumen diameter to maintain WSS homeostasis. Proximal PA WSS was similar between groups at the final study time-point but WSS of mid-sized (5 mm to 500 µm) PA segments was found to be different between the sham and LPAS groups. This suggests that WSS homeostasis may only be achieved for the large-proximal PAs. Additionally, our results do not show WSS homeostasis being achieved over shorter periods of time suggesting that any potential WSS dependent changes in PA lumen diameter were a long-term remodeling response rather than a short-term vasodilation response. Future studies should confirm if these findings hold true in humans and investigate the impacts of WSS at different levels of the pulmonary tree on growth.


Assuntos
Artéria Pulmonar/fisiopatologia , Estenose de Artéria Pulmonar/fisiopatologia , Stents , Animais , Imageamento por Ressonância Magnética/métodos , Masculino , Modelos Biológicos , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/cirurgia , Estenose de Artéria Pulmonar/diagnóstico por imagem , Estenose de Artéria Pulmonar/cirurgia , Estresse Mecânico , Suínos
11.
Crit Care Med ; 49(1): e1-e10, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33337748

RESUMO

OBJECTIVES: The objective of this study was to prospectively evaluate the ability of transthoracic echocardiography to assess pulmonary artery occlusion pressure in mechanically ventilated critically ill patients. DESIGN: In a prospective observational study. SETTING: Amiens University Hospital Medical ICU. PATIENTS: Fifty-three mechanically ventilated patients in sinus rhythm admitted to our ICU. INTERVENTION: Transthoracic echocardiography was performed simultaneously to pulmonary artery catheter. MEASUREMENTS AND MAIN RESULTS: Transmitral early velocity wave recorded using pulsed wave Doppler (E), late transmitral velocity wave recorded using pulsed wave Doppler (A), and deceleration time of E wave were recorded using pulsed Doppler as well as early mitral annulus velocity wave recorded using tissue Doppler imaging (E'). Pulmonary artery occlusion pressure was measured simultaneously using pulmonary artery catheter. There was a significant correlation between pulmonary artery occlusion pressure and lateral ratio between E wave and E' (E/E' ratio) (r = 0.35; p < 0.01), ratio between E wave and A wave (E/A ratio) (r = 0.41; p < 0.002), and deceleration time of E wave (r = -0.34; p < 0.02). E/E' greater than 15 was predictive of pulmonary artery occlusion pressure greater than or equal to 18 mm Hg with a sensitivity of 25% and a specificity of 95%, whereas E/E' less than 7 was predictive of pulmonary artery occlusion pressure less than 18 mm Hg with a sensitivity of 32% and a specificity of 81%. E/A greater than 1.8 yielded a sensitivity of 44% and a specificity of 95% to predict pulmonary artery occlusion pressure greater than or equal to 18 mm Hg, whereas E/A less than 0.7 was predictive of pulmonary artery occlusion pressure less than 18 mm Hg with a sensitivity of 19% and a specificity of 94%. A similar predictive capacity was observed when the analysis was confined to patients with EF less than 50%. A large proportion of E/E' measurements 32 (60%) were situated between the two cut-off values obtained by the receiver operating characteristic curves: E/E' greater than 15 and E/E' less than 7. CONCLUSIONS: In mechanically ventilated critically ill patients, Doppler transthoracic echocardiography indices are highly specific but not sensitive to estimate pulmonary artery occlusion pressure.


Assuntos
Ecocardiografia Doppler , Respiração Artificial , Estenose de Artéria Pulmonar/diagnóstico por imagem , Idoso , Pressão Sanguínea , Estado Terminal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/fisiopatologia , Respiração Artificial/efeitos adversos , Sensibilidade e Especificidade , Estenose de Artéria Pulmonar/fisiopatologia , Dispositivos de Acesso Vascular
12.
J Thorac Cardiovasc Surg ; 162(2): 372-380.e2, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33220959

RESUMO

OBJECTIVE: To characterize changes in Fontan conduit size over time and determine if cross-sectional area (CSA) affects cardiac output, pulmonary artery growth, and exercise capacity. METHODS: We conducted a retrospective cross-sectional study of patients with Fontan physiology who underwent cardiac magnetic resonance imaging or cardiac catheterization between January 2013 and October 2019. We collected Fontan and pulmonary artery measurements, hemodynamic data, and cardiopulmonary exercise test data. We identified 158 patients with an extracardiac Fontan. We measured minimum and mean Fontan conduit CSA and assessed whether these correlated with Nakata index, cardiac index, or exercise capacity. RESULTS: Minimum Fontan CSA decreased by a median of 33% (24%, 40%) during a mean follow-up of 9.6 years. Median percentage decrease in Fontan CSA did not differ among 16-, 18-, and 20-mm conduits (P = .29). There was a significant decrease in the minimum Fontan CSA (33% [25%, 41%]) starting less than 1-year post-Fontan. Median Nakata index was 177.6 mm2/m2 (149.1, 210.8) and was not associated with Fontan CSA/BSA (ρ = 0.09, P = .29). Fontan CSA/BSA was not associated with cardiac index (ρ = -0.003, P = .97). A larger Fontan CSA/BSA had a modest correlation with % predicted oxygen consumption (ρ = 0.31, P = .013). CONCLUSIONS: Fontan conduit CSA decreases as early as 6 months post-Fontan. The minimum Fontan CSA/BSA was not associated with cardiac index or pulmonary artery size but did correlate with % predicted peak oxygen consumption.


Assuntos
Técnica de Fontan/efeitos adversos , Cardiopatias Congênitas/cirurgia , Hemodinâmica , Artéria Pulmonar/cirurgia , Estenose de Artéria Pulmonar/etiologia , Adolescente , Fatores Etários , Cateterismo Cardíaco , Débito Cardíaco , Criança , Pré-Escolar , Estudos Transversais , Tolerância ao Exercício , Feminino , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/crescimento & desenvolvimento , Recuperação de Função Fisiológica , Estudos Retrospectivos , Fatores de Risco , Estenose de Artéria Pulmonar/diagnóstico por imagem , Estenose de Artéria Pulmonar/fisiopatologia , Fatores de Tempo , Resultado do Tratamento
13.
Int J Cardiovasc Imaging ; 37(2): 743-753, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33034866

RESUMO

Accurate pulmonary artery (PA) imaging is necessary for management of patients with complex congenital heart disease (CHD). The ability of newer imaging modalities such as 3D rotational angiography (3DRA) or phase-contrast magnetic resonance angiography (PC-MRA) to measure PA diameters has not been compared to established angiography techniques. Measurements of PA diameters (including PA stenosis and PA stents) from 3DRA and non-contrast-enhanced PC-MRA were compared to 2D catheter angiography (CA) and multi-slice computed tomography (MSCT) in a swine CHD model (n = 18). For all PA segments 3DRA had excellent agreement with CA and MSCT (ICC = 0.94[0.91-0.95] and 0.92[0.89-0.94]). 3DRA PA stenosis measures were similar to CA and MSCT and 3DRA was on average within 5% of 10.8 ± 1.3 mm PA stent diameters from CA and MSCT. For compliant PA segments, 3DRA was on average 3-12% less than CA (p < 0.05) and MSCT (p < 0.01) for 6-14 mm vessels. PC-MRA could not reliably visualize stents and distal PA vessels and only identified 34% of all assigned measurement sites. For measured PA segments, PC-MRA had good agreement to CA and MSCT (ICC = 0.87[0.77-0.92] and 0.83[0.72-0.90]) but PC-MRA overestimated stenosis diameters and underestimated compliant PA diameters. Excellent CA-MSCT PA diameter agreement (ICC = 0.95[0.93-0.96]) confirmed previous data in CHD patients. There was little bias in PA measurements between 3DRA, CA and MSCT in stenotic and stented PAs but 3DRA underestimates measurements of compliant PA regions. Accurate PC-MRA imaging was limited to unstented proximal PA anatomy.


Assuntos
Cateterismo de Swan-Ganz , Angiografia por Tomografia Computadorizada , Cardiopatias Congênitas/diagnóstico por imagem , Imageamento Tridimensional , Angiografia por Ressonância Magnética , Tomografia Computadorizada Multidetectores , Artéria Pulmonar/diagnóstico por imagem , Estenose de Artéria Pulmonar/diagnóstico por imagem , Animais , Modelos Animais de Doenças , Procedimentos Endovasculares/instrumentação , Cardiopatias Congênitas/fisiopatologia , Cardiopatias Congênitas/terapia , Masculino , Valor Preditivo dos Testes , Artéria Pulmonar/fisiopatologia , Reprodutibilidade dos Testes , Estenose de Artéria Pulmonar/fisiopatologia , Estenose de Artéria Pulmonar/terapia , Stents , Sus scrofa
14.
Arch Cardiovasc Dis ; 114(1): 33-40, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32917562

RESUMO

BACKGROUND: Branch pulmonary artery stenosis complicates the management of congenital heart diseases. Surgical branch pulmonary artery angioplasty is associated with a high reintervention rate. As an alternative, percutaneous or intraoperative branch pulmonary artery stents have been implanted to improve efficiency, but long-term evaluations are limited. AIM: To describe the long-term evolution of branch pulmonary artery stents. METHODS: We conducted a retrospective cohort study at Tours University Hospital. All stents implanted by surgery or catheterization in branch pulmonary arteries with a minimum follow-up of 12 months and at least one catheterization control were included. The primary endpoint combined cardiovascular mortality, surgical or percutaneous reintervention for stent complication or new stent implantation. RESULTS: Between 2007 and 2017, 76 stents in 51 patients were included (62 stents implanted by surgery, 14 by catheterization). At implantation, the patients' mean age and weight were 4.7years (interquartile range 4.2years) and 17.3kg (interquartile range 11.0kg), respectively. Mean branch pulmonary artery minimum diameter was 4.1±2.1mm (mean Z-score-4.9±2.9), and mean initial stent diameter was 9.1±3.1mm. During a follow-up of 5.3years (range 0-11.2 years), freedom from primary endpoint was 86.8% (95% confidence interval 79.6-94.8%) at 1 year, 71.5% (95% confidence interval 61.9-82.7%) at 5years and 69.6% (95% confidence interval 59.6-81.2%) at 10 years. We did not identify any factors associated with major adverse cardiovascular events. Among stents without major adverse cardiovascular events, the mean branch pulmonary artery diameter Z-score at last evaluation had increased by +4.8±3.2 compared with the initial diameter (P<0.001). After stent implantation, a median of 2 re-expansions were performed for each stent (range 0-7). CONCLUSIONS: Stent implantation should offer a good long-term solution for branch pulmonary artery stenosis, although iterative re-expansions are required.


Assuntos
Procedimentos Endovasculares/instrumentação , Artéria Pulmonar/cirurgia , Estenose de Artéria Pulmonar/terapia , Stents , Procedimentos Cirúrgicos Vasculares/instrumentação , Pré-Escolar , Procedimentos Endovasculares/efeitos adversos , Feminino , Humanos , Masculino , Desenho de Prótese , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/crescimento & desenvolvimento , Circulação Pulmonar , Estudos Retrospectivos , Estenose de Artéria Pulmonar/diagnóstico por imagem , Estenose de Artéria Pulmonar/fisiopatologia , Fatores de Tempo , Resultado do Tratamento , Grau de Desobstrução Vascular , Procedimentos Cirúrgicos Vasculares/efeitos adversos
15.
Trends Cardiovasc Med ; 31(3): 179-184, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32081565

RESUMO

Unilateral proximal pulmonary artery stenosis is often seen in the setting of postoperative congenital heart disease. Accurate assessment of the hemodynamic significance of such a lesion is important so as to determine "When to intervene?" A thorough evaluation should include symptom assessment, anatomical assessment through detailed imaging, functional assessment using differential pulmonary blood flow measurement and cardiopulmonary exercise testing. Symptoms of exertional dyspnea or intolerance, decreased pulmonary blood flow to stenosed lung, and abnormal exertional performance would be factors to pursue therapy in the setting of significant anatomical narrowing. Safe and effective therapy can be offered through transcatheter or surgical techniques and has been shown to improve exertional performance.


Assuntos
Angioplastia com Balão , Implante de Prótese Vascular , Tratamento Conservador , Artéria Pulmonar/cirurgia , Estenose de Artéria Pulmonar/terapia , Algoritmos , Angioplastia com Balão/efeitos adversos , Angioplastia com Balão/instrumentação , Implante de Prótese Vascular/efeitos adversos , Tratamento Conservador/efeitos adversos , Técnicas de Apoio para a Decisão , Humanos , Artéria Pulmonar/fisiopatologia , Circulação Pulmonar , Estenose de Artéria Pulmonar/diagnóstico , Estenose de Artéria Pulmonar/fisiopatologia , Stents , Resultado do Tratamento , Grau de Desobstrução Vascular
16.
Catheter Cardiovasc Interv ; 96(7): 1454-1464, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33063918

RESUMO

OBJECTIVES: Compare lung parenchymal and pulmonary artery (PA) growth and hemodynamics following early and delayed PA stent interventions for treatment of unilateral branch PA stenosis (PAS) in swine. BACKGROUND: How the pulmonary circulation remodels in response to different durations of hypoperfusion and how much growth and function can be recovered with catheter directed interventions at differing time periods of lung development is not understood. METHODS: A total of 18 swine were assigned to four groups: Sham (n = 4), untreated left PAS (LPAS) (n = 4), early intervention (EI) (n = 5), and delayed intervention (DI) (n = 5). EI had left pulmonary artery (LPA) stenting at 5 weeks (6 kg) with redilation at 10 weeks. DI had stenting at 10 weeks. All underwent right heart catheterization, computed tomography, magnetic resonance imaging, and histology at 20 weeks (55 kg). RESULTS: EI decreased the extent of histologic changes in the left lung as DI had marked alveolar septal and bronchovascular abnormalities (p = .05 and p < .05 vs. sham) that were less prevalent in EI. EI also increased left lung volumes and alveolar counts compared to DI. EI and DI equally restored LPA pulsatility, R heart pressures, and distal LPA growth. EI and DI improved, but did not normalize LPA stenosis diameter (LPA/DAo ratio: Sham 1.27 ± 0.11 mm/mm, DI 0.88 ± 0.10 mm/mm, EI 1.01 ± 0.09 mm/mm) and pulmonary blood flow distributions (LPA-flow%: Sham 52 ± 5%, LPAS 7 ± 2%, DI 44 ± 3%, EI 40 ± 2%). CONCLUSION: In this surgically created PAS model, EI was associated with improved lung parenchymal development compared to DI. Longer durations of L lung hypoperfusion did not detrimentally affect PA growth and R heart hemodynamics. Functional and anatomical discrepancies persist despite successful stent interventions that warrant additional investigation.


Assuntos
Procedimentos Endovasculares/instrumentação , Pulmão/irrigação sanguínea , Pulmão/crescimento & desenvolvimento , Artéria Pulmonar/crescimento & desenvolvimento , Estenose de Artéria Pulmonar/terapia , Stents , Tempo para o Tratamento , Animais , Modelos Animais de Doenças , Hemodinâmica , Masculino , Estenose de Artéria Pulmonar/diagnóstico por imagem , Estenose de Artéria Pulmonar/fisiopatologia , Sus scrofa , Fatores de Tempo
17.
J Cardiol ; 76(3): 280-286, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32402667

RESUMO

BACKGROUND: The arterial switch operation (ASO) for transposition of the great arteries has excellent survival, but a substantial number of patients suffer from a reduced exercise capacity. The goal of this study was to identify imaging parameters associated with a reduced exercise capacity in patients after ASO. METHODS: A retrospective analysis was performed of ASO patients who underwent cardiopulmonary exercise testing (CPET) between 2007 and 2017. Reduced exercise performance was defined as a reduced workload peak (Wpeak) with Z-score <-2 or a peak oxygen uptake indexed for weight (VO2peak/kg) with Z-score <-2. Data on echocardiography and cardiac magnetic resonance performed within 1 year of the CPET were collected for comparison. RESULTS: A total of 81 ASO patients (age 17±7 years) were included. Reduced exercise performance was found in 22 patients (27%) as expressed by either a reduced Wpeak and/or a reduced VO2peak/kg. Main pulmonary artery gradient and tricuspid regurgitation gradient by echocardiography were found to be associated with reduced Wpeak (p=0.031; p=0.020, respectively). The main pulmonary artery gradient and tricuspid regurgitation gradient by echocardiography were found to be associated with reduced VO2peak/kg (p=0.009; p=0.019, respectively). No left ventricular parameters were found to be associated with abnormal exercise performance. CONCLUSION: This study demonstrates that ASO patients frequently experience reduced exercise capacity. Echocardiographic evidence of main pulmonary artery stenosis and increased right ventricular pressure were associated with reduced exercise capacity, and are therefore key to monitor during serial follow-up of ASO patients.


Assuntos
Transposição das Grandes Artérias/efeitos adversos , Ecocardiografia , Tolerância ao Exercício/fisiologia , Angiografia por Ressonância Magnética , Transposição dos Grandes Vasos/fisiopatologia , Adolescente , Adulto , Teste de Esforço , Feminino , Humanos , Masculino , Complicações Pós-Operatórias/diagnóstico por imagem , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/fisiopatologia , Período Pós-Operatório , Estudos Retrospectivos , Estenose de Artéria Pulmonar/diagnóstico por imagem , Estenose de Artéria Pulmonar/etiologia , Estenose de Artéria Pulmonar/fisiopatologia , Fatores de Tempo , Transposição dos Grandes Vasos/cirurgia , Disfunção Ventricular Direita/diagnóstico por imagem , Disfunção Ventricular Direita/etiologia , Disfunção Ventricular Direita/fisiopatologia , Adulto Jovem
20.
Comput Math Methods Med ; 2020: 4720908, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32148557

RESUMO

The objective of this study was to compare the effects of different shunt diameters and pulmonary artery (PA) stenosis grades on the hemodynamics of central shunts to determine an optimal surgical plan and improve the long-term outcomes of the operation. A 3D anatomical model was reconstructed based on the patient's clinical CT data. 3D computational fluid dynamics models were built with varying degrees of stenosis (the stenosis ratio α was represented by the ratio of blood flow through the main pulmonary artery to cardiac output, ranging from 0 to 30%; the smaller the value of α, the more severe the pulmonary artery stenosis) and varying shunt diameters (3, 3.5, 4, 4.5, and 5 mm). Our results show that the asymmetry of pulmonary artery flow increased with increasing shunt diameter and α, which will be more conducive to the development of the left pulmonary artery. Additionally, the pulmonary-to-systemic flow ratio (Q P/Q S) increases with the shunt diameter and α, and all the values exceed 1. When the shunt diameter is 3 mm and α = 0%, Q P/Q S reaches the minimum value of 1.01, and the oxygen delivery reaches the maximum value of 205.19 ml/min. However, increasing shunt diameter and α is beneficial to reduced power loss and smoother PA flow. In short, for patients with severe PA stenosis (α is small), a larger-diameter shunt may be preferred. Conversely, when the degree of PA stenosis is moderate, a smaller shunt diameter can be considered.


Assuntos
Simulação por Computador , Imageamento Tridimensional , Artéria Pulmonar/diagnóstico por imagem , Estenose de Artéria Pulmonar/diagnóstico por imagem , Estenose de Artéria Pulmonar/fisiopatologia , Anastomose Cirúrgica , Pré-Escolar , Hemodinâmica , Humanos , Hidrodinâmica , Masculino , Modelos Cardiovasculares , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/cirurgia , Estudos Retrospectivos , Estenose de Artéria Pulmonar/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...