Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Planta ; 252(4): 60, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32964359

RESUMO

MAIN CONCLUSION: AS events affect genes encoding protein domain composition and make the single gene produce more proteins with a certain number of genes to satisfy the establishment of photosynthesis during de-etiolation. The drastic switch from skotomorphogenic to photomorphogenic development is an excellent system to elucidate rapid developmental responses to environmental stimuli in plants. To decipher the effects of different light wavelengths on de-etiolation, we illuminated etiolated maize seedlings with blue, red, blue-red mixed and white light, respectively. We found that blue light alone has the strongest effect on photomorphogenesis and that this effect can be attributed to the higher number and expression levels of photosynthesis and chlorosynthesis proteins. Deep sequencing-based transcriptome analysis revealed gene expression changes under different light treatments and a genome-wide alteration in alternative splicing (AS) profiles. We discovered 41,188 novel transcript isoforms for annotated genes, which increases the percentage of multi-exon genes with AS to 63% in maize. We provide peptide support for all defined types of AS, especially retained introns. Further in silico prediction revealed that 58.2% of retained introns have changes in domains compared with their most similar annotated protein isoform. This suggests that AS acts as a protein function switch allowing rapid light response through the addition or removal of functional domains. The richness of novel transcripts and protein isoforms also demonstrates the potential and importance of integrating proteomics into genome annotation in maize.


Assuntos
Processamento Alternativo , Plântula , Transcriptoma , Zea mays , Processamento Alternativo/genética , Estiolamento/genética , Regulação da Expressão Gênica de Plantas , Luz , Proteoma , Plântula/genética , Zea mays/genética
2.
Plant Cell ; 32(8): 2525-2542, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32487564

RESUMO

The switch from dark- to light-mediated development is critical for the survival and growth of seedlings, but the underlying regulatory mechanisms are incomplete. Here, we show that the steroids phytohormone brassinosteroids play crucial roles during this developmental transition by regulating chlorophyll biosynthesis to promote greening of etiolated seedlings upon light exposure. Etiolated seedlings of the brassinosteroids-deficient det2-1 (de-etiolated2) mutant accumulated excess protochlorophyllide, resulting in photo-oxidative damage upon exposure to light. Conversely, the gain-of-function mutant bzr1-1D (brassinazole-resistant 1-1D) suppressed the protochlorophyllide accumulation of det2-1, thereby promoting greening of etiolated seedlings. Genetic analysis indicated that phytochrome-interacting factors (PIFs) were required for BZR1-mediated seedling greening. Furthermore, we reveal that GROWTH REGULATING FACTOR 7 (GRF7) and GRF8 are induced by BZR1 and PIF4 to repress chlorophyll biosynthesis and promote seedling greening. Suppression of GRFs function by overexpressing microRNA396a caused an accumulation of protochlorophyllide in the dark and severe photobleaching upon light exposure. Additionally, BZR1, PIF4, and GRF7 interact with each other and precisely regulate the expression of chlorophyll biosynthetic genes. Our findings reveal an essential role for BRs in promoting seedling development and survival during the initial emergence of seedlings from subterranean darkness into sunlight.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Brassinosteroides/farmacologia , Estiolamento/genética , Luz , MicroRNAs/metabolismo , Estresse Oxidativo/efeitos da radiação , Plântula/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clorofila/biossíntese , Estiolamento/efeitos dos fármacos , Estiolamento/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , MicroRNAs/genética , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/efeitos da radiação , Plântula/efeitos dos fármacos , Plântula/efeitos da radiação
3.
Nat Plants ; 6(2): 154-166, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32055052

RESUMO

Photosynthetic organisms experience wide fluctuations in light intensity and regulate light harvesting accordingly to prevent damage from excess energy. The antenna quenching component qH is a sustained form of energy dissipation that protects the photosynthetic apparatus under stress conditions. This photoprotective mechanism requires the plastid lipocalin LCNP and is prevented by SUPPRESSOR OF QUENCHING1 (SOQ1) under non-stress conditions. However, the molecular mechanism of qH relaxation has yet to be resolved. Here, we isolated and characterized RELAXATION OF QH1 (ROQH1), an atypical short-chain dehydrogenase-reductase that functions as a qH-relaxation factor in Arabidopsis. The ROQH1 gene belongs to the GreenCut2 inventory specific to photosynthetic organisms, and the ROQH1 protein localizes to the chloroplast stroma lamellae membrane. After a cold and high-light treatment, qH does not relax in roqh1 mutants and qH does not occur in leaves overexpressing ROQH1. When the soq1 and roqh1 mutations are combined, qH can neither be prevented nor relaxed and soq1 roqh1 displays constitutive qH and light-limited growth. We propose that LCNP and ROQH1 perform dosage-dependent, antagonistic functions to protect the photosynthetic apparatus and maintain light-harvesting efficiency in plants.


Assuntos
Arabidopsis/genética , Estiolamento/genética , Arabidopsis/enzimologia
4.
BMC Plant Biol ; 20(1): 68, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041529

RESUMO

BACKGROUND: Leaf color is a major agronomic trait, which has a strong influence on crop yields. Isolating leaf color mutants can represent valuable materials for research in chlorophyll (Chl) biosynthesis and metabolism regulation. RESULTS: In this study, we identified a stably inherited yellow leaf mutant derived from 'Huaguan' pakchoi variety via isolated microspore culture and designated as pylm. This mutant displayed yellow leaves after germination. Its etiolated phenotype was nonlethal and stable during the whole growth period. Its growth was weak and its hypocotyls were markedly elongated. Genetic analysis revealed that two recessive nuclear genes, named py1 and py2, are responsible for the etiolation phenotype. Bulked segregant RNA sequencing (BSR-Seq) showed that py1 and py2 were mapped on chromosomes A09 and A07, respectively. The genes were single Mendelian factors in F3:4 populations based on a 3:1 phenotypic segregation ratio. The py1 was localized to a 258.3-kb interval on a 34-gene genome. The differentially expressed gene BraA09004189 was detected in the py1 mapping region and regulated heme catabolism. One single-nucleotide polymorphism (SNP) of BraA09004189 occurred in pylm. A candidate gene-specific SNP marker in 1520 F3:4 yellow-colored individuals co-segregated with py1. For py2, 1860 recessive homozygous F3:4 individuals were investigated and localized py2 to a 4.4-kb interval. Of the five genes in this region, BraA07001774 was predicted as a candidate for py2. It encoded an embryo defective 1187 and a phosphotransferase related to chlorophyll deficiency and hypocotyl elongation. One SNP of BraA07001774 occurred in pylm. It caused a single amino acid mutation from Asp to Asn. According to quantitative real-time polymerase chain reaction (qRT-PCR), BraA07001774 was downregulated in pylm. CONCLUSIONS: Our study identified a Chl deficiency mutant pylm in pakchoi. Two recessive nuclear genes named py1 and py2 had a significant effect on etiolation. Candidate genes regulating etiolation were identified as BraA09004189 and BraA07001774, respectively. These findings will elucidate chlorophyll metabolism and the molecular mechanisms of the gene interactions controlling pakchoi etiolation.


Assuntos
Brassica rapa/genética , Estiolamento/genética , Genes de Plantas , Genes Recessivos , Proteínas de Plantas/genética , Sequência de Aminoácidos , Sequência de Bases , Brassica rapa/crescimento & desenvolvimento , Clorofila/metabolismo , Folhas de Planta , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência
5.
Plant Physiol ; 182(2): 1114-1129, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31748417

RESUMO

Exposure of dark-grown (etiolated) seedlings to light induces the heterotrophic-to-photoautotrophic transition (de-etiolation) processes, including the formation of photosynthetic machinery in the chloroplast and cotyledon expansion. Phytochrome is a red (R)/far-red (FR) light photoreceptor that is involved in the various aspects of de-etiolation. However, how phytochrome regulates metabolic dynamics in response to light stimulus has remained largely unknown. In this study, to elucidate the involvement of phytochrome in the metabolic response during de-etiolation, we performed widely targeted metabolomics in Arabidopsis (Arabidopsis thaliana) wild-type and phytochrome A and B double mutant seedlings de-etiolated under R or FR light. The results revealed that phytochrome had strong impacts on the primary and secondary metabolism during the first 24 h of de-etiolation. Among those metabolites, sugar levels decreased during de-etiolation in a phytochrome-dependent manner. At the same time, phytochrome upregulated processes requiring sugars. Triacylglycerols are stored in the oil bodies as a source of sugars in Arabidopsis seedlings. Sugars are provided from triacylglycerols through fatty acid ß-oxidation and the glyoxylate cycle in glyoxysomes. We examined if and how phytochrome regulates sugar production from oil bodies. Irradiation of the etiolated seedlings with R and FR light dramatically accelerated oil body mobilization in a phytochrome-dependent manner. Glyoxylate cycle-deficient mutants not only failed to mobilize oil bodies but also failed to develop thylakoid membranes and expand cotyledon cells upon exposure to light. Hence, phytochrome plays a key role in the regulation of metabolism during de-etiolation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Estiolamento/genética , Fitocromo A/metabolismo , Fitocromo B/metabolismo , Plântula/metabolismo , Açúcares/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Cromatografia Líquida de Alta Pressão , Cotilédone/metabolismo , Cotilédone/efeitos da radiação , Cotilédone/ultraestrutura , Estiolamento/efeitos da radiação , Glioxilatos/metabolismo , Glioxissomos/metabolismo , Glioxissomos/efeitos da radiação , Luz , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/efeitos da radiação , Metaboloma/efeitos da radiação , Metabolômica , Microscopia Eletrônica de Transmissão , Mutação , Fitocromo A/genética , Fitocromo B/genética , Plântula/efeitos da radiação , Tilacoides/metabolismo , Tilacoides/ultraestrutura , Triglicerídeos/metabolismo
6.
PLoS One ; 14(7): e0219272, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31276530

RESUMO

Plant life cycle begins with germination of seed below the ground. This is followed by seedling's development in the dark: skotomorphogenesis; and then a light-mediated growth: photomorphogenesis. After germination, hypocotyl grows rapidly to reach the sun, which involves elongation of shoot at the expense of root and cotyledons. Upon reaching ground level, seedling gets exposed to sunlight following a switch from the etiolated (skotomorphogenesis) to the de-etiolated (photomorphogenesis) stage, involving a series of molecular and physiological changes. Gymnosperms have evolved very differently and adopted diverse strategies as compared to angiosperms; with regards to response to light quality, conifers display a very mild high-irradiance response as compared to angiosperms. Absence of apical hook and synthesis of chlorophyll during skotomorphogenesis are two typical features in gymnosperms which differentiate them from angiosperms (dicots). Information regarding etiolation and de-etiolation processes are well understood in angiosperms, but these mechanisms are less explored in conifer species. It is, therefore, interesting to know how similar these processes are in conifers as compared to angiosperms. We performed a global expression analysis (RNA sequencing) on etiolated and de-etiolated seedlings of two economically important conifer species in Sweden to review the differentially expressed genes associated with the two processes. Based on the results, we propose that high levels of HY5 in conifers under DARK condition coupled with expression of few other genes associated with de-etiolation in angiosperms e.g. SPA, DET1 (lower expression under DARK) and CRY1 (higher expression under DARK), leads to partial expression of photomorphogenic genes in the DARK phenotype in conifers as displayed by absence of apical hook, opening of cotyledons and synthesis of chlorophyll.


Assuntos
Estiolamento/genética , Estiolamento/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Traqueófitas/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Cotilédone/crescimento & desenvolvimento , Cycadopsida/metabolismo , Expressão Gênica/genética , Germinação/fisiologia , Hipocótilo/metabolismo , Luz , Plântula/crescimento & desenvolvimento , Sementes/metabolismo , Suécia
7.
Plant Physiol ; 179(2): 616-629, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30498025

RESUMO

Cation/H+ (NHX-type) antiporters are important regulators of intracellular ion homeostasis and are critical for cell expansion and plant stress acclimation. In Arabidopsis (Arabidopsis thaliana), four distinct NHX isoforms, named AtNHX1 to AtNHX4, locate to the tonoplast. To determine the concerted roles of all tonoplast NHXs on vacuolar ion and pH homeostasis, we examined multiple knockout mutants lacking all but one of the four vacuolar isoforms and quadruple knockout plants lacking any vacuolar NHX activity. The nhx triple and quadruple knockouts displayed reduced growth phenotypes. Exposure to sodium chloride improved growth while potassium chloride was deleterious to some knockouts. Kinetic analysis of K+ and Na+ transport indicated that AtNHX1 and AtNHX2 are the main contributors to both vacuolar pH and K+ and Na+ uptake, while AtNHX3 and AtNHX4 differ in Na+/K+ selectivity. The lack of any vacuolar NHX activity resulted in no K+ uptake, highly acidic vacuoles, and reduced but not abolished vacuolar Na+ uptake. Additional K+/H+ and Na+/H+ exchange activity assays in the quadruple knockout indicated Na+ uptake that was not H+ coupled, suggesting the existence of an alternative, cation/H+-independent, Na+ conductive pathway in vacuoles. These results highlight the importance of NHX-type cation/H+ antiporters in the maintenance of cellular cation homeostasis and in growth and development.


Assuntos
Antiporters/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Transporte de Cátions/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Vacúolos/metabolismo , Antiporters/genética , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Cátions/genética , Cátions Monovalentes , Estiolamento/genética , Técnicas de Inativação de Genes , Concentração de Íons de Hidrogênio , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Potássio/metabolismo , Potássio/farmacologia , Sódio/metabolismo , Sódio/farmacologia , Trocadores de Sódio-Hidrogênio/genética
8.
Plant Physiol ; 178(1): 101-117, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30049747

RESUMO

Upon illumination, etiolated seedlings experience a transition from heterotrophic to photoautotrophic growth. During this process, the tetrapyrrole biosynthesis pathway provides chlorophyll for photosynthesis. This pathway has to be tightly controlled to prevent the accumulation of photoreactive metabolites and to provide stoichiometric amounts of chlorophyll for its incorporation into photosynthetic protein complexes. Therefore, plants have evolved regulatory mechanisms to synchronize the biosynthesis of chlorophyll and chlorophyll-binding proteins. Two phytochrome-interacting factors (PIF1 and PIF3) and the DELLA proteins, which are controlled by the gibberellin pathway, are key regulators of this process. Here, we show that impairment of TARGET OF RAPAMYCIN (TOR) activity in Arabidopsis (Arabidopsis thaliana), either by mutation of the TOR complex component RAPTOR1B or by treatment with TOR inhibitors, leads to a significantly reduced accumulation of the photoreactive chlorophyll precursor protochlorophyllide in darkness but an increased greening rate of etiolated seedlings after exposure to light. Detailed profiling of metabolic, transcriptomic, and physiological parameters revealed that the TOR-repressed lines not only grow slower, they grow in a nutrient-saving mode, which allows them to resist longer periods of low nutrient availability. Our results also indicated that RAPTOR1B acts upstream of the gibberellin-DELLA pathway and its mutation complements the repressed greening phenotype of pif1 and pif3 after etiolation.


Assuntos
Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Estiolamento/genética , Nutrientes/metabolismo , Fosfatidilinositol 3-Quinases/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Estiolamento/efeitos da radiação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fotossíntese/genética , Fotossíntese/efeitos da radiação , Plantas Geneticamente Modificadas , Protoclorifilida/metabolismo
9.
Int J Mol Sci ; 19(4)2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29561749

RESUMO

Cytoplasmic male sterility (CMS) is universally utilized in cruciferous vegetables. However, the Chinese cabbage hau CMS lines, obtained by interspecific hybridization and multiple backcrosses of the Brassica juncea (B. juncea) CMS line and Chinese cabbage, show obvious leaf etiolation, and the molecular mechanism of etiolation remains elusive. Here, the ultrastructural and phenotypic features of leaves from the Chinese cabbage CMS line 1409A and maintainer line 1409B are analyzed. The results show that chloroplasts of 1409A exhibit abnormal morphology and distribution. Next, RNA-sequencing (RNA-Seq) is used to identify 485 differentially expressed genes (DEGs) between 1409A and 1409B, and 189 up-regulated genes and 296 down-regulated genes are found. Genes that affect chloroplasts development, such as GLK1 and GLK2, and chlorophyll biosynthesis, such as PORB, are included in the down-regulated DEGs. Quantitative real-time PCR (qRT-PCR) analysis validate that the expression levels of these genes are significantly lower in 1409A than in 1409B. Taken together, these results demonstrate that leaf etiolation is markedly affected by chloroplast development and pigment biosynthesis. This study provides an effective foundation for research on the molecular mechanisms of leaf etiolation of the hau CMS line in Chinese cabbage (Brassica rapa L. ssp. pekinensis).


Assuntos
Brassica rapa/genética , Brassica rapa/fisiologia , Estiolamento/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética , Folhas de Planta/genética , Folhas de Planta/fisiologia , Brassica rapa/anatomia & histologia , Cloroplastos/ultraestrutura , Genes de Plantas , Anotação de Sequência Molecular , Fenótipo , Fotossíntese , Pigmentos Biológicos/metabolismo , Folhas de Planta/ultraestrutura , Transcriptoma/genética
10.
PLoS One ; 13(3): e0194678, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29558520

RESUMO

Unbound tetrapyrroles, i.e. protochlorophyllide (Pchlide), chlorophyllide and chlorophylls, bring the risk of reactive oxygen species (ROS) being generated in the initial stages of angiosperm deetiolation due to inefficient usage of the excitation energy for photosynthetic photochemistry. We analyzed the activity of superoxide dismutases (SODs) in etiolated wheat (Triticum aestivum) leaves and at the beginning of their deetiolation. Mn-SOD and three isoforms of Cu/Zn-SODs were identified both in etiolated and greening leaves of T. aestivum. Two Cu/Zn-SODs, denoted as II and III, were found in plastids. The activity of plastidic Cu/Zn-SOD isoforms as well as that of Mn-SOD correlated with cell aging along a monocot leaf, being the highest at leaf tips. Moreover, a high Pchlide content at leaf tips was observed. No correlation between SOD activity and the accumulation of photoactive Pchlide, i.e. Pchlide bound into ternary Pchlide:Pchlide oxidoreductase:NADPH complexes was found. Cu/Zn-SOD I showed the highest activity at the leaf base. A flash of light induced photoreduction of the photoactive Pchlide to chlorophyllide as well as an increase in all the SODs activity which occurred in a minute time-scale. In the case of seedlings that were deetiolated under continuous light of moderate intensity (100 µmol photons m-2 s-1), only some fluctuations in plastidic Cu/Zn-SODs and Mn-SOD within the first four hours of greening were noticed. The activity of SODs is discussed with respect to the assembly of tetrapyrroles within pigment-protein complexes, monitored by fluorescence spectroscopy at 77 K.


Assuntos
Estiolamento/fisiologia , Superóxido Dismutase/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Clorofila/metabolismo , Estiolamento/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Isoenzimas/genética , Isoenzimas/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Superóxido Dismutase/genética , Triticum/genética
11.
Sci China Life Sci ; 61(2): 199-203, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29143279

RESUMO

Seedling greening is essential for the survival of plants emerging from the soil. The abundance of chlorophyll precursors, including protochlorophyllide (Pchlide), is precisely controlled during the dark-to-light transition, as over-accumulation of Pchlide can lead to cellular photooxidative damage. Previous studies have identified and characterized multiple regulators controlling this important process. HID1 (hidden treasure 1) is the first noncoding RNA (ncRNA) found in photomorphogenesis. Under continuous red light, HID1 has been shown to inhibit hypocotyl elongation by repressing the transcription of PIF3 (phytochrome interacting factor 3). Here, we report that HID1 acts as a negative regulator of cotyledon greening. Knockdown of HID1 resulted in an increased greening rate of etiolated seedlings relative to wild type when exposed to white light. Genetically, HID1 acts downstream of PIF3 during the dark-to-light transition. The expression of HID1 is not regulated by PIF3 in the dark. Molecularly, the Pchlide content was reduced in dark-grown hid1 mutants than WT. Meanwhile, transcript levels of the protochlorophyllide oxidoreductases known to catalyze Pchlide to chlorophyllide conversion were significantly increased in hid1 seedlings. Thus, our study reveals an additional role of HID1 in the dark-to-light transition in Arabidopsis. Moreover, these results suggest HID1 could regulate distinct targets in different light-mediated developmental processes, and thus is essential to the control of these mechanisms.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Estiolamento/genética , Regulação da Expressão Gênica de Plantas , RNA não Traduzido/metabolismo , Plântula/crescimento & desenvolvimento , Escuridão , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Luz , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Plantas Geneticamente Modificadas , Protoclorifilida/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , RNA não Traduzido/genética , Transcrição Gênica
12.
Curr Biol ; 27(22): 3403-3418.e7, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29103938

RESUMO

Etiolated growth in darkness or the irreversible transition to photomorphogenesis in the light engages alternative developmental programs operating across all organs of a plant seedling. Dark-grown Arabidopsis de-etiolated by zinc (dez) mutants exhibit morphological, cellular, metabolic, and transcriptional characteristics of light-grown seedlings. We identify the causal mutation in TRICHOME BIREFRINGENCE encoding a putative acyl transferase. Pectin acetylation is decreased in dez, as previously found in the reduced wall acetylation2-3 mutant, shown here to phenocopy dez. Moreover, pectin of dez is excessively methylesterified. The addition of very short fragments of homogalacturonan, tri-galacturonate, and tetra-galacturonate, restores skotomorphogenesis in dark-grown dez and similar mutants, suggesting that the mutants are unable to generate these de-methylesterified pectin fragments. In combination with genetic data, we propose a model of spatiotemporally separated photoreceptive and signal-responsive cell types, which contain overlapping subsets of the regulatory network of light-dependent seedling development and communicate via a pectin-derived dark signal.


Assuntos
Estiolamento/genética , Transdução de Sinal Luminoso/genética , Acetiltransferases/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Escuridão , Estiolamento/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Transdução de Sinal Luminoso/fisiologia , Morfogênese/genética , Mutação , Pectinas/genética , Plântula/genética , Transdução de Sinais , Tricomas/genética
13.
J Plant Physiol ; 215: 110-121, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28623839

RESUMO

Mitochondrial respiratory components participate in the maintenance of chloroplast functional activity. This study investigates the effects 48h de-etiolation of spring wheat seedlings (Triticum aestivum L., var. Irgina) on the expression of genes that encode energy-dissipating respiratory components and antioxidant enzymes under continuous light conditions. The expression of AOX1a following the prolonged darkness exhibited a pattern indicating a prominent dependence on light. The expression of other respiratory genes, including NDA2, NDB2, and UCP1b, increased during de-etiolation and dark-to-light transition; however, changes in the expression of these genes occurred later than those in AOX1a expression. A high expression of NDA1 was detected after 12h of de-etiolation. The suppression of AOX1a, NDA2, NDB2, and UCP1b was observed 24h after de-etiolation when the photosynthetic apparatus and its defence systems against excess light were completely developed. The expression patterns of the respiratory genes and several genes encoding antioxidant enzymes (MnSOD, Cu-ZnSOD, t-APX, GR, and GRX) were quite similar. Our data indicate that the induction of nuclear genes encoding respiratory and antioxidant enzymes allow the plants to control reactive oxygen species (ROS) production and avoid oxidative stress during de-etiolation.


Assuntos
Antioxidantes/metabolismo , Mitocôndrias/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Estiolamento/genética , Estiolamento/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Oxirredutases/genética , Oxirredutases/metabolismo , Fotossíntese/genética , Fotossíntese/fisiologia , Proteínas de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo
14.
Sci Rep ; 7: 46245, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28387303

RESUMO

Citrus species are among the most important fruit crops. However, gene regulation and signaling pathways related to etiolation in this crop remain unknown. Using Illumina sequencing technology, modification of global gene expression in two hybrid citrus cultivars-Huangguogan and Shiranuhi, respectively-were investigated. More than 834.16 million clean reads and 125.12 Gb of RNA-seq data were obtained, more than 91.37% reads had a quality score of Q30. 124,952 unigenes were finally generated with a mean length of 1,189 bp. 79.15%, 84.35%, 33.62%, 63.12%, 57.67%, 57.99% and 37.06% of these unigenes had been annotated in NR, NT, KO, SwissProt, PFAM, GO and KOG databases, respectively. Further, we identified 604 differentially expressed genes in multicoloured and etiolated seedlings of Shiranuhi, including 180 up-regulated genes and 424 down-regulated genes. While in Huangguogan, we found 1,035 DEGs, 271 of which were increasing and the others were decreasing. 7 DEGs were commonly up-regulated, and 59 DEGs down-regulated in multicoloured and etiolated seedlings of these two cultivars, suggesting that some genes play fundamental roles in two hybrid citrus seedlings during etiolation. Our study is the first to provide the transcriptome sequence resource for seedlings etiolation of Shiranuhi and Huangguogan.


Assuntos
Citrus/genética , Estiolamento/genética , Plântula/genética , Transcriptoma , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Anotação de Sequência Molecular , Reprodutibilidade dos Testes
15.
BMC Res Notes ; 10(1): 108, 2017 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-28235420

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are highly conserved small non-coding RNAs that play important regulatory roles in plants. Although many miRNA families are sequentially and functionally conserved across plant kingdoms (Dezulian et al. in Genome Biol 13, 2005), they still differ in many aspects such as family size, average length, genomic loci etc. (Unver et al. in Int J Plant Genomics, 2009). RESULTS: In this study, we investigated changes of miRNA expression profiles during greening process of etiolated seedlings of Oryza sativa (C3) and Zea mays (C4) to explore conserved and species-specific characteristics of miRNAs between these two species. Futhermore, we predicted 47 and 42 candidate novel miRNAs using parameterized monocot specific miRDeep2 pipeline in maize and rice respectively. Potential targets of miRNAs comprising both mRNA and long non-coding RNA (lncRNA) were examined to clarify potential regulation of photosynthesis. Based on our result, two putative positive Kranz regulators reported by Wang et al. (2010) were predicted as potential targets of miR156. A few photosynthesis related genes such as sulfate adenylytransferase (APS3), chlorophyll a/b binding family protein etc. were suggested to be regulated by miRNAs. However, no C4 shuttle genes were predicted to be direct targets of either known or candidate novel miRNAs. CONCLUSIONS: This study provided the comprehensive list of miRNA that showed altered expression during the de-etiolation process and a number of candidate miRNAs that might play regulatory roles in C3 and C4 photosynthesis.


Assuntos
Estiolamento/genética , Regulação da Expressão Gênica de Plantas/fisiologia , MicroRNAs/genética , Oryza/genética , Transcriptoma/genética , Zea mays/genética
16.
J Exp Bot ; 67(17): 5105-17, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27436282

RESUMO

Identification of potential cis-regulatory motifs controlling the development of C4 photosynthesis is a major focus of current research. In this study, we used time-series RNA-seq data collected from etiolated maize and rice leaf tissues sampled during a de-etiolation process to systematically characterize the expression patterns of C4-related genes and to further identify potential cis elements in five different genomic regions (i.e. promoter, 5'UTR, 3'UTR, intron, and coding sequence) of C4 orthologous genes. The results demonstrate that although most of the C4 genes show similar expression patterns, a number of them, including chloroplast dicarboxylate transporter 1, aspartate aminotransferase, and triose phosphate transporter, show shifted expression patterns compared with their C3 counterparts. A number of conserved short DNA motifs between maize C4 genes and their rice orthologous genes were identified not only in the promoter, 5'UTR, 3'UTR, and coding sequences, but also in the introns of core C4 genes. We also identified cis-regulatory motifs that exist in maize C4 genes and also in genes showing similar expression patterns as maize C4 genes but that do not exist in rice C3 orthologs, suggesting a possible recruitment of pre-existing cis-elements from genes unrelated to C4 photosynthesis into C4 photosynthesis genes during C4 evolution.


Assuntos
Estiolamento/genética , Genes de Plantas/genética , Oryza/genética , Fotossíntese/genética , Folhas de Planta/fisiologia , Zea mays/genética , Estiolamento/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/fisiologia , Oryza/fisiologia , Fotossíntese/fisiologia , Zea mays/fisiologia
17.
Plant Physiol ; 171(2): 1259-76, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27208292

RESUMO

DEETIOLATED1 (DET1) plays a critical role in developmental and environmental responses in many plants. To date, the functions of OsDET1 in rice (Oryza sativa) have been largely unknown. OsDET1 is an ortholog of Arabidopsis (Arabidopsis thaliana) DET1 Here, we found that OsDET1 is essential for maintaining normal rice development. The repression of OsDET1 had detrimental effects on plant development, and leaded to contradictory phenotypes related to abscisic acid (ABA) in OsDET1 interference (RNAi) plants. We found that OsDET1 is involved in modulating ABA signaling in rice. OsDET1 RNAi plants exhibited an ABA hypersensitivity phenotype. Using yeast two-hybrid (Y2H) and bimolecular fluorescence complementation assays, we determined that OsDET1 interacts physically with DAMAGED-SPECIFIC DNA-BINDING PROTEIN1 (OsDDB1) and CONSTITUTIVE PHOTOMORPHOGENIC10 (COP10); DET1- and DDB1-ASSOCIATED1 binds to the ABA receptors OsPYL5 and OsDDB1. We found that the degradation of OsPYL5 was delayed in OsDET1 RNAi plants. These findings suggest that OsDET1 deficiency disturbs the COP10-DET1-DDB1 complex, which is responsible for ABA receptor (OsPYL) degradation, eventually leading to ABA sensitivity in rice. Additionally, OsDET1 also modulated ABA biosynthesis, as ABA biosynthesis was inhibited in OsDET1 RNAi plants and promoted in OsDET1-overexpressing transgenic plants. In conclusion, our data suggest that OsDET1 plays an important role in maintaining normal development in rice and mediates the cross talk between ABA biosynthesis and ABA signaling pathways in rice.


Assuntos
Ácido Abscísico/biossíntese , Proteínas de Arabidopsis/química , Estiolamento , Proteínas Nucleares/química , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Ácido Abscísico/farmacologia , Escuridão , Estiolamento/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Pleiotropia Genética/efeitos dos fármacos , Germinação/efeitos dos fármacos , Germinação/genética , Proteínas de Fluorescência Verde/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Complexos Multiproteicos/metabolismo , Oryza/efeitos dos fármacos , Oryza/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ligação Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Interferência de RNA/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Transcriptoma/genética
18.
BMC Genomics ; 17: 291, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27090636

RESUMO

BACKGROUND: De-etiolation is the switch from skoto- to photomorphogenesis, enabling the heterotrophic etiolated seedling to develop into an autotrophic plant. Upon exposure to blue light (BL), reduction of hypocotyl growth rate occurs in two phases: a rapid inhibition mediated by phototropin 1 (PHOT1) within the first 30-40 min of illumination, followed by the cryptochrome 1 (CRY1)-controlled establishment of the steady-state growth rate. Although some information is available for CRY1-mediated de-etiolation, less attention has been given to the PHOT1 phase of de-etiolation. RESULTS: We generated a subtracted cDNA library using the suppression subtractive hybridization method to investigate the molecular mechanisms of BL-induced de-etiolation in tomato (Solanum lycopersicum L.), an economically important crop. We focused our interest on the first 30 min following the exposure to BL when PHOT1 is required to induce the process. Our library generated 152 expressed sequence tags that were found to be rapidly accumulated upon exposure to BL and consequently potentially regulated by PHOT1. Annotation revealed that biological functions such as modification of chromatin structure, cell wall modification, and transcription/translation comprise an important part of events contributing to the establishment of photomorphogenesis in young tomato seedlings. Our conclusions based on bioinformatics data were supported by qRT-PCR analyses the specific investigation of V-H(+)-ATPase during de-etiolation in tomato. CONCLUSIONS: Our study provides the first report dealing with understanding the PHOT1-mediated phase of de-etiolation. Using subtractive cDNA library, we were able to identify important regulatory mechanisms. The profound induction of transcription/translation, as well as modification of chromatin structure, is relevant in regard to the fact that the entry into photomorphogenesis is based on a deep reprograming of the cell. Also, we postulated that BL restrains the cell expansion by the rapid modification of the cell wall.


Assuntos
Estiolamento/genética , Luz , Fototropinas/fisiologia , Solanum lycopersicum/genética , Cromatina/ultraestrutura , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Redes Reguladoras de Genes , Hipocótilo/crescimento & desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento , Plântula/genética , Plântula/crescimento & desenvolvimento , Regulação para Cima , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/fisiologia
19.
Plant Mol Biol ; 87(6): 633-43, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25724426

RESUMO

Phytochrome B (phyB) is an essential red light receptor that predominantly mediates seedling de-etiolation, shade-avoidance response, and flowering time. In this study, we isolate a full-length cDNA of PHYB, designated BrPHYB, from Chinese cabbage (Brassica rapa L. ssp. pekinensis), and we find that BrphyB protein has high amino acid sequence similarity and the closest evolutionary relationship to Arabidopsis thaliana phyB (i.e., AtphyB). Quantitative reverse transcription (RT)-PCR results indicate that the BrPHYB gene is ubiquitously expressed in different tissues under all light conditions. Constitutive expression of the BrPHYB gene in A. thaliana significantly enhances seedling de-etiolation under red- and white-light conditions, and causes dwarf stature in mature plants. Unexpectedly, overexpression of BrPHYB in transgenic A. thaliana resulted in reduced expression of gibberellins biosynthesis genes and delayed flowering under short-day conditions, whereas AtPHYB overexpression caused enhanced expression of FLOWERING LOCUS T and earlier flowering. Our results suggest that BrphyB might play an important role in regulating the development of Chinese cabbage. BrphyB and AtphyB have conserved functions during de-etiolation and vegetative plant growth and divergent functions in the regulation of flowering time.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Brassica rapa/genética , Estiolamento/genética , Regulação da Expressão Gênica no Desenvolvimento , Fitocromo B/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Flores/genética , Flores/crescimento & desenvolvimento , Flores/efeitos da radiação , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Luz , Dados de Sequência Molecular , Especificidade de Órgãos , Filogenia , Fitocromo B/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação , Análise de Sequência de DNA , Fatores de Tempo
20.
Plant Sci ; 209: 46-57, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23759102

RESUMO

The development of juvenile seedlings after germination is critical for the initial establishment of reproductive plants. Ethylene plays a pivotal role in the growth of seedlings under light or dark during early development. Previously, we identified small molecules sharing a quinazolinone backbone that suppressed the constitutive triple response phenotype in dark-grown eto1-4 seedlings. We designated these small molecules as ACSinhibitor quinazolinones (acsinones), which were uncompetitive inhibitors of 1-aminocyclopropane-1-carboxylic acid synthase. To explore the additional roles of acsinones in plants, we screened and identified 19 Arabidopsis mutants with reduced sensitivity to acsinone7303, which were collectively named revert to eto1 (ret) because of their recovery of the eto1 phenotype. A map-based cloning approach revealed that CELLULOSE SYNTHASE6 (CESA6) and DE-ETIOLATED2 (DET2) were mutated in ret8 (cesa6(ret8);eto1-4) and ret41 (det2(ret41);eto1-5), respectively. Etiolated seedlings of both ret8 and ret41 exhibit short hypocotyls and roots. Ethylene levels were similar in etiolated cesa6(ret8) and det2-1 and in eto1 mutants treated with acsinone7303. Chemical inhibitors of ethylene biosynthesis and perception did not significantly suppress the etiolated phenotype of cesa6(ret8) and det2(ret41). However, together with eto1, cesa6(ret8) and det2(ret41) exhibited an enhanced phenotype in the hypocotyls and apical hooks of etiolated seedlings. These results confirm that, in addition to ethylene, cellulose synthesis and brassinolides can independently contribute to modulate hypocotyl development in young seedlings.


Assuntos
Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Estiolamento/fisiologia , Genes de Plantas , Glucosiltransferases/metabolismo , Desenvolvimento Vegetal/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Esteroides Heterocíclicos/metabolismo , Aminoácidos Cíclicos/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Estiolamento/genética , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Mutação , Fenótipo , Desenvolvimento Vegetal/genética , Reguladores de Crescimento de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Quinazolinonas/metabolismo , Quinazolinonas/farmacologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...