Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 473
Filtrar
1.
J Clin Invest ; 131(10)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33998600

RESUMO

Intercellular biomolecule transfer (ICBT) between malignant and benign cells is a major driver of tumor growth, resistance to anticancer therapies, and therapy-triggered metastatic disease. Here we characterized cholesterol 25-hydroxylase (CH25H) as a key genetic suppressor of ICBT between malignant and endothelial cells (ECs) and of ICBT-driven angiopoietin-2-dependent activation of ECs, stimulation of intratumoral angiogenesis, and tumor growth. Human CH25H was downregulated in the ECs from patients with colorectal cancer and the low levels of stromal CH25H were associated with a poor disease outcome. Knockout of endothelial CH25H stimulated angiogenesis and tumor growth in mice. Pharmacologic inhibition of ICBT by reserpine compensated for CH25H loss, elicited angiostatic effects (alone or combined with sunitinib), augmented the therapeutic effect of radio-/chemotherapy, and prevented metastatic disease induced by these regimens. We propose inhibiting ICBT to improve the overall efficacy of anticancer therapies and limit their prometastatic side effects.


Assuntos
Proteínas de Neoplasias , Neoplasias Experimentais/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Reserpina/farmacologia , Esteroide Hidroxilases , Sunitinibe/farmacologia , Animais , Células Endoteliais/enzimologia , Técnicas de Silenciamento de Genes , Células HCT116 , Humanos , Camundongos , Camundongos Knockout , Metástase Neoplásica , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais/enzimologia , Neoplasias Experimentais/genética , Neovascularização Patológica/enzimologia , Neovascularização Patológica/genética , Esteroide Hidroxilases/antagonistas & inibidores , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo
2.
Virus Res ; 295: 198306, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33476696

RESUMO

Cholesterol 25-hydroxylase (CH25 H) is a key enzyme regulating cholesterol metabolism and also acts as a broad antiviral host restriction factor. Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus that can cause vomiting, diarrhea, dehydration and even death in newborn piglets. In this study, we found that PDCoV infection significantly upregulated the expression of CH25H in IPI-FX cells, a cell line of porcine ileum epithelium. Overexpression of CH25H inhibited PDCoV replication, whereas CH25H silencing using RNA interference promoted PDCoV infection. Treatment with 25-hydroxycholesterol (25HC), the catalysate of cholesterol via CH25H, inhibited PDCoV proliferation by impairing viral invasion of IPI-FX cells. Furthermore, a mutant CH25H (CH25H-M) lacking hydroxylase activity also inhibited PDCoV infection to a lesser extent. Taken together, our data suggest that CH25H acts as a host restriction factor to inhibit the proliferation of PDCoV but this inhibitory effect is not completely dependent on its enzymatic activity.


Assuntos
Infecções por Coronavirus/prevenção & controle , Deltacoronavirus , Esteroide Hidroxilases/fisiologia , Internalização do Vírus , Animais , Células Cultivadas , Infecções por Coronavirus/enzimologia , Esteroide Hidroxilases/antagonistas & inibidores , Suínos , Replicação Viral
3.
J Biol Chem ; 296: 100223, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33449875

RESUMO

Cytochrome P450 (P450) 3A4 is the enzyme most involved in the metabolism of drugs and can also oxidize numerous steroids. This enzyme is also involved in one-half of pharmacokinetic drug-drug interactions, but details of the exact mechanisms of P450 3A4 inhibition are still unclear in many cases. Ketoconazole, clotrimazole, ritonavir, indinavir, and itraconazole are strong inhibitors; analysis of the kinetics of reversal of inhibition with the model substrate 7-benzoyl quinoline showed lag phases in several cases, consistent with multiple structures of P450 3A4 inhibitor complexes. Lags in the onset of inhibition were observed when inhibitors were added to P450 3A4 in 7-benzoyl quinoline O-debenzylation reactions, and similar patterns were observed for inhibition of testosterone 6ß-hydroxylation by ritonavir and indinavir. Upon mixing with inhibitors, P450 3A4 showed rapid binding as judged by a spectral shift with at least partial high-spin iron character, followed by a slower conversion to a low-spin iron-nitrogen complex. The changes were best described by two intermediate complexes, one being a partial high-spin form and the second another intermediate, with half-lives of seconds. The kinetics could be modeled in a system involving initial loose binding of inhibitor, followed by a slow step leading to a tighter complex on a multisecond time scale. Although some more complex possibilities cannot be dismissed, these results describe a system in which conformationally distinct forms of P450 3A4 bind inhibitors rapidly and two distinct P450-inhibitor complexes exist en route to the final enzyme-inhibitor complex with full inhibitory activity.


Assuntos
Clotrimazol/farmacologia , Inibidores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/química , Indinavir/farmacologia , Itraconazol/farmacologia , Cetoconazol/farmacologia , Ritonavir/farmacologia , Esteroide Hidroxilases/antagonistas & inibidores , Animais , Biocatálise , Clonagem Molecular , Clotrimazol/química , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/química , Ensaios Enzimáticos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Hidroxiquinolinas/síntese química , Hidroxiquinolinas/metabolismo , Indinavir/química , Itraconazol/química , Cetoconazol/química , Cinética , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ritonavir/química , Esteroide Hidroxilases/química , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo
4.
J Vet Pharmacol Ther ; 41(6): 815-824, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30113702

RESUMO

We previously showed that (+)-tramadol is metabolized in dog liver to (+)-M1 exclusively by CYP2D15 and to (+)-M2 by multiple CYPs, but primarily CYP2B11. However, (+)-M1 and (+)-M2 are further metabolized in dogs to (+)-M5, which is the major metabolite found in dog plasma and urine. In this study, we identified canine CYPs involved in metabolizing (+)-M1 and (+)-M2 using recombinant enzymes, untreated dog liver microsomes (DLMs), inhibitor-treated DLMs, and DLMs from CYP inducer-treated dogs. A canine P-glycoprotein expressing cell line was also used to evaluate whether (+)-tramadol, (+)-M1, (+)-M2, or (+)-M5 are substrates of canine P-glycoprotein, thereby limiting their distribution into the central nervous system. (+)-M5 was largely formed from (+)-M1 by recombinant CYP2C21 with minor contributions from CYP2C41 and CYP2B11. (+)-M5 formation in DLMs from (+)-M1 was potently inhibited by sulfaphenazole (CYP2C inhibitor) and chloramphenicol (CYP2B11 inhibitor) and was greatly increased in DLMs from phenobarbital-treated dogs. (+)-M5 was formed from (+)-M2 predominantly by CYP2D15. (+)-M5 formation from (+)-M1 in DLMs was potently inhibited by quinidine (CYP2D inhibitor) but had only a minor impact from all CYP inducers tested. Intrinsic clearance estimates showed over 50 times higher values for (+)-M5 formation from (+)-M2 compared with (+)-M1 in DLMs. This was largely attributed to the higher enzyme affinity (lower Km) for (+)-M2 compared with (+)-M1 as substrate. (+)-tramadol, (+)-M1, (+)-M2, or (+)-M5 were not p-glycoprotein substrates. This study provides a clearer picture of the role of individual CYPs in the complex metabolism of tramadol in dogs.


Assuntos
Analgésicos Opioides/metabolismo , Hidrocarboneto de Aril Hidroxilases/metabolismo , Família 2 do Citocromo P450/metabolismo , Cães/metabolismo , Microssomos Hepáticos/metabolismo , Esteroide Hidroxilases/metabolismo , Tramadol/metabolismo , Animais , Hidrocarboneto de Aril Hidroxilases/antagonistas & inibidores , Hidrocarboneto de Aril Hidroxilases/genética , Gatos/metabolismo , Família 2 do Citocromo P450/antagonistas & inibidores , Família 2 do Citocromo P450/genética , Inibidores Enzimáticos/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Especificidade da Espécie , Esteroide Hidroxilases/antagonistas & inibidores , Esteroide Hidroxilases/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-27515536

RESUMO

Cushing's Syndrome (CS) is associated with a specific spectrum of dementia-like symptoms, including psychiatric disorders, such as major depression, anxiety and mania, and neurocognitive alterations, like impairment of memory and concentration. This pattern of clinical complications, which significantly impair the health-related quality of life of CS patients, is sometimes referred to as "steroid dementia syndrome" (SDS). The SDS is the result of anatomical and functional anomalies in brain areas involved in the processing of emotion and cognition, which are only partially restored after the biochemical remission of the disease. Therefore, periodical neuropsychiatric evaluations are recommended in all CS patients, and a long-term follow-up is required after normalization of hypercortisolism. Recent evidences demonstrate that three classes of drugs (glucocorticoid receptor antagonists, steroidogenesis inhibitors, and pituitary tumor-targeted drugs), which are used for medical treatment of CS, can rapidly relief neuropsychiatric symptoms of SDS. Furthermore, several psychoactive medications have demonstrated effectiveness in the treatment of symptoms induced by the acute or chronic glucocosteroid administration. In this paper, a review of the current and future patents for the treatment and prevention of CS and SDS will be presented.


Assuntos
Encéfalo/metabolismo , Cognição , Síndrome de Cushing/complicações , Demência/etiologia , Emoções , Hidrocortisona/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Síndrome de Cushing/tratamento farmacológico , Síndrome de Cushing/metabolismo , Demência/tratamento farmacológico , Demência/metabolismo , Demência/psicologia , Descoberta de Drogas , Antagonistas de Hormônios/uso terapêutico , Humanos , Terapia de Alvo Molecular , Qualidade de Vida , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esteroide Hidroxilases/antagonistas & inibidores , Esteroide Hidroxilases/metabolismo , Inibidores da Síntese de Esteroides/uso terapêutico
6.
PLoS One ; 11(1): e0147179, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26812621

RESUMO

Nuclear hormone receptors have important roles in the regulation of metabolic and inflammatory pathways. The retinoid-related orphan receptor alpha (Rorα)-deficient staggerer (sg/sg) mice display several phenotypes indicative of aberrant lipid metabolism, including dyslipidemia, and increased susceptibility to atherosclerosis. In this study we demonstrate that macrophages from sg/sg mice have increased ability to accumulate lipids and accordingly exhibit larger lipid droplets (LD). We have previously shown that BMMs from sg/sg mice have significantly decreased expression of cholesterol 25-hydroxylase (Ch25h) mRNA, the enzyme that produces the oxysterol, 25-hydroxycholesterol (25HC), and now confirm this at the protein level. 25HC functions as an inverse agonist for RORα. siRNA knockdown of Ch25h in macrophages up-regulates Vldlr mRNA expression and causes increased accumulation of LDs. Treatment with physiological concentrations of 25HC in sg/sg macrophages restored lipid accumulation back to normal levels. Thus, 25HC and RORα signify a new pathway involved in the regulation of lipid homeostasis in macrophages, potentially via increased uptake of lipid which is suggested by mRNA expression changes in Vldlr and other related genes.


Assuntos
Hidroxicolesteróis/metabolismo , Gotículas Lipídicas/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Animais , Células da Medula Óssea/citologia , Células Cultivadas , Cromatografia em Camada Fina , Agonismo Inverso de Drogas , Metabolismo dos Lipídeos , Lipídeos/análise , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/química , Interferência de RNA , RNA Mensageiro/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Esteroide Hidroxilases/antagonistas & inibidores , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo , Regulação para Cima
7.
Brain ; 138(Pt 8): 2383-98, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26141492

RESUMO

Abnormalities in neuronal cholesterol homeostasis have been suspected or observed in several neurodegenerative disorders including Alzheimer's disease, Parkinson's disease and Huntington's disease. However, it has not been demonstrated whether an increased abundance of cholesterol in neurons in vivo contributes to neurodegeneration. To address this issue, we used RNA interference methodology to inhibit the expression of cholesterol 24-hydroxylase, encoded by the Cyp46a1 gene, in the hippocampus of normal mice. Cholesterol 24-hydroxylase controls cholesterol efflux from the brain and thereby plays a major role in regulating brain cholesterol homeostasis. We used an adeno-associated virus vector encoding short hairpin RNA directed against the mouse Cyp46a1 mRNA to decrease the expression of the Cyp46a1 gene in hippocampal neurons of normal mice. This increased the cholesterol concentration in neurons, followed by cognitive deficits and hippocampal atrophy due to apoptotic neuronal death. Prior to neuronal death, the recruitment of the amyloid protein precursor to lipid rafts was enhanced leading to the production of ß-C-terminal fragment and amyloid-ß peptides. Abnormal phosphorylation of tau and endoplasmic reticulum stress were also observed. In the APP23 mouse model of Alzheimer's disease, the abundance of amyloid-ß peptides increased following inhibition of Cyp46a1 expression, and neuronal death was more widespread than in normal mice. Altogether, these results suggest that increased amounts of neuronal cholesterol within the brain may contribute to inducing and/or aggravating Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Colesterol/metabolismo , Inibidores Enzimáticos/farmacologia , Esteroide Hidroxilases/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Colesterol 24-Hidroxilase , Feminino , Homeostase/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo
8.
Expert Opin Ther Pat ; 25(3): 373-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25514969

RESUMO

A series of imidazo[1,2-a]pyridine analogs that effectively inhibit cholesterol 24-hydroxylase (CYP46A1) was reported in WO2014061676. The treatment or prophylaxis of neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease, by these novel CYP46A1 inhibitors is claimed in the patent. These compounds represent a novel pharmacophore that is different from other structural motifs described in the prior patent publications by Takeda Pharmaceutical Company Ltd.


Assuntos
Inibidores das Enzimas do Citocromo P-450/farmacologia , Piridinas/farmacologia , Esteroide Hidroxilases/antagonistas & inibidores , Animais , Colesterol 24-Hidroxilase , Inibidores das Enzimas do Citocromo P-450/química , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/fisiopatologia , Patentes como Assunto , Piridinas/química
9.
Biochem Biophys Res Commun ; 446(3): 775-81, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24491555

RESUMO

Cholesterol 24S-hydroxylase (CYP46A1) converts cholesterol into 24S-hydroxycholesterol in neurons and participates in cholesterol homeostasis in the central nervous system, including the retina. We aimed to evaluate the consequences of CYP46A1 inhibition by voriconazole on cholesterol homeostasis and function in the retina. Rats received daily intraperitoneal injections of voriconazole (60mg/kg), minocycline (22mg/kg), voriconazole plus minocycline, or vehicle during five consecutive days. The rats were submitted to electroretinography to monitor retinal functionality. Cholesterol and 24S-hydroxycholesterol were measured in plasma, brain and retina by gas chromatography-mass spectrometry. The expression of CYP46A1, and GFAP as a marker for glial activation was analyzed in the retina and brain. Cytokines and chemokines were measured in plasma, vitreous, retina and brain. Voriconazole significantly impaired the functioning of the retina as exemplified by the reduced amplitude and increased latency of the b-wave of the electroretinogram, and altered oscillary potentials. Voriconazole decreased 24S-hydroxycholesterol levels in the retina. Unexpectedly, CYP46A1 and GFAP expression was increased in the retina of voriconazole-treated rats. ICAM-1 and MCP-1 showed significant increases in the retina and vitreous body. Minocycline did not reverse the effects of voriconazole. Our data highlighted the cross talk between retinal ganglion cells and glial cells in the retina, suggesting that reduced 24S-hydroxycholesterol concentration in the retina may be detected by glial cells, which were consequently activated.


Assuntos
Colesterol/metabolismo , Pirimidinas/farmacologia , Retina/efeitos dos fármacos , Esteroide Hidroxilases/antagonistas & inibidores , Triazóis/farmacologia , Animais , Colesterol/sangue , Colesterol 24-Hidroxilase , Citocinas/sangue , Citocinas/metabolismo , Eletrorretinografia , Inibidores Enzimáticos/farmacologia , Homeostase/efeitos dos fármacos , Hidroxicolesteróis/metabolismo , Masculino , Microglia/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Ratos , Ratos Wistar , Retina/citologia , Retina/metabolismo , Esteroide Hidroxilases/metabolismo , Regulação para Cima/efeitos dos fármacos , Voriconazol
10.
Mol Cell Endocrinol ; 382(2): 960-70, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24291609

RESUMO

1α-Hydroxylation of 25-hydroxyvitamin D3 is believed to be essential for its biological effects. In this study, we evaluated the biological activity of 25(OH)D3 itself comparing with the effect of cell-derived 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3). First, we measured the cell-derived 1α,25(OH)2D3 level in immortalized human prostate cell (PZ-HPV-7) using [(3)H]-25(OH)D3. The effects of the cell-derived 1α,25(OH)2D3 on vitamin D3 24-hydroxylase (CYP24A1) mRNA level and the cell growth inhibition were significantly lower than the effects of 25(OH)D3 itself added to cell culture. 25-Hydroxyvitamin D3 1α-hydroxylase (CYP27B1) gene knockdown had no significant effects on the 25(OH)D3-dependent effects, whereas vitamin D receptor (VDR) gene knockdown resulted in a significant decrease in the 25(OH)D3-dependent effects. These results strongly suggest that 25(OH)D3 can directly bind to VDR and exerts its biological functions. DNA microarray and real-time RT-PCR analyses suggest that semaphorin 3B, cystatin E/M, and cystatin D may be involved in the antiproliferative effect of 25(OH)D3.


Assuntos
Calcifediol/farmacologia , Próstata/efeitos dos fármacos , RNA Mensageiro/genética , Receptores de Calcitriol/genética , Esteroide Hidroxilases/genética , Linhagem Celular Transformada , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Cistatina M/genética , Cistatina M/metabolismo , Cistatinas/genética , Cistatinas/metabolismo , Regulação da Expressão Gênica , Humanos , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Próstata/citologia , Próstata/metabolismo , Ligação Proteica , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores de Calcitriol/antagonistas & inibidores , Receptores de Calcitriol/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Transdução de Sinais , Esteroide Hidroxilases/antagonistas & inibidores , Esteroide Hidroxilases/metabolismo , Trítio , Vitamina D3 24-Hidroxilase
11.
Anticancer Agents Med Chem ; 14(1): 97-108, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23869781

RESUMO

Increasing evidence has accumulated to suggest that vitamin D may reduce the risk of cancer through its biologically active metabolite, 1α,25(OH)2D3, which inhibits proliferation and angiogenesis, induces differentiation and apoptosis, and regulates many other cellular functions. Thus, it is plausible to assume that rapid clearance of 1α,25(OH)2D3 by highly expressed CYP24A1 could interrupt the normal physiology of cells and might be one cause of cancer initiation and progression. In fact, enhancement of CYP24A1 expression has been reported in literature for many cancers. Based on these findings, CYP24A1-specific inhibitors and vitamin D analogs which are resistant to CYP24A1-dependent catabolism might be useful for cancer treatment. CYP24A1-specific inhibitor VID400, which is an azole compound, markedly enhanced and prolonged the antiproliferative activity of 1α,25(OH)2D3 in the human keratinocytes. Likewise, CYP24A1-resistant analogs such as 2α-(3-hydroxypropoxy)-1α,25(OH)2D3 (O2C3) and its C2-epimer ED-71 (Eldecalcitol), and 19nor- 2α-(3-hydroxypropyl)-1α,25(OH)2D3 (MART-10) showed potent biological effects. Our in vivo studies using rats revealed that MART-10 had a low calcemic effect, which is a suitable property as an anticancer drug. Much lower affinity of MART-10 for vitamin D binding protein (DBP) as compared with 1α,25(OH)2D3 may be related to its more potent cellular activities. Based on these results, we conclude that (1) high affinity for VDR, (2) resistance to CYP24A1-dependent catabolism, (3) low affinity for DBP, and (4) low calcemic effect may be required for designing potent vitamin D analogs for cancer treatment.


Assuntos
Colecalciferol/análogos & derivados , Colecalciferol/metabolismo , Neoplasias/metabolismo , Esteroide Hidroxilases/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Colecalciferol/uso terapêutico , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Humanos , Redes e Vias Metabólicas , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Conformação Proteica , Esteroide Hidroxilases/antagonistas & inibidores , Esteroide Hidroxilases/química , Vitamina D3 24-Hidroxilase
12.
Metabolism ; 63(1): 150-60, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24269076

RESUMO

OBJECTIVE: Patients with gout have lower calcitriol levels that improve when uric acid is lowered. The mechanism of these observations is unknown. We hypothesized that uric acid inhibits 1-αhydroxylase. MATERIALS AND METHODS: In vivo, Sprague Dawley rats were randomized to control (n = 5), allantoxanamide (n=8), febuxostat (n=5), or allantoxanamide+febuxostat (n = 7). Vitamin D, PTH, and 1-αhydroxylase protein were evaluated. In order to directly evaluate the effect of uric acid on 1-αhydroxylase, we conducted a series of dose response and time course experiments in vitro. Nuclear factor κ-B (NFκB) was inhibited pharmacologically. Finally, to evaluate the potential implications of these findings in humans, the association between uric acid and PTH in humans was evaluated in a cross-sectional analysis of data from the NHANES (2003-2006); n = 9773. RESULTS: 1,25(OH)2D and 1-αhydroxylase protein were reduced in hyperuricemic rats and improved with febuxostat treatment. Uric acid suppressed 1-αhydroxylase protein and mRNA expression in proximal tubular cells. This was prevented by NFκB inhibition. In humans, for every 1mg/dL increase in uric acid, the adjusted odds ratio for an elevated PTH (>65 pg/mL) was 1.21 (95% C.I. 1.14, 1.28; P<0.0001), 1.15 (95% C.I. 1.08, 1.22; P<0.0001), and 1.16 (95% C.I. 1.03, 1.31; P = 0.02) for all subjects, subjects with estimated GFR ≥ 60, and subjects with estimated GFR <60 mL/min/1.73 m(2) respectively. CONCLUSION: Hyperuricemia suppresses 1-αhydroxylase leading to lower 1,25(OH)2D and higher PTH in rats. Our results suggest this is mediated by NFκB. The association between uric acid and PTH in NHANES suggests potential implications for human disease.


Assuntos
25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Hormônio Paratireóideo/antagonistas & inibidores , Esteroide Hidroxilases/antagonistas & inibidores , Ácido Úrico/metabolismo , Vitamina D/metabolismo , Animais , Estudos Transversais , Relação Dose-Resposta a Droga , Imunofluorescência , Humanos , Hiperuricemia/metabolismo , Immunoblotting , Técnicas In Vitro , Inquéritos Nutricionais , Razão de Chances , Hormônio Paratireóideo/sangue , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Ácido Úrico/farmacologia
13.
World J Gastroenterol ; 19(17): 2621-8, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23674869

RESUMO

AIM: The effects of vitamin D3 have been investigated on various tumors, including colorectal cancer (CRC). 25-hydroxyvitamin-D3-24-hydroxylase (CYP24A1), the enzyme that inactivates the active vitamin D3 metabolite 1,25-dihydroxyvitamin D3 (1,25-D3), is considered to be the main enzyme determining the biological half-life of 1,25-D3. During colorectal carcinogenesis, the expression and concentration of CYP24A1 increases significantly, suggesting that this phenomenon could be responsible for the proposed efficacy of 1,25-D3 in the treatment of CRC. The aim of this study was to investigate the anti-tumor effects of vitamin D3 on the human CRC cell line Caco-2 after inhibition of the cytochrome P450 component of CYP24A1 activity. METHODS: We examined the expression of CYP24A1 mRNA and the effects of 1,25-D3 on the cell line Caco-2 after inhibition of CYP24A1. Cell viability and proliferation were determined by means of sulforhodamine-B staining and bromodeoxyuridine incorporation, respectively, while cytotoxicity was estimated via the lactate dehydrogenase content of the cell culture supernatant. CYP24A1 expression was measured by real-time reverse transcription polymerase chain reaction. A number of tetralone compounds were synthesized to investigate their CP24A1 inhibitory activity. RESULTS: In response to 1,25-D3, CYP24A1 mRNA expression was enhanced significantly, in a time- and dose-dependent manner. Caco-2 cell viability and proliferation were not influenced by the administration of 1,25-D3 alone, but were markedly reduced by co-administration of 1,25-D3 and KD-35, a CYP24A1-inhibiting tetralone. Our data suggest that the mechanism of action of co-administered KD-35 and 1,25-D3 does not involve a direct cytotoxic effect, but rather the inhibition of cell proliferation. CONCLUSION: These findings demonstrate that the selective inhibition of CYP24A1 by compounds such as KD-35 may be a new approach for enhancement of the anti-tumor effect of 1,25-D3 on CRC.


Assuntos
Antineoplásicos/farmacologia , Calcitriol/farmacologia , Neoplasias Colorretais/enzimologia , Inibidores Enzimáticos/farmacologia , Esteroide Hidroxilases/antagonistas & inibidores , Tetralonas/farmacologia , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Indução Enzimática , Humanos , RNA Mensageiro/biossíntese , Esteroide Hidroxilases/biossíntese , Esteroide Hidroxilases/genética , Fatores de Tempo , Vitamina D3 24-Hidroxilase
14.
Cancer Res ; 73(7): 2289-97, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23358686

RESUMO

Vitamin D has broad range of physiological functions and antitumor effects. 24-Hydroxylase, encoded by the CYP24A1 gene, is the key enzyme for degrading many forms of vitamin D including the most active form, 1,25D(3). Inhibition of CYP24A1 enhances 1,25D(3) antitumor activity. To isolate regulators of CYP24A1 expression in prostate cancer cells, we established a stable prostate cancer cell line PC3 with CYP24A1 promoter driving luciferase expression to screen a small molecular library for compounds that inhibit CYP24A1 promoter activity. From this screening, we identified, 4,5,6,7-tetrabromobenzimidazole (TBBz), a protein kinase CK2 selective inhibitor as a disruptor of CYP24A1 promoter activity. We show that TBBz inhibits CYP24A1 promoter activity induced by 1,25D(3) in prostate cancer cells. In addition, TBBz downregulates endogenous CYP24A1 mRNA level in TBBz-treated PC3 cells. Furthermore, siRNA-mediated CK2 knockdown reduces 1,25D(3)-induced CYP24A1 mRNA expression in PC3 cells. These results suggest that CK2 contributes to 1,25D(3)-mediated target gene expression. Finally, inhibition of CK2 by TBBz or CK2 siRNA significantly enhances 1,25D(3)-mediated antiproliferative effect in vitro and in vivo in a xenograft model. In summary, our findings reveal that protein kinase CK2 is involved in the regulation of CYP24A1 expression by 1,25D(3) and CK2 inhibitor enhances 1,25D(3)-mediated antitumor effect.


Assuntos
Caseína Quinase II/antagonistas & inibidores , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Esteroide Hidroxilases/antagonistas & inibidores , Vitamina D/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos SCID , Regiões Promotoras Genéticas/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Bibliotecas de Moléculas Pequenas , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo , Células Tumorais Cultivadas , Vitamina D/farmacologia , Vitamina D3 24-Hidroxilase
15.
J Steroid Biochem Mol Biol ; 136: 252-7, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23059474

RESUMO

The active vitamin D hormone 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) plays a major role in regulating calcium homeostasis and bone mineralization. 1,25(OH)2D3 also modulates cellular proliferation and differentiation in a variety of cell types. 24-Hydroxylase, encoded by the CYP24A1 gene, is the key enzyme which converts 1,25(OH)2D3 to less active calcitroic acid. Nearly all cell types express 24-hydroxylase, the highest activity being observed in the kidney. There is increasing evidence linking the incidence and prognosis of certain cancers to low serum 25(OH)D3 levels and high expression of vitamin D 24-hydroxylase, supporting the idea that elevated CYP24A1 expression may stimulate degradation of vitamin D metabolites including 25(OH)D3 and 1,25(OH)2D3. The over expression of CYP24A1 in cancer cells may be a factor affecting 1,25(OH)2D3 bioavailability and anti-proliferative activity pre-clinically and clinically. The combination of 1,25(OH)2D3 with CYP24A1 inhibitors enhances 1,25(OH)2D3 mediated signaling and anti-proliferative effects and may be useful in overcoming effects of aberrant CYP24A1 expression. This article is part of a Special Issue entitled 'Vitamin D Workshop'.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Esteroide Hidroxilases/metabolismo , Vitamina D/uso terapêutico , Animais , Calcitriol/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias/patologia , Receptores de Calcitriol/metabolismo , Esteroide Hidroxilases/antagonistas & inibidores , Esteroide Hidroxilases/genética , Vitamina D/metabolismo , Vitamina D3 24-Hidroxilase
16.
J Steroid Biochem Mol Biol ; 136: 47-53, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23165146

RESUMO

Novel paradigms for CYP24A1 inhibitor development are needed to circumvent existing efficacy and toxicity issues related to human therapeutics in this class. We hypothesize that improved structural knowledge of CYP24A1 in complex with natural substrates, inhibitors and/or its redox partner protein, adrenodoxin (Adx) is required to facilitate the next generation of CYP24A1 inhibitor design. To this end, we have developed truncated expression constructs for both rat CYP24A1 (Δ51) and bovine Adx (Δ108), which allow us to purify a stable and reversible state of the CYP24A1:Adx complex, for use in ongoing X-ray crystallographic studies. Spectral characterization of the reversible complex revealed that Adx binding enhanced the stability of the enzyme-substrate complex, despite lowering the ligand binding affinity of the free enzyme, for 1,25(OH)2D2, over 9-fold. Truncation of CYP24A1's flexible N-terminus (Δ51) improved the enzyme's ability to recruit substrate, without altering Adx's ability to stabilize the ligand-bound form. We also found that several common crystallization detergents, including CHAPS, inhibit ligand binding to the CYP24A1:Adx complex at concentrations well below their reported critical micelle concentration (CMC) values. Ultimately, this research provides a useful platform and framework for the study of conformationally complex, membrane-protein complexes, in the ligand-bound state.


Assuntos
Adrenodoxina/química , Esteroide Hidroxilases/química , Sequência de Aminoácidos , Animais , Bovinos , Humanos , Dados de Sequência Molecular , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/química , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Ratos , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Esteroide Hidroxilases/antagonistas & inibidores , Esteroide Hidroxilases/genética , Vitamina D3 24-Hidroxilase
17.
Mol Pharmacol ; 82(5): 824-34, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22859721

RESUMO

Cytochrome P450 46A1 (cholesterol 24-hydroxylase) is an important brain enzyme that may be inhibited by structurally distinct pharmaceutical agents both in vitro and in vivo. To identify additional inhibitors of CYP46A1 among U.S. Food and Drug Administration-approved therapeutic agents, we used in silico and intuitive predictions and evaluated some of the predicted binders in the enzyme and spectral binding assays. We tested a total of 298 marketed drugs for the inhibition of CYP46A1-mediated cholesterol hydroxylation in vitro and found that 13 of them reduce CYP46A1 activity by >50%. Of these 13 inhibitors, 7 elicited a spectral response in CYP46A1 with apparent spectral K(d) values in a low micromolar range. One of the identified tight binders, the widely used antidepressant fluvoxamine, was cocrystallized with CYP46A1. The structure of this complex was determined at a 2.5 Å resolution and revealed the details of drug binding to the CYP46A1 active site. The NH(2)-containing arm of the Y-shaped fluvoxamine coordinates the CYP46A1 heme iron, whereas the methoxy-containing arm points away from the heme group and has multiple hydrophobic interactions with aliphatic amino acid residues. The CF(3)-phenyl ring faces the entrance to the substrate access channel and has contacts with the aromatic side chains. The crystal structure suggests that only certain drug conformers can enter the P450 substrate access channel and reach the active site. Once inside the active site, the conformer probably further adjusts its configuration and elicits the movement of the protein side chains.


Assuntos
Antidepressivos/química , Fluvoxamina/química , Inibidores de Proteases/química , Esteroide Hidroxilases/antagonistas & inibidores , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Bovinos , Colesterol/metabolismo , Colesterol 24-Hidroxilase , Simulação por Computador , Cristalização , Cristalografia por Raios X , Entropia , Ensaios Enzimáticos , Humanos , Hidroxilação , Técnicas In Vitro , Microssomos/efeitos dos fármacos , Microssomos/metabolismo , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteases/farmacologia , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Estereoisomerismo , Esteroide Hidroxilases/química , Tranilcipromina/química , Água
18.
Oncol Rep ; 28(3): 1110-6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22751936

RESUMO

1,25-Dihydroxyvitamin D3 (1,25D) is implicated in many cellular functions including cell proliferation and differentiation, thus, exerting potential antitumor effects. A major limitation for therapeutic use of 1,25D are its potent calcemic and phosphatemic activities. Therefore, synthetic analogs of 1,25D for use in anticancer therapy should retain cell differentiating potential, with calcemic activity being reduced. Previously, we described pro-differentiating effects of vitamin D2 analogs with extended and branched side-chains. Analogs with side-chains extended by a pair of one (PRI-1906) or two carbon units (PRI-1907) displayed elevated cell-differentiating activity towards some acute leukemia cell lines (AML) in comparison to 1,25D. In this study, the potential mechanism of this superagonistic activity of the analogs was addressed. At first, possible differences in the expression of CYP24A1, a major catabolizing enzyme for vitamin D compounds and resulting differences in the degradation of analogs were investigated. In addition, interactions of the analogs with vitamin D receptor (VDR) and resulting activation of CCAAT-enhancer-binding protein ß (C/EBPß) were studied. The results obtained show that superagonistic pro-differentiating activities of analogs PRI-1906 and PRI-1907 do not seem to be caused by their altered catabolism, but most probably by altered interactions with VDR and resulting downstream proteins.


Assuntos
Antineoplásicos/farmacologia , Calcitriol/farmacologia , Diferenciação Celular/efeitos dos fármacos , Ergocalciferóis/farmacologia , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Expressão Gênica/efeitos dos fármacos , Células HL-60 , Humanos , Cetoconazol/farmacologia , Cinética , Receptores de Lipopolissacarídeos/metabolismo , Mitocôndrias/efeitos dos fármacos , Transporte Proteico , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Receptores X de Retinoides/genética , Receptores X de Retinoides/metabolismo , Esteroide Hidroxilases/antagonistas & inibidores , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo , Regulação para Cima/efeitos dos fármacos , Vitamina D3 24-Hidroxilase
19.
Arch Toxicol ; 86(12): 1927-38, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22790670

RESUMO

Chalepensin, a furanocoumarin, is present in several medicinal Rutaceae plants and causes a mechanism-based inhibition of human and mouse cytochrome P450 (P450, CYP) 2A in vitro. To address the in vivo effect, we investigated the effects of chalepensin on multiple hepatic P450 enzymes in C57BL/6JNarl mice. Oral administration of 10 mg/kg chalepensin to mice for 7 days significantly decreased hepatic coumarin 7-hydroxylation (Cyp2a) and increased 7-pentoxyresorufin O-dealkylation (Cyp2b) activities, whereas activities of Cyp1a, Cyp2c, Cyp2e1, and Cyp3a were not affected. Without affecting its mRNA level, the decreased Cyp2a activity was accompanied by an increase in the immunodetected Cyp2a5 protein level. In chalepensin-treated mice, microsomal Cyp2a5 was less susceptible to ATP-fortified cytosolic degradation than that in control mice, resulting in the elevated protein level. The in vitro inactivation through NADPH-fortified pre-incubation with chalepensin also protected microsomal Cyp2a5 against protein degradation. Using cell-based reporter systems, chalepensin at a concentration near unbound plasma concentration activated mouse constitutive androstane receptor (CAR), in agreement with the observed induction of Cyp2b. These findings revealed that suicidal inhibition of Cyp2a5 and the CAR-mediated Cyp2b9/10 induction concurrently occurred in chalepensin-treated mice.


Assuntos
Hidrocarboneto de Aril Hidroxilases/antagonistas & inibidores , Citocromo P-450 CYP2B1/biossíntese , Furocumarinas/farmacologia , Esteroide Hidroxilases/antagonistas & inibidores , Animais , Hidrocarboneto de Aril Hidroxilases/biossíntese , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Receptor Constitutivo de Androstano , Citosol/efeitos dos fármacos , Citosol/enzimologia , Citosol/metabolismo , Genes Reporter , Isoenzimas/efeitos dos fármacos , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Oxigenases de Função Mista/metabolismo , NADP/metabolismo , Plasmídeos/genética , Reação em Cadeia da Polimerase , RNA/isolamento & purificação , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Ruta/química , Esteroide Hidroxilases/biossíntese
20.
Toxicology ; 298(1-3): 14-23, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-22546480

RESUMO

Adrenocortical carcinoma (ACC) is an extremely rare and aggressive endocrine malignancy with a poor prognosis. The most common symptom of ACC is hypercortisolism (Cushing's syndrome), which has the highest mortality. Mitotane is used as a steroidogenesis inhibitor for Cushing's syndrome or as a chemical adrenalectomy drug for ACC. Mitotane induces adrenal cortex necrosis, mitochondrial membrane impairment, and irreversible binding to CYP proteins. In this study, we explored the molecular effect of mitotane on steroidogenesis in human adrenocortical cancer NCI-H295 cells. Mitotane (10-40µM) inhibited basal and cAMP-induced cortisol secretion but did not cause cell death. Mitotane exhibited an inhibitory effect on the basal expression of StAR and P450scc protein. Furthermore, 40µM of mitotane significantly diminished StAR, CYP11A1 and CYP21 mRNA expression. HSD3B2 and CYP17 seem to be insensitive to mitotane. The stimulatory effects of mitotane on CYP11B1 were more remarkable than its inhibitory effects. In contrast, the activation of cAMP signaling strongly elevated the expression of all these genes. Mitotane (40µM) almost completely neutralized this positive effect and returned 8-Br-cAMP-induced StAR, CYP11A1, CYP17 and CYP21 mRNA to control levels. After cAMP activation, mitotane did not change the levels of CYP11B1 mRNA. The present study demonstrates that mitotane can inhibit cortisol biosynthesis due to a non-specific interference with the gene transcription of steroidogenic enzymes under both basal and 8-Br-cAMP-activated conditions in NCI-H295 cells. We also identified that StAR and CYP11A1 key enzymes that participate in the rate-limiting step of steroidogenesis, were more sensitive to mitotane. In addition, the biphasic effect of mitotane on CYP11B1 was also elucidated.


Assuntos
Neoplasias do Córtex Suprarrenal/enzimologia , Carcinoma Adrenocortical/enzimologia , Antineoplásicos Hormonais/farmacologia , AMP Cíclico/farmacologia , Mitotano/farmacologia , Esteroide Hidroxilases/metabolismo , Microambiente Tumoral/fisiologia , Neoplasias do Córtex Suprarrenal/genética , Carcinoma Adrenocortical/genética , Linhagem Celular Tumoral , Indução Enzimática/efeitos dos fármacos , Indução Enzimática/genética , Inibidores Enzimáticos/farmacologia , Humanos , Hidrocortisona/antagonistas & inibidores , Hidrocortisona/biossíntese , Esteroide Hidroxilases/antagonistas & inibidores , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/fisiologia , Microambiente Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...