Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 613(7942): 187-194, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36544021

RESUMO

R-loops are RNA-DNA-hybrid-containing nucleic acids with important cellular roles. Deregulation of R-loop dynamics can lead to DNA damage and genome instability1, which has been linked to the action of endonucleases such as XPG2-4. However, the mechanisms and cellular consequences of such processing have remained unclear. Here we identify a new population of RNA-DNA hybrids in the cytoplasm that are R-loop-processing products. When nuclear R-loops were perturbed by depleting the RNA-DNA helicase senataxin (SETX) or the breast cancer gene BRCA1 (refs. 5-7), we observed XPG- and XPF-dependent cytoplasmic hybrid formation. We identify their source as a subset of stable, overlapping nuclear hybrids with a specific nucleotide signature. Cytoplasmic hybrids bind to the pattern recognition receptors cGAS and TLR3 (ref. 8), activating IRF3 and inducing apoptosis. Excised hybrids and an R-loop-induced innate immune response were also observed in SETX-mutated cells from patients with ataxia oculomotor apraxia type 2 (ref. 9) and in BRCA1-mutated cancer cells10. These findings establish RNA-DNA hybrids as immunogenic species that aberrantly accumulate in the cytoplasm after R-loop processing, linking R-loop accumulation to cell death through the innate immune response. Aberrant R-loop processing and subsequent innate immune activation may contribute to many diseases, such as neurodegeneration and cancer.


Assuntos
Citoplasma , DNA , Reconhecimento da Imunidade Inata , Ácidos Nucleicos Heteroduplexes , Estruturas R-Loop , RNA , Humanos , Apoptose , Citoplasma/imunologia , Citoplasma/metabolismo , DNA/química , DNA/imunologia , DNA Helicases/genética , DNA Helicases/metabolismo , Genes BRCA1 , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , Mutação , Neoplasias , Ácidos Nucleicos Heteroduplexes/química , Ácidos Nucleicos Heteroduplexes/imunologia , Estruturas R-Loop/imunologia , RNA/química , RNA/imunologia , RNA Helicases/genética , RNA Helicases/metabolismo , Ataxias Espinocerebelares/genética
2.
Nat Immunol ; 23(1): 99-108, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34937926

RESUMO

Enzymes of the TET family are methylcytosine dioxygenases that undergo frequent mutational or functional inactivation in human cancers. Recurrent loss-of-function mutations in TET proteins are frequent in human diffuse large B cell lymphoma (DLBCL). Here, we investigate the role of TET proteins in B cell homeostasis and development of B cell lymphomas with features of DLBCL. We show that deletion of Tet2 and Tet3 genes in mature B cells in mice perturbs B cell homeostasis and results in spontaneous development of germinal center (GC)-derived B cell lymphomas with increased G-quadruplexes and R-loops. At a genome-wide level, G-quadruplexes and R-loops were associated with increased DNA double-strand breaks (DSBs) at immunoglobulin switch regions. Deletion of the DNA methyltransferase DNMT1 in TET-deficient B cells prevented expansion of GC B cells, diminished the accumulation of G-quadruplexes and R-loops and delayed B lymphoma development, consistent with the opposing functions of DNMT and TET enzymes in DNA methylation and demethylation. Clustered regularly interspaced short palindromic repeats (CRISPR)-mediated depletion of nucleases and helicases that regulate G-quadruplexes and R-loops decreased the viability of TET-deficient B cells. Our studies suggest a molecular mechanism by which TET loss of function might predispose to the development of B cell malignancies.


Assuntos
Linfócitos B/imunologia , Carcinogênese/imunologia , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/imunologia , Dioxigenases/imunologia , Homeostase/imunologia , Estruturas R-Loop/imunologia , Animais , Diferenciação Celular/imunologia , Metilação de DNA/imunologia , Quadruplex G , Centro Germinativo/imunologia , Camundongos , Camundongos Endogâmicos C57BL
3.
Methods Mol Biol ; 2161: 195-207, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32681514

RESUMO

Formation of DNA:RNA hybrids or R-loops contributes to numerous biologic processes. The development of the S9.6 antibody makes the analysis of R-Loops (DNA:RNA hybrids) possible through immunoprecipitation. Here, we describe the isolation of DNA:RNA hybrid structures using the S9.6 antibody. Using this protocol, both the DNA and RNA binding partners of the R-loop can be analyzed via qPCR, whole genome sequencing, or other methods.


Assuntos
Anticorpos/imunologia , Imunoprecipitação/métodos , Estruturas R-Loop/imunologia , DNA/química , Células HEK293 , Humanos , RNA/química , Análise de Sequência de RNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...