Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.731
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(24): e2321344121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38830107

RESUMO

The estrogen receptor-α (ER) is thought to function only as a homodimer but responds to a variety of environmental, metazoan, and therapeutic estrogens at subsaturating doses, supporting binding mixtures of ligands as well as dimers that are only partially occupied. Here, we present a series of flexible ER ligands that bind to receptor dimers with individual ligand poses favoring distinct receptor conformations-receptor conformational heterodimers-mimicking the binding of two different ligands. Molecular dynamics simulations showed that the pairs of different ligand poses changed the correlated motion across the dimer interface to generate asymmetric communication between the dimer interface, the ligands, and the surface binding sites for epigenetic regulatory proteins. By examining the binding of the same ligand in crystal structures of ER in the agonist vs. antagonist conformers, we also showed that these allosteric signals are bidirectional. The receptor conformer can drive different ligand binding modes to support agonist vs. antagonist activity profiles, a revision of ligand binding theory that has focused on unidirectional signaling from the ligand to the coregulator binding site. We also observed differences in the allosteric signals between ligand and coregulator binding sites in the monomeric vs. dimeric receptor, and when bound by two different ligands, states that are physiologically relevant. Thus, ER conformational heterodimers integrate two different ligand-regulated activity profiles, representing different modes for ligand-dependent regulation of ER activity.


Assuntos
Receptor alfa de Estrogênio , Estrogênios , Simulação de Dinâmica Molecular , Multimerização Proteica , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/química , Regulação Alostérica , Humanos , Ligantes , Estrogênios/metabolismo , Estrogênios/química , Sítios de Ligação , Ligação Proteica , Conformação Proteica
2.
FASEB J ; 38(11): e23718, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38847487

RESUMO

Female carriers of a Duchenne muscular dystrophy (DMD) gene mutation manifest exercise intolerance and metabolic anomalies that may be exacerbated following menopause due to the loss of estrogen, a known regulator of skeletal muscle function and metabolism. Here, we studied the impact of estrogen depletion (via ovariectomy) on exercise tolerance and muscle mitochondrial metabolism in female mdx mice and the potential of estrogen replacement therapy (using estradiol) to protect against functional and metabolic perturbations. We also investigated the effect of estrogen depletion, and replacement, on the skeletal muscle proteome through an untargeted proteomic approach with TMT-labelling. Our study confirms that loss of estrogen in female mdx mice reduces exercise capacity, tricarboxylic acid cycle intermediates, and citrate synthase activity but that these deficits are offset through estrogen replacement therapy. Furthermore, ovariectomy downregulated protein expression of RNA-binding motif factor 20 (Rbm20), a critical regulator of sarcomeric and muscle homeostasis gene splicing, which impacted pathways involving ribosomal and mitochondrial translation. Estrogen replacement modulated Rbm20 protein expression and promoted metabolic processes and the upregulation of proteins involved in mitochondrial dynamics and metabolism. Our data suggest that estrogen mitigates dystrophinopathic features in female mdx mice and that estrogen replacement may be a potential therapy for post-menopausal DMD carriers.


Assuntos
Estrogênios , Camundongos Endogâmicos mdx , Músculo Esquelético , Proteínas de Ligação a RNA , Animais , Feminino , Camundongos , Estrogênios/metabolismo , Estrogênios/farmacologia , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/genética , Camundongos Endogâmicos C57BL , Ovariectomia , Mitocôndrias/metabolismo , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/efeitos dos fármacos
3.
Mol Biol Rep ; 51(1): 622, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709309

RESUMO

Menopause is a normal physiological process accompanied by changes in various physiological states. The incidence of vascular calcification (VC) increases each year after menopause and is closely related to osteoporosis (OP). Although many studies have investigated the links between VC and OP, the interaction mechanism of the two under conditions of estrogen loss remains unclear. MicroRNAs (miRNAs), which are involved in epigenetic modification, play a critical role in estrogen-mediated mineralization. In the past several decades, miRNAs have been identified as biomarkers or therapeutic targets in diseases. Thus, we hypothesize that these small molecules can provide new diagnostic and therapeutic approaches. In this review, we summarize the close interactions between VC and OP and the role of miRNAs in their interplay.


Assuntos
MicroRNAs , Pós-Menopausa , Calcificação Vascular , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Feminino , Calcificação Vascular/genética , Calcificação Vascular/metabolismo , Pós-Menopausa/genética , Osteoporose Pós-Menopausa/genética , Osteoporose Pós-Menopausa/metabolismo , Estrogênios/metabolismo , Biomarcadores/metabolismo , Osteoporose/genética , Osteoporose/metabolismo , Epigênese Genética
4.
Front Endocrinol (Lausanne) ; 15: 1343759, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38752176

RESUMO

Syndromic autism spectrum conditions (ASC), such as Klinefelter syndrome, also manifest hypogonadism. Compared to the popular Extreme Male Brain theory, the Enhanced Perceptual Functioning model explains the connection between ASC, savant traits, and giftedness more seamlessly, and their co-emergence with atypical sexual differentiation. Overexcitability of primary sensory inputs generates a relative enhancement of local to global processing of stimuli, hindering the abstraction of communication signals, in contrast to the extraordinary local information processing skills in some individuals. Weaker inhibitory function through gamma-aminobutyric acid type A (GABAA) receptors and the atypicality of synapse formation lead to this difference, and the formation of unique neural circuits that process external information. Additionally, deficiency in monitoring inner sensory information leads to alexithymia (inability to distinguish one's own emotions), which can be caused by hypoactivity of estrogen and oxytocin in the interoceptive neural circuits, comprising the anterior insular and cingulate gyri. These areas are also part of the Salience Network, which switches between the Central Executive Network for external tasks and the Default Mode Network for self-referential mind wandering. Exploring the possibility that estrogen deficiency since early development interrupts GABA shift, causing sensory processing atypicality, it helps to evaluate the co-occurrence of ASC with attention deficit hyperactivity disorder, dyslexia, and schizophrenia based on phenotypic and physiological bases. It also provides clues for understanding the common underpinnings of these neurodevelopmental disorders and gifted populations.


Assuntos
Androgênios , Transtorno do Espectro Autista , Estrogênios , Humanos , Androgênios/deficiência , Androgênios/metabolismo , Estrogênios/metabolismo , Estrogênios/deficiência , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/fisiopatologia , Masculino , Diferenciação Sexual/fisiologia , Síndrome de Klinefelter/fisiopatologia , Síndrome de Klinefelter/metabolismo , Percepção/fisiologia , Encéfalo/metabolismo
5.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731947

RESUMO

Estrogen plays an important role in osteoporosis prevention. We herein report the possible novel signaling pathway of 17ß-estradiol (E2) in the matrix mineralization of MC3T3-E1, an osteoblast-like cell line. In the culture media-containing stripped serum, in which small lipophilic molecules such as steroid hormones including E2 were depleted, matrix mineralization was significantly reduced. However, the E2 treatment induced this. The E2 effects were suppressed by ICI182,780, the estrogen receptor (ER)α, and the ERß antagonist, as well as their mRNA knockdown, whereas Raloxifene, an inhibitor of estrogen-induced transcription, and G15, a G-protein-coupled estrogen receptor (GPER) 1 inhibitor, had little or no effect. Furthermore, the E2-activated matrix mineralization was disrupted by PMA, a PKC activator, and SB202190, a p38 MAPK inhibitor, but not by wortmannin, a PI3K inhibitor. Matrix mineralization was also induced by the culture media from the E2-stimulated cell culture. This effect was hindered by PMA or heat treatment, but not by SB202190. These results indicate that E2 activates the p38 MAPK pathway via ERs independently from actions in the nucleus. Such activation may cause the secretion of certain signaling molecule(s), which inhibit the PKC pathway. Our study provides a novel pathway of E2 action that could be a therapeutic target to activate matrix mineralization under various diseases, including osteoporosis.


Assuntos
Estradiol , Osteoblastos , Transdução de Sinais , Animais , Camundongos , Estradiol/farmacologia , Osteoblastos/metabolismo , Osteoblastos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Linhagem Celular , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Estrogênios/farmacologia , Estrogênios/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética
6.
Mol Biol Rep ; 51(1): 634, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727746

RESUMO

BACKGROUND: The Chinese soft-shelled turtle, Pelodiscus sinensis, exhibits distinct sexual dimorphism, with the males growing faster and larger than the females. During breeding, all-male offspring can be obtained using 17ß-estradiol (E2). However, the molecular mechanisms underlying E2-induced sexual reversal have not yet been elucidated. Previous studies have investigated the molecular sequence and expression characteristics of estrogen receptors (ERs). METHODS AND RESULTS: In this study, primary liver cells and embryos of P. sinensis were treated with ER agonists or inhibitors. Cell incubation experiments revealed that nuclear ERs (nERs) were the main pathway for the transmission of estrogen signals. Our results showed that ERα agonist (ERα-ag) upregulated the expression of Rspo1, whereas ERα inhibitor (ERα-Inh) downregulated its expression. The expression of Dmrt1 was enhanced after ERα-Inh + G-ag treatment, indicating that the regulation of male genes may not act through a single estrogen receptor, but a combination of ERs. In embryos, only the ERα-ag remarkably promoted the expression levels of Rspo1, Wnt4, and ß-catenin, whereas the ERα-Inh had a suppressive effect. Additionally, Dmrt1, Amh, and Sox9 expression levels were downregulated after ERß inhibitor (ERß-Inh) treatment. GPER agonist (G-ag) has a significant promotion effect on Rspo1, Wnt4, and ß-catenin, while the inhibitor G-Inh does not affect male-related genes. CONCLUSIONS: Overall, these results suggest that ERs play different roles during sexual reversal in P. sinensis and ERα may be the main carrier of estrogen-induced sexual reversal in P. sinensis. Further studies need to be performed to analyze the mechanism of ER action.


Assuntos
Receptores de Estrogênio , Tartarugas , Animais , Tartarugas/genética , Tartarugas/metabolismo , Masculino , Feminino , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Estradiol/farmacologia , Estradiol/metabolismo , Caracteres Sexuais , Estrogênios/metabolismo , Estrogênios/farmacologia , beta Catenina/metabolismo , beta Catenina/genética , Fígado/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/efeitos dos fármacos
7.
Biomed Pharmacother ; 175: 116787, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38788548

RESUMO

Pulmonary hypertension (PH) is a cardiovascular disorder characterized by substantial morbidity and mortality rates. It is a chronic condition characterized by intricate pathogenesis and uncontrollable factors. We summarized the pathological effects of estrogen, genetics, neuroinflammation, intestinal microbiota, metabolic reorganization, and histone modification on PH. PH is not only a pulmonary vascular disease, but also a systemic disease. The findings emphasize that the onset of PH is not exclusively confined to the pulmonary vasculature, consequently necessitating treatment approaches that extend beyond targeting pulmonary blood vessels. Hence, the research on the pathological mechanism of PH is not limited to target organs such as pulmonary vessels, but also focuses on exploring other fields (such as estrogen, genetics, neuroinflammation, intestinal microbiota, metabolic reorganization, and histone modification).


Assuntos
Microbioma Gastrointestinal , Hipertensão Pulmonar , Humanos , Hipertensão Pulmonar/fisiopatologia , Animais , Estrogênios/metabolismo , Doenças Neuroinflamatórias
8.
Proc Natl Acad Sci U S A ; 121(21): e2313207121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38753512

RESUMO

Arginine vasopressin (AVP) neurons of the hypothalamic paraventricular region (AVPPVN) mediate sex-biased social behaviors across most species, including mammals. In mice, neural sex differences are thought to be established during a critical window around birth ( embryonic (E) day 18 to postnatal (P) day 2) whereby circulating testosterone from the fetal testis is converted to estrogen in sex-dimorphic brain regions. Here, we found that AVPPVN neurons are sexually dimorphic by E15.5, prior to this critical window, and that gestational bisphenol A (BPA) exposure permanently masculinized female AVPPVN neuronal numbers, projections, and electrophysiological properties, causing them to display male-like phenotypes into adulthood. Moreover, we showed that nearly twice as many neurons that became AVP+ by P0 were born at E11 in males and BPA-exposed females compared to control females, suggesting that AVPPVN neuronal masculinization occurs between E11 and P0. We further narrowed this sensitive period to around the timing of neurogenesis by demonstrating that exogenous estrogen exposure from E14.5 to E15.5 masculinized female AVPPVN neuronal numbers, whereas a pan-estrogen receptor antagonist exposed from E13.5 to E15.5 blocked masculinization of males. Finally, we showed that restricting BPA exposure to E7.5-E15.5 caused adult females to display increased social dominance over control females, consistent with an acquisition of male-like behaviors. Our study reveals an E11.5 to E15.5 window of estrogen sensitivity impacting AVPPVN sex differentiation, which is impacted by prenatal BPA exposure.


Assuntos
Compostos Benzidrílicos , Neurônios , Fenóis , Diferenciação Sexual , Animais , Compostos Benzidrílicos/toxicidade , Fenóis/toxicidade , Feminino , Masculino , Camundongos , Diferenciação Sexual/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Gravidez , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Arginina Vasopressina/metabolismo , Vasopressinas/metabolismo , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Camundongos Endogâmicos C57BL , Estrogênios/metabolismo , Estrogênios/farmacologia
9.
Endocrinology ; 165(6)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38715255

RESUMO

Breast cancer bone metastases (BMET) are incurable, primarily osteolytic, and occur most commonly in estrogen receptor-α positive (ER+) breast cancer. ER+ human breast cancer BMET modeling in mice has demonstrated an estrogen (E2)-dependent increase in tumor-associated osteolysis and bone-resorbing osteoclasts, independent of estrogenic effects on tumor proliferation or bone turnover, suggesting a possible mechanistic link between tumoral ERα-driven osteolysis and ER+ bone progression. To explore this question, inducible secretion of the osteolytic factor, parathyroid hormone-related protein (PTHrP), was utilized as an in vitro screening bioassay to query the osteolytic potential of estrogen receptor- and signaling pathway-specific ligands in BMET-forming ER+ human breast cancer cells expressing ERα, ERß, and G protein-coupled ER. After identifying genomic ERα signaling, also responsibility for estrogen's proliferative effects, as necessary and sufficient for osteolytic PTHrP secretion, in vivo effects of a genomic-only ER agonist, estetrol (E4), on osteolytic ER+ BMET progression were examined. Surprisingly, while pharmacologic effects of E4 on estrogen-dependent tissues, including bone, were evident, E4 did not support osteolytic BMET progression (vs robust E2 effects), suggesting an important role for nongenomic ER signaling in ER+ metastatic progression at this site. Because bone effects of E4 did not completely recapitulate those of E2, the relative importance of nongenomic ER signaling in tumor vs bone cannot be ascertained here. Nonetheless, these intriguing findings suggest that targeted manipulation of estrogen signaling to mitigate ER+ metastatic progression in bone may require a nuanced approach, considering genomic and nongenomic effects of ER signaling on both sides of the tumor/bone interface.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Receptor alfa de Estrogênio , Estrogênios , Transdução de Sinais , Neoplasias Ósseas/secundário , Neoplasias Ósseas/metabolismo , Animais , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Humanos , Camundongos , Estrogênios/metabolismo , Estrogênios/farmacologia , Receptor alfa de Estrogênio/metabolismo , Linhagem Celular Tumoral , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Osteólise/metabolismo , Osteólise/patologia , Receptores de Estrogênio/metabolismo
10.
Arch Toxicol ; 98(6): 1795-1807, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704805

RESUMO

The endocrine system functions by interactions between ligands and receptors. Ligands exhibit potency for binding to and interacting with receptors. Potency is the product of affinity and efficacy. Potency and physiological concentration determine the ability of a ligand to produce physiological effects. The kinetic behavior of ligand-receptor interactions conforms to the laws of mass action. The laws of mass action define the relationship between the affinity of a ligand and the fraction of cognate receptors that it occupies at any physiological concentration. We previously identified the minimum ligand potency required to produce clinically observable estrogenic agonist effects via the human estrogen receptor-alpha (ERα). By examining data on botanical estrogens and dietary supplements, we demonstrated that ERα ligands with potency lower than one one-thousandth that of the primary endogenous hormone 17ß-estradiol (E2) do not produce clinically observable estrogenic effects. This allowed us to propose a Human-Relevant Potency Threshold (HRPT) for ERα ligands of 1 × 10-4 relative to E2. Here, we test the hypothesis that the HRPT for ERα arises from the receptor occupancy by the normal metabolic milieu of endogenous ERα ligands. The metabolic milieu comprises precursors to hormones, metabolites of hormones, and other normal products of metabolism. We have calculated fractional receptor occupancies for ERα ligands with potencies below and above the previously established HRPT when normal circulating levels of some endogenous ERα ligands and E2 were also present. Fractional receptor occupancy calculations showed that individual ERα ligands with potencies more than tenfold higher than the HRPT can compete for occupancy at ERα against individual components of the endogenous metabolic milieu and against mixtures of those components at concentrations found naturally in human blood. Ligands with potencies less than tenfold higher than the HRPT were unable to compete successfully for ERα. These results show that the HRPT for ERα agonism (10-4 relative to E2) proposed previously is quite conservative and should be considered strong evidence against the potential for disruption of the estrogenic pathway. For chemicals with potency 10-3 of E2, the potential for estrogenic endocrine disruption must be considered equivocal and subject to the presence of corroborative evidence. Most importantly, this work demonstrates that the endogenous metabolic milieu is responsible for the observed ERα agonist HRPT, that this HRPT applies also to ERα antagonists, and it provides a compelling mechanistic explanation for the HRPT that is grounded in basic principles of molecular kinetics using well characterized properties and concentrations of endogenous components of normal metabolism.


Assuntos
Disruptores Endócrinos , Estradiol , Receptor alfa de Estrogênio , Humanos , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/agonistas , Disruptores Endócrinos/toxicidade , Ligantes , Estradiol/metabolismo , Estrogênios/metabolismo
11.
Behav Brain Res ; 469: 115047, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38759799

RESUMO

Hyperalgesia occurs in the orofacial region of rats when estrogen levels are low, although the specific mechanism needs to be investigated further. Furthermore, oxidative stress plays an important role in the transmission of pain signals. This study aimed to explore the role of oxidative stress in orofacial hyperalgesia under low estrogen conditions. We firstly found an imbalance between oxidative and antioxidant capacity within the spinal trigeminal subnucleus caudalis (SP5C) of rats after ovariectomy (OVX), resulting in oxidative stress and then a decrease in the orofacial pain threshold. To investigate the mechanism by which oxidative stress occurs, we used virus as a tool to silence or overexpress the excitatory amino acid transporter 3 (EAAT3) gene. Further investigation revealed that the regulation of glutathione (GSH) and reactive oxygen species (ROS) can be achieved by regulating EAAT3, which in turn impacts the occurrence of oxidative stress. In summary, our findings suggest that reduced expression of EAAT3 within the SP5C of rats in the low estrogen state may decrease GSH content and increase ROS levels, resulting in oxidative stress and ultimately lead to orofacial hyperalgesia. This suggests that antioxidants could be a potential therapeutic direction for orofacial hyperalgesia under low estrogen conditions, though more research is needed to understand its mechanism.


Assuntos
Estrogênios , Transportador 3 de Aminoácido Excitatório , Dor Facial , Glutationa , Hiperalgesia , Ovariectomia , Estresse Oxidativo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Animais , Hiperalgesia/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Feminino , Estrogênios/metabolismo , Estrogênios/farmacologia , Dor Facial/metabolismo , Glutationa/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transportador 3 de Aminoácido Excitatório/metabolismo , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Núcleo Inferior Caudal do Nervo Trigêmeo/metabolismo , Núcleo Inferior Caudal do Nervo Trigêmeo/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/metabolismo
12.
Zoology (Jena) ; 164: 126171, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38761613

RESUMO

Estrogens, acting through their receptors (ERα and ERß), regulate cell turnover in the pituitary gland, influencing cell proliferation and apoptosis across various species. However, their role in pituitary processes in seasonally reproducing animals remains poorly understood. This study aims to investigate the influence of estrogens, through the expression of their specific receptors, on the apoptosis of PD cells in relation to sexual maturity, the reproductive cycle, and pregnancy in a seasonal reproductive rodent (Lagostomus maximus maximus). ERα and caspase-3-cleaved (CASP3c) immunoreactive (-ir) cells were identified through immunohistochemistry. Apoptotic cells were detected using the TUNEL technique, with quantitative analysis facilitated by image analysis software, alongside measurement of serum estradiol levels using radioimmunoassay The immunostaining pattern for ERα included nuclear (ERαn) and cytoplasmic (ERαc) staining. In male viscachas, ERα expression significantly increases from immature to adult animals, correlating with the rise in serum estradiol levels and a decrease in the percentage of apoptotic cells. During the gonadal regression period in adult males, a decrease in the number of ER-ir cells and serum levels of estradiol corresponds with an increase in the number of apoptotic cells. In females, serum levels of estradiol peaked during mid-pregnancy, coinciding with a significant decrease in the number of apoptotic cells in the PD. Simultaneously, the percentage of ERαn-ir cells reaches its maximum value during late pregnancy, indicating the need to maintain the protective action of this gonadal hormone throughout the extensive pregnancy in these rodents. Regional ERα receptor expression and apoptotic cells appear to be associated with distinct PD cell populations and their hormonal responses. Finally, elevated estradiol levels coincide with diminished apoptotic cells in the male reproductive cycle and during pregnancy, suggesting an antiapoptotic role of estradiol in this species.


Assuntos
Apoptose , Estrogênios , Hipófise , Roedores , Animais , Feminino , Masculino , Roedores/fisiologia , Estrogênios/metabolismo , Estrogênios/sangue , Hipófise/metabolismo , Gravidez , Regulação da Expressão Gênica , Estradiol/sangue , Estradiol/metabolismo
13.
PLoS Genet ; 20(5): e1011277, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38781242

RESUMO

How enhancers regulate their target genes in the context of 3D chromatin organization is extensively studied and models which do not require direct enhancer-promoter contact have recently emerged. Here, we use the activation of estrogen receptor-dependent enhancers in a breast cancer cell line to study enhancer-promoter communication at two loci. This allows high temporal resolution tracking of molecular events from hormone stimulation to efficient gene activation. We examine how both enhancer-promoter spatial proximity assayed by DNA fluorescence in situ hybridization, and contact frequencies resulting from chromatin in situ fragmentation and proximity ligation, change dynamically during enhancer-driven gene activation. These orthogonal methods produce seemingly paradoxical results: upon enhancer activation enhancer-promoter contact frequencies increase while spatial proximity decreases. We explore this apparent discrepancy using different estrogen receptor ligands and transcription inhibitors. Our data demonstrate that enhancer-promoter contact frequencies are transcription independent whereas altered enhancer-promoter proximity depends on transcription. Our results emphasize that the relationship between contact frequencies and physical distance in the nucleus, especially over short genomic distances, is not always a simple one.


Assuntos
Cromatina , Elementos Facilitadores Genéticos , Estrogênios , Regiões Promotoras Genéticas , Humanos , Cromatina/genética , Cromatina/metabolismo , Estrogênios/metabolismo , Transcrição Gênica , Células MCF-7 , Neoplasias da Mama/genética , Feminino , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Hibridização in Situ Fluorescente , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Ativação Transcricional , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo
14.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167227, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38733774

RESUMO

Olanzapine (OLA) is a highly obesogenic second-generation antipsychotic (SGA). Recently we demonstrated that, contrarily to OLA oral treatment, intraperitoneal (i.p.) administration resulted in weight loss and absence of hepatic steatosis in wild-type (WT) and protein tyrosine phosphatase 1B (PTP1B)-deficient (KO) male mice. This protection relied on two central-peripheral axes connecting hypothalamic AMPK with brown/inguinal white adipose tissue (BAT/iWAT) uncoupling protein-1 (UCP-1) and hypothalamic JNK with hepatic fatty acid synthase (FAS). Herein, we addressed OLA i.p. treatment effects in WT and PTP1B-KO female mice. Contrarily to our previous results in WT females receiving OLA orally, the i.p. treatment did not induce weight gain or hyperphagia. Molecularly, in females OLA failed to diminish hypothalamic phospho-AMPK or elevate BAT UCP-1 and energy expenditure (EE) despite the preservation of iWAT browning. Conversely, OLA i.p. treatment in ovariectomized mice reduced hypothalamic phospho-AMPK, increased BAT/iWAT UCP-1 and EE, and induced weight loss as occurred in males. Pretreatment of hypothalamic neurons with 17ß-estradiol (E2) abolished OLA effects on AMPK. Moreover, neither hypothalamic JNK activation nor hepatic FAS upregulation were found in WT and PTP1B-KO females receiving OLA via i.p. Importantly, this axis was reestablished upon ovariectomy. In this line, E2 prevented OLA-induced phospho-JNK in hypothalamic neurons. These results support the role of estrogens in sex-related dimorphism in OLA treatment. This study evidenced the benefit of OLA i.p. administration in preventing its obesogenic effects in female mice that could offer clinical value.


Assuntos
Tecido Adiposo Marrom , Estrogênios , Hipotálamo , Fígado , Camundongos Knockout , Olanzapina , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Proteína Desacopladora 1 , Animais , Feminino , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Camundongos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Estrogênios/metabolismo , Estrogênios/farmacologia , Olanzapina/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Masculino , Metabolismo Energético/efeitos dos fármacos , Injeções Intraperitoneais , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Estradiol/farmacologia , Ovariectomia
15.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 627-635, 2024 Apr 20.
Artigo em Chinês | MEDLINE | ID: mdl-38708494

RESUMO

OBJECTIVE: To explore the pathogenic roles of miR-21, estrogen (E2), and estrogen receptor (ER) in adenomyosis. METHODS: We examined the expression levels of miR-21 in specimens of adenomyotic tissue and benign cervical lesions using qRT-PCR. In primary cultures of cells isolated from the adenomyosis lesions, the effect of ICI82780 (an ER inhibitor) on miR-21 expression levels prior to E2 activation or after E2 deprivation were examined with qRT-PCR. We further assessed the effects of a miR-21 mimic or an inhibitor on proliferation, apoptosis, migration and autophagy of the cells. RESULTS: The expression level of miR-21 was significantly higher in adenomyosis tissues than in normal myometrium (P < 0.05). In the cells isolated from adenomyosis lesions, miR-21 expression level was significantly higher in E2 activation group than in ER inhibition + E2 activation group and the control group (P < 0.05); miR-21 expression level was significantly lower in cells in E2 deprivation+ER inhibition group than in E2 deprivation group and the control group (P < 0.05). The adenomyosis cells transfected with miR-21 inhibitor showed inhibited proliferation and migration, expansion of mitochondrial endoplasmic reticulum, increased lysosomes, presence of autophagosomes, and increased cell apoptosis, while transfection of the cells with the miR-21 mimic produced the opposite effects. CONCLUSION: MiR-21 plays an important role in promoting proliferation, migration, and antiapoptosis in adenomyosis cells by altering the cell ultrastructure, which may contribute to early pathogenesis of the disease. In addition to binding with E2, ER can also regulate miR-21 through other pathways to participate in the pathogenesis of adenomyosis, thus having a stronger regulatory effect on miR-21 than E2.


Assuntos
Adenomiose , Apoptose , Proliferação de Células , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Feminino , Adenomiose/metabolismo , Adenomiose/genética , Adenomiose/patologia , Estrogênios/metabolismo , Autofagia , Movimento Celular , Receptores de Estrogênio/metabolismo , Miométrio/metabolismo , Miométrio/patologia
16.
Pharmacol Res ; 204: 107201, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704108

RESUMO

Neuropsychiatric disorders shorten human life spans through multiple ways and become major threats to human health. Exercise can regulate the estrogen signaling, which may be involved in depression, Alzheimer's disease (AD) and Parkinson's disease (PD), and other neuropsychiatric disorders as well in their sex differences. In nervous system, estrogen is an important regulator of cell development, synaptic development, and brain connectivity. Therefore, this review aimed to investigate the potential of estrogen system in the exercise intervention of neuropsychiatric disorders to better understand the exercise in neuropsychiatric disorders and its sex specific. Exercise can exert a protective effect in neuropsychiatric disorders through regulating the expression of estrogen and estrogen receptors, which are involved in neuroprotection, neurodevelopment, and neuronal glucose homeostasis. These processes are mediated by the downstream factors of estrogen signaling, including N-myc downstream regulatory gene 2 (Ndrg2), serotonin (5-HT), delta like canonical Notch ligand 1 (DLL1), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), etc. In addition, exercise can act on the estrogen response element (ERE) fragment in the genes of estrogenic downstream factors like ß-amyloid precursor protein cleavase 1 (BACE1). However, there are few studies on the relationship between exercise, the estrogen signaling pathway, and neuropsychiatric disorders. Hence, we review how the estrogen signaling mediates the mechanism of exercise intervention in neuropsychiatric disorders. We aim to provide a theoretical perspective for neuropsychiatric disorders affecting female health and provide theoretical support for the design of exercise prescriptions.


Assuntos
Estrogênios , Transtornos Mentais , Humanos , Estrogênios/metabolismo , Animais , Transtornos Mentais/metabolismo , Transtornos Mentais/terapia , Exercício Físico/fisiologia , Terapia por Exercício , Transdução de Sinais , Receptores de Estrogênio/metabolismo
17.
BMC Biol ; 22(1): 77, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589878

RESUMO

BACKGROUND: Ten percent of the female population suffers from congenital abnormalities of the vagina, uterus, or oviducts, with severe consequences for reproductive and psychological health. Yet, the underlying causes of most of these malformations remain largely unknown. ADGRA3 (GPR125) is involved in WNT signaling and planar cell polarity, mechanisms vital to female reproductive tract development. Although ADGRA3 is a well-established spermatogonial stem cell marker, its role within the female urogenital system remains unclear. RESULTS: In this study, we found Adgra3 to be expressed throughout the murine female urogenital system, with higher expression pre-puberty than after sexual maturation. We generated a global Adgra3-/- mouse line and observed imperforate vagina in 44% of Adgra3-/- females, resulting in distension of the reproductive tract and infertility. Ovarian morphology, plasma estradiol, ovarian Cyp19a1, and vaginal estrogen receptor α (Esr1) expression were unaffected. However, compared to controls, a significantly lower bone mineral density was found in Adgra3-/- mice. Whereas vaginal opening in mice is an estrogen-dependent process, 17ß-estradiol treatment failed to induce vaginal canalization in Adgra3-/- mice. Furthermore, a marked reduction in vaginal and ovarian progesterone receptor expression was observed concomitant with an upregulation of apoptotic regulators Bcl2, Bid, and Bmf in adult Adgra3-/- females with a closed vagina. CONCLUSIONS: Our collective results shed new insights into the complex mechanisms by which the adhesion receptor ADGRA3 regulates distal vaginal tissue remodeling during vaginal canalization via altered sex hormone responsiveness and balance in apoptotic regulators. This highlights the potential of ADGRA3 as a target in diagnostic screening and/or therapy for obstructive vaginal malformations in humans.


Assuntos
Estrogênios , Vagina , Humanos , Animais , Camundongos , Feminino , Incidência , Vagina/anormalidades , Estrogênios/metabolismo , Útero/metabolismo , Estradiol/farmacologia
18.
Cell Commun Signal ; 22(1): 235, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643161

RESUMO

BACKGROUND: Antral follicles consist of an oocyte cumulus complex surrounding by somatic cells, including mural granulosa cells as the inner layer and theca cells as the outsider layer. The communications between oocytes and granulosa cells have been extensively explored in in vitro studies, however, the role of oocyte-derived factor GDF9 on in vivo antral follicle development remains elusive due to lack of an appropriate animal model. Clinically, the phenotype of GDF9 variants needs to be determined. METHODS: Whole-exome sequencing (WES) was performed on two unrelated infertile women characterized by an early rise of estradiol level and defect in follicle enlargement. Besides, WES data on 1,039 women undergoing ART treatment were collected. A Gdf9Q308X/S415T mouse model was generated based on the variant found in one of the patients. RESULTS: Two probands with bi-allelic GDF9 variants (GDF9His209GlnfsTer6/S428T, GDF9Q321X/S428T) and eight GDF9S428T heterozygotes with normal ovarian response were identified. In vitro experiments confirmed that these variants caused reduction of GDF9 secretion, and/or alleviation in BMP15 binding. Gdf9Q308X/S415T mouse model was constructed, which recapitulated the phenotypes in probands with abnormal estrogen secretion and defected follicle enlargement. Further experiments in mouse model showed an earlier expression of STAR in small antral follicles and decreased proliferative capacity in large antral follicles. In addition, RNA sequencing of granulosa cells revealed the transcriptomic profiles related to defective follicle enlargement in the Gdf9Q308X/S415T group. One of the downregulated genes, P4HA2 (a collagen related gene), was found to be stimulated by GDF9 protein, which partly explained the phenotype of defective follicle enlargement. CONCLUSIONS: GDF9 bi-allelic variants contributed to the defect in antral follicle development. Oocyte itself participated in the regulation of follicle development through GDF9 paracrine effect, highlighting the essential role of oocyte-derived factors on ovarian response.


Assuntos
Infertilidade Feminina , Camundongos , Animais , Feminino , Humanos , Infertilidade Feminina/metabolismo , Folículo Ovariano/metabolismo , Oócitos/química , Oócitos/metabolismo , Células da Granulosa/metabolismo , Estrogênios/metabolismo , Fator 9 de Diferenciação de Crescimento/genética , Fator 9 de Diferenciação de Crescimento/análise , Fator 9 de Diferenciação de Crescimento/metabolismo
19.
Zebrafish ; 21(2): 223-230, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621217

RESUMO

Obesity is a public health concern resulting in a variety of health complications, including heart disease and insulin resistance. Estrogens have been associated with a reduced risk of obesity, but this relationship remains incompletely understood. We assessed the role of 17ß-estradiol (E2) in mitigating complications associated with obesity by supplementing E2 in the diets of overfed zebrafish. We report that dietary E2 supplementation protects against weight gain and modulates de novo cholesterol synthesis in a sex-specific manner. Our studies lead us to propose a model in which E2 regulates hmgcr expression independently of unsaturated fat consumption. These data can be used to develop sex-specific treatments for obesity-related health conditions.


Assuntos
Gorduras Insaturadas , Peixe-Zebra , Masculino , Feminino , Animais , Peixe-Zebra/metabolismo , Gorduras Insaturadas/metabolismo , Estradiol/farmacologia , Estradiol/metabolismo , Estrogênios/metabolismo , Obesidade/etiologia , Colesterol/metabolismo , Suplementos Nutricionais
20.
Cell Reprogram ; 26(2): 79-84, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579133

RESUMO

Cumulus cells (CCs) synthesize estrogens that are essential for follicular development. However, the effects of androgen on estrogen production in buffalo CCs remain unknown. In the present study, the impacts of testosterone on estrogen synthesis of buffalo CCs surrounding in vitro-matured oocytes were investigated. The results showed that testosterone supplementation improved both the expression levels of estrogen synthesis-related genes (CYP11A1, CYP19A1, and 17ß-HSD) and the secretion levels of estradiol in buffalo CCs surrounding in vitro-matured oocytes. Furthermore, testosterone treatment enhanced the sensitivity of buffalo CCs surrounding in vitro-matured oocytes to follicle-stimulating hormone (FSH). This study indicated that testosterone supplementation promoted the estrogen synthesis of buffalo CCs surrounding in vitro-matured oocytes mainly through strengthening the responsiveness of CCs to FSH. The present study serves as a foundation of acquiring high-quality recipient oocytes for buffalo somatic cell nuclear transfer.


Assuntos
Búfalos , Testosterona , Feminino , Animais , Testosterona/farmacologia , Testosterona/metabolismo , Células do Cúmulo , Oócitos , Hormônio Foliculoestimulante/farmacologia , Hormônio Foliculoestimulante/metabolismo , Suplementos Nutricionais , Estrogênios/farmacologia , Estrogênios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...