Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.306
Filtrar
1.
Theranostics ; 14(9): 3439-3469, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948053

RESUMO

Rationale: Synergic reprogramming of metabolic dominates neuroblastoma (NB) progression. It is of great clinical implications to develop an individualized risk prognostication approach with stratification-guided therapeutic options for NB based on elucidating molecular mechanisms of metabolic reprogramming. Methods: With a machine learning-based multi-step program, the synergic mechanisms of metabolic reprogramming-driven malignant progression of NB were elucidated at single-cell and metabolite flux dimensions. Subsequently, a promising metabolic reprogramming-associated prognostic signature (MPS) and individualized therapeutic approaches based on MPS-stratification were developed and further validated independently using pre-clinical models. Results: MPS-identified MPS-I NB showed significantly higher activity of metabolic reprogramming than MPS-II counterparts. MPS demonstrated improved accuracy compared to current clinical characteristics [AUC: 0.915 vs. 0.657 (MYCN), 0.713 (INSS-stage), and 0.808 (INRG-stratification)] in predicting prognosis. AZD7762 and etoposide were identified as potent therapeutics against MPS-I and II NB, respectively. Subsequent biological tests revealed AZD7762 substantially inhibited growth, migration, and invasion of MPS-I NB cells, more effectively than that of MPS-II cells. Conversely, etoposide had better therapeutic effects on MPS-II NB cells. More encouragingly, AZD7762 and etoposide significantly inhibited in-vivo subcutaneous tumorigenesis, proliferation, and pulmonary metastasis in MPS-I and MPS-II samples, respectively; thereby prolonging survival of tumor-bearing mice. Mechanistically, AZD7762 and etoposide-induced apoptosis of the MPS-I and MPS-II cells, respectively, through mitochondria-dependent pathways; and MPS-I NB resisted etoposide-induced apoptosis by addiction of glutamate metabolism and acetyl coenzyme A. MPS-I NB progression was fueled by multiple metabolic reprogramming-driven factors including multidrug resistance, immunosuppressive and tumor-promoting inflammatory microenvironments. Immunologically, MPS-I NB suppressed immune cells via MIF and THBS signaling pathways. Metabolically, the malignant proliferation of MPS-I NB cells was remarkably supported by reprogrammed glutamate metabolism, tricarboxylic acid cycle, urea cycle, etc. Furthermore, MPS-I NB cells manifested a distinct tumor-promoting developmental lineage and self-communication patterns, as evidenced by enhanced oncogenic signaling pathways activated with development and self-communications. Conclusions: This study provides deep insights into the molecular mechanisms underlying metabolic reprogramming-mediated malignant progression of NB. It also sheds light on developing targeted medications guided by the novel precise risk prognostication approaches, which could contribute to a significantly improved therapeutic strategy for NB.


Assuntos
Progressão da Doença , Etoposídeo , Neuroblastoma , Microambiente Tumoral , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Microambiente Tumoral/efeitos dos fármacos , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Etoposídeo/farmacologia , Etoposídeo/uso terapêutico , Prognóstico , Reprogramação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Terapia de Alvo Molecular/métodos , Aprendizado de Máquina , Apoptose/efeitos dos fármacos , Reprogramação Metabólica
2.
J Immunother Cancer ; 12(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38955418

RESUMO

PURPOSE: Small-cell lung cancer (SCLC) is an aggressive disease with a dismal prognosis. The addition of immune checkpoints inhibitors to standard platinum-based chemotherapy in first-line setting achieves a durable benefit only in a patient subgroup. Thus, the identification of predictive biomarkers is an urgent unmet medical need. EXPERIMENTAL DESIGN: Tumor samples from naive extensive-stage (ES) SCLC patients receiving atezolizumab plus carboplatin-etoposide were analyzed by gene expression profiling and two 9-color multiplex immunofluorescence panels, to characterize the immune infiltrate and SCLC subtypes. Associations of tissue biomarkers with time-to-treatment failure (TTF), progression-free survival (PFS) and overall survival (OS), were assessed. RESULTS: 42 patients were included. Higher expression of exhausted CD8-related genes was independently associated with a longer TTF and PFS while increased density of B lymphocytes correlated with longer TTF and OS. Higher percentage of M2-like macrophages close to tumor cells and of CD8+T cells close to CD4+T lymphocytes correlated with increased risk of TF and longer survival, respectively. A lower risk of TF, disease progression and death was associated with a higher density of ASCL1+tumor cells while the expression of POU2F3 correlated with a shorter survival. A composite score combining the expression of exhausted CD8-related genes, B lymphocyte density, ASCL1 tumor expression and quantification of CD163+macrophages close to tumor cells, was able to stratify patients into high-risk and low-risk groups. CONCLUSIONS: In conclusion, we identified tissue biomarkers and a combined score that can predict a higher benefit from chemoimmunotherapy in ES-SCLC patients.


Assuntos
Anticorpos Monoclonais Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica , Carboplatina , Etoposídeo , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Microambiente Tumoral , Humanos , Carboplatina/uso terapêutico , Carboplatina/administração & dosagem , Carboplatina/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Masculino , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Feminino , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/imunologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Etoposídeo/uso terapêutico , Etoposídeo/farmacologia , Etoposídeo/administração & dosagem , Idoso , Pessoa de Meia-Idade , Perfilação da Expressão Gênica/métodos , Adulto , Estadiamento de Neoplasias
3.
Front Immunol ; 15: 1338162, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957470

RESUMO

Introduction: Chemoresistance constitutes a prevalent factor that significantly impacts thesurvival of patients undergoing treatment for smal-cell lung cancer (SCLC). Chemotherapy resistance in SCLC patients is generally classified as primary or acquired resistance, each governedby distinct mechanisms that remain inadequately researched. Methods: In this study, we performed transcriptome screening of peripheral blood plasma obtainedfrom 17 patients before and after receiving combined etoposide and platinum treatment. We firs testimated pseudo-single-cell analysis using xCell and ESTIMATE and identified differentially expressed genes (DEGs), then performed network analysis to discover key hub genes involved in chemotherapy resistance. Results: Our analysis showed a significant increase in class-switched memory B cell scores acrossboth chemotherapy resistance patterns, indicating their potential crucial role in mediatingresistance. Moreover, network analysis identifed PRICKLE3, TNFSFI0, ACSLl and EP300 as potential contributors to primary resistance, with SNWl, SENP2 and SMNDCl emerging assignificant factors in acquired resistance, providing valuable insights into chemotherapy resistancein SCLC. Discussion: These findings offer valuable insights for understanding chemotherapy resistance and related gene signatures in SCLC, which could help further biological validation studies.


Assuntos
Biomarcadores Tumorais , Resistencia a Medicamentos Antineoplásicos , Perfilação da Expressão Gênica , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Transcriptoma , Humanos , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/sangue , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/sangue , Resistencia a Medicamentos Antineoplásicos/genética , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Feminino , Masculino , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Etoposídeo/uso terapêutico , Etoposídeo/farmacologia
4.
BMB Rep ; 57(6): 299-304, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38835116

RESUMO

Upregulation of PRAME (preferentially expressed antigen of melanoma) has been implicated in the progression of a variety of cancers, including melanoma. The tumor suppressor p53 is a transcriptional regulator that mediates cell cycle arrest and apoptosis in response to stress signals. Here, we report that PRAME is a novel repressive target of p53. This was supported by analysis of melanoma cell lines carrying wild-type p53 and human melanoma databases. mRNA expression of PRAME was downregulated by p53 overexpression and activation using DNA-damaging agents, but upregulated by p53 depletion. We identified a p53-responsive element (p53RE) in the promoter region of PRAME. Luciferase and ChIP assays showed that p53 represses the transcriptional activity of the PRAME promoter and is recruited to the p53RE together with HDAC1 upon etoposide treatment. The functional significance of p53 activationmediated PRAME downregulation was demonstrated by measuring colony formation and p27 expression in melanoma cells. These data suggest that p53 activation, which leads to PRAME downregulation, could be a therapeutic strategy in melanoma cells. [BMB Reports 2024; 57(6): 299-304].


Assuntos
Antígenos de Neoplasias , Melanoma , Regiões Promotoras Genéticas , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/metabolismo , Melanoma/metabolismo , Melanoma/genética , Melanoma/patologia , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/genética , Linhagem Celular Tumoral , Regiões Promotoras Genéticas/genética , Regulação Neoplásica da Expressão Gênica , Etoposídeo/farmacologia , Histona Desacetilase 1/metabolismo , Regulação para Baixo/efeitos dos fármacos
5.
Langmuir ; 40(24): 12792-12801, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38848468

RESUMO

Herein, we constructed the branch-shaped SiO2/nano GO (nGO)/Fe3O4/selenium quantum dots (QDs) (SeQDs) nanoparticles (SGF/SeQDs) embodying magnetism, fluorescence, and microwave stimulus response properties to enhance the performance of releasing drugs. The SGF/SeQDs composite was characterized by technologies including powder X-ray diffraction, transmission electron microscopy, infrared spectroscopy, etc. In the nanoparticles, the branch-shaped SiO2 provides a large specific surface area, nGO as the dielectric loss-style material promotes microwave-absorbing performance, and the Fe3O4 serves as a magnetic targeting agent and microwave absorber. Integrating nGO and Fe3O4 could further strengthen the microwave absorption of the entire composite; selenium features both fluorescence and anticancer effects. The synthesized nanoparticles as carriers exhibited a branch-like mesoporous sphere of ∼260 nm, a specific surface area of 258.57 m2 g-1, a saturation magnetization of 24.59 emu g-1, and good microwave thermal conversion performance that the temperature was elevated from 25 to 70 °C under microwave irradiation. These physical characteristics, including large pore volume (5.30 nm), high specific surface area, and fibrous morphology, are in favor of loading drugs. Meanwhile, the cumulative etoposide (VP16) loading rate of the nanoparticles reached to 21 wt % after 360 min. The noncovalent interaction between the VP16 and SGF/SeQDs was mainly the hydrogen-bonding effect during the loading process. Furthermore, the drug release rates at 180 min were up to 81.46, 61.92, and 56.84 wt % at pH 4, 5, and 7, respectively. At 25, 37, and 50 °C, the rates of drug release reach 25.40, 56.84, and 65.32 wt %, respectively. After microwave stimulation at pH 7, the rate of releasing drug increased distinctly from 56.84 to 71.74 wt % compared to that of nonmicrowave irradiation. Cytotoxicity tests manifested that the carrier had good biocompatibility. Therefore, the nanoparticles are looking forward to paving one platform for further applications in biomedicine and drug delivery systems.


Assuntos
Portadores de Fármacos , Pontos Quânticos , Selênio , Dióxido de Silício , Dióxido de Silício/química , Portadores de Fármacos/química , Portadores de Fármacos/síntese química , Humanos , Pontos Quânticos/química , Pontos Quânticos/toxicidade , Selênio/química , Micro-Ondas , Liberação Controlada de Fármacos , Nanopartículas/química , Sobrevivência Celular/efeitos dos fármacos , Etoposídeo/química , Etoposídeo/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Tamanho da Partícula , Propriedades de Superfície , Óxido Ferroso-Férrico/química
6.
Life Sci Alliance ; 7(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38843934

RESUMO

RNA-binding proteins are frequently deregulated in cancer and emerge as effectors of the DNA damage response (DDR). The non-POU domain-containing octamer-binding protein NONO/p54nrb is a multifunctional RNA-binding protein that not only modulates the production and processing of mRNA, but also promotes the repair of DNA double-strand breaks (DSBs). Here, we investigate the impact of Nono deletion in the murine KP (KRas G12D , Trp53 -/- ) cell-based lung cancer model. We show that the deletion of Nono impairs the response to DNA damage induced by the topoisomerase II inhibitor etoposide or the radiomimetic drug bleomycin. Nono-deficient KP (KPN) cells display hyperactivation of DSB signalling and high levels of DSBs. The defects in the DDR are accompanied by reduced RNA polymerase II promoter occupancy, impaired nascent RNA synthesis, and attenuated induction of the DDR factor growth arrest and DNA damage-inducible beta (Gadd45b). Our data characterise Gadd45b as a putative Nono-dependent effector of the DDR and suggest that Nono mediates a genome-protective crosstalk of the DDR with the RNA metabolism via induction of Gadd45b.


Assuntos
Dano ao DNA , Reparo do DNA , Proteínas de Ligação a RNA , Animais , Camundongos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Quebras de DNA de Cadeia Dupla , Antígenos de Diferenciação/metabolismo , Antígenos de Diferenciação/genética , Bleomicina/farmacologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Etoposídeo/farmacologia , Transdução de Sinais , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Linhagem Celular Tumoral , RNA Polimerase II/metabolismo , Humanos , Proteínas GADD45
7.
Mol Pharmacol ; 106(1): 33-46, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38719474

RESUMO

DNA topoisomerase IIα (TOP2α; 170 kDa, TOP2α/170) is an essential enzyme for proper chromosome dysjunction by producing transient DNA double-stranded breaks and is an important target for DNA damage-stabilizing anticancer agents, such as etoposide. Therapeutic effects of TOP2α poisons can be limited due to acquired drug resistance. We previously demonstrated decreased TOP2α/170 levels in an etoposide-resistant human leukemia K562 subline, designated K/VP.5, accompanied by increased expression of a C-terminal truncated TOP2α isoform (90 kDa; TOP2α/90), which heterodimerized with TOP2α/170 and was a determinant of resistance by exhibiting dominant-negative effects against etoposide activity. Based on 3'-rapid amplification of cDNA ends, we confirmed TOP2α/90 as the translation product of a TOP2α mRNA in which a cryptic polyadenylation site (PAS) harbored in intron 19 (I19) was used. In this report, we investigated whether the resultant intronic polyadenylation (IPA) would be attenuated by blocking or mutating the I19 PAS, thereby circumventing acquired drug resistance. An antisense morpholino oligonucleotide was used to hybridize/block the PAS in TOP2α pre-mRNA in K/VP.5 cells, resulting in decreased TOP2α/90 mRNA/protein levels in K/VP.5 cells and partially circumventing drug resistance. Subsequently, CRISPR/CRISPR-associated protein 9 with homology-directed repair was used to mutate the cryptic I19 PAS (AATAAA→ACCCAA) to prevent IPA. Gene-edited clones exhibited increased TOP2α/170 and decreased TOP2α/90 mRNA/protein and demonstrated restored sensitivity to etoposide and other TOP2α-targeted drugs. Together, results indicated that blocking/mutating a cryptic I19 PAS in K/VP.5 cells reduced IPA and restored sensitivity to TOP2α-targeting drugs. SIGNIFICANCE STATEMENT: The results presented in this study indicate that CRISPR/CRISPR-associated protein 9 gene editing of a cryptic polyadenylation site (PAS) within I19 of the TOP2α gene results in the reversal of acquired resistance to etoposide and other TOP2-targeted drugs. An antisense morpholino oligonucleotide targeting the PAS also partially circumvented resistance.


Assuntos
DNA Topoisomerases Tipo II , Resistencia a Medicamentos Antineoplásicos , Etoposídeo , Íntrons , Poliadenilação , Humanos , Etoposídeo/farmacologia , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células K562 , Poliadenilação/efeitos dos fármacos , Poliadenilação/genética , Íntrons/genética , Sistemas CRISPR-Cas
8.
Br J Cancer ; 131(1): 90-100, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38806726

RESUMO

BACKGROUND: Intrinsic and extrinsic factors in the tumour microenvironment (TME) contribute to therapeutic resistance. Here we demonstrate that transforming growth factor (TGF)-ß1 produced in the TME increased drug resistance of neuroblastoma (NB) cells. METHODS: Human NB cell lines were tested in vitro for their sensitivity to Doxorubicin (DOX) and Etoposide (ETOP) in the presence of tumour-associated macrophages (TAM) and mesenchymal stromal cells/cancer-associated fibroblasts (MSC/CAF). These experiments were validated in xenotransplanted and primary tumour samples. RESULTS: Drug resistance was associated with an increased expression of efflux transporter and anti-apoptotic proteins. Upregulation was dependent on activation of nuclear factor (NF)-κB by TGF-ß-activated kinase (TAK1) and SMAD2. Resistance was reversed upon pharmacologic and genetic inhibitions of NF-κB, and TAK1/SMAD2. Interleukin-6, leukaemia inhibitory factor and oncostatin M were upregulated by this TGF-ß/TAK1/NF-κB/SMAD2 signalling pathway contributing to drug resistance via an autocrine loop activating STAT3. An analysis of xenotransplanted NB tumours revealed an increased presence of phospho (p)-NF-κB in tumours co-injected with MSC/CAF and TAM, and these tumours failed to respond to Etoposide but responded if treated with a TGF-ßR1/ALK5 inhibitor. Nuclear p-NF-κB was increased in patient-derived tumours rich in TME cells. CONCLUSIONS: The data provides a novel insight into a targetable mechanism of environment-mediated drug resistance.


Assuntos
Doxorrubicina , Resistencia a Medicamentos Antineoplásicos , NF-kappa B , Neuroblastoma , Fator de Crescimento Transformador beta1 , Microambiente Tumoral , Humanos , Microambiente Tumoral/efeitos dos fármacos , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , NF-kappa B/metabolismo , Animais , Fator de Crescimento Transformador beta1/metabolismo , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Camundongos , Etoposídeo/farmacologia , Transdução de Sinais/efeitos dos fármacos , MAP Quinase Quinase Quinases/metabolismo , Proteína Smad2/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Am J Physiol Lung Cell Mol Physiol ; 327(1): L126-L139, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38771153

RESUMO

Loss of proteostasis and cellular senescence have been previously established as characteristics of aging; however, their interaction in the context of lung aging and potential contributions to aging-associated lung remodeling remains understudied. In this study, we aimed to characterize endoplasmic reticulum (ER) stress response, cellular senescence, and their interaction in relation to extracellular matrix (ECM) production in lung fibroblasts from young (25-45 yr) and old (>60 yr) humans. Fibroblasts from young and old patients without significant preexisting lung disease were exposed to vehicle, MG132, etoposide, or salubrinal. Afterward, cells and cell lysates or supernatants were analyzed for ER stress, cellular senescence, and ECM changes using protein analysis, proliferation assay, and senescence-associated beta-galactosidase (SA-ß-Gal) staining. At baseline, fibroblasts from aging individuals showed increased levels of ER stress (ATF6 and PERK), senescence (p21 and McL-1), and ECM marker (COL1A1) compared to those from young individuals. Upon ER stress induction and etoposide exposure, fibroblasts showed an increase in senescence (SA-ß-Gal, p21, and Cav-1), ER stress (PERK), and ECM markers (COL1A1 and LUM) compared to vehicle. Additionally, IL-6 and IL-8 levels were increased in the supernatants of MG132- and etoposide-treated fibroblasts, respectively. Finally, the ER stress inhibitor salubrinal decreased the expression of p21 compared to vehicle and MG132 treatments; however, salubrinal inhibited COL1A1 but not p21 expression in MG132-treated fibroblasts. Our study suggests that ER stress response plays an important role in establishment and maintenance of a senescence phenotype in lung fibroblasts and therefore contributes to altered remodeling in the aging lung.NEW & NOTEWORTHY The current study establishes functional links between endoplasmic reticulum (ER) stress and cellular senescence per se in the specific context of aging human lung fibroblasts. Recognizing that the process of aging per se is complex, modulated by the myriad of lifelong and environmental exposures, it is striking to note that chronic ER stress may play a crucial role in the establishment and maintenance of cellular senescence in lung fibroblasts.


Assuntos
Senescência Celular , Estresse do Retículo Endoplasmático , Fibroblastos , Pulmão , Humanos , Senescência Celular/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Pessoa de Meia-Idade , Pulmão/metabolismo , Pulmão/patologia , Pulmão/efeitos dos fármacos , Adulto , Idoso , Masculino , Feminino , Matriz Extracelular/metabolismo , Tioureia/farmacologia , Tioureia/análogos & derivados , Células Cultivadas , Cinamatos/farmacologia , Fator 6 Ativador da Transcrição/metabolismo , Proliferação de Células/efeitos dos fármacos , Etoposídeo/farmacologia , Colágeno Tipo I/metabolismo , Envelhecimento/metabolismo , Envelhecimento/patologia , Cadeia alfa 1 do Colágeno Tipo I/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , eIF-2 Quinase/metabolismo
10.
Eur J Pharmacol ; 975: 176647, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754534

RESUMO

The emergence of chemoresistance poses a significant challenge to the efficacy of DNA-damaging agents in cancer treatment, in part due to the inherent DNA repair capabilities of cancer cells. The Ku70/80 protein complex (Ku) plays a central role in double-strand breaks (DSBs) repair through the classical non-homologous end joining (c-NHEJ) pathway, and has proven to be one of the most promising drug target for cancer treatment when combined with radiotherapy or chemotherapy. In this study, we conducted a high-throughput screening of small-molecule inhibitors targeting the Ku complex by using a fluorescence polarization-based DNA binding assay. From a library of 11,745 small molecules, UMI-77 was identified as a potent Ku inhibitor, with an IC50 value of 2.3 µM. Surface plasmon resonance and molecular docking analyses revealed that UMI-77 directly bound the inner side of Ku ring, thereby disrupting Ku binding with DNA. In addition, UMI-77 also displayed potent inhibition against MUS81-EME1, a key player in homologous recombination (HR), demonstrating its potential for blocking both NHEJ- and HR-mediated DSB repair pathways. Further cell-based studies showed that UMI-77 could impair bleomycin-induced DNA damage repair, and significantly sensitized multiple cancer cell lines to the DNA-damaging agents. Finally, in a mouse xenograft tumor model, UMI-77 significantly enhanced the chemotherapeutic efficacy of etoposide with little adverse physiological effects. Our work offers a new avenue to combat chemoresistance in cancer treatment, and suggests that UMI-77 could be further developed as a promising candidate in cancer treatment.


Assuntos
Antineoplásicos , Autoantígeno Ku , Humanos , Autoantígeno Ku/metabolismo , Animais , Linhagem Celular Tumoral , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Dano ao DNA/efeitos dos fármacos , Simulação de Acoplamento Molecular , Ensaios Antitumorais Modelo de Xenoenxerto , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Etoposídeo/farmacologia , Descoberta de Drogas , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos
11.
Int J Mol Sci ; 25(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38791158

RESUMO

Triple-negative breast cancer (TNBC) remains the most lethal subtype of breast cancer, characterized by poor response rates to current chemotherapies and a lack of additional effective treatment options. While approximately 30% of patients respond well to anthracycline- and taxane-based standard-of-care chemotherapy regimens, the majority of patients experience limited improvements in clinical outcomes, highlighting the critical need for strategies to enhance the effectiveness of anthracycline/taxane-based chemotherapy in TNBC. In this study, we report on the potential of a DNA-PK inhibitor, peposertib, to improve the effectiveness of topoisomerase II (TOPO II) inhibitors, particularly anthracyclines, in TNBC. Our in vitro studies demonstrate the synergistic antiproliferative activity of peposertib in combination with doxorubicin, epirubicin and etoposide in multiple TNBC cell lines. Downstream analysis revealed the induction of ATM-dependent compensatory signaling and p53 pathway activation under combination treatment. These in vitro findings were substantiated by pronounced anti-tumor effects observed in mice bearing subcutaneously implanted tumors. We established a well-tolerated preclinical treatment regimen combining peposertib with pegylated liposomal doxorubicin (PLD) and demonstrated strong anti-tumor efficacy in cell-line-derived and patient-derived TNBC xenograft models in vivo. Taken together, our findings provide evidence that co-treatment with peposertib has the potential to enhance the efficacy of anthracycline/TOPO II-based chemotherapies, and it provides a promising strategy to improve treatment outcomes for TNBC patients.


Assuntos
Doxorrubicina , Sinergismo Farmacológico , Inibidores da Topoisomerase II , Neoplasias de Mama Triplo Negativas , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Humanos , Animais , Feminino , Camundongos , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/uso terapêutico , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Doxorrubicina/análogos & derivados , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Proteína Quinase Ativada por DNA/metabolismo , Sulfonas/farmacologia , Proliferação de Células/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Polietilenoglicóis/farmacologia , Etoposídeo/farmacologia , Etoposídeo/uso terapêutico , DNA Topoisomerases Tipo II/metabolismo , Epirubicina/farmacologia
12.
Mol Cell Biol ; 44(5): 194-208, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38769646

RESUMO

Cellular senescence is a dynamic biological process triggered by sublethal cell damage and driven by specific changes in gene expression programs. We recently identified ANKRD1 (ankyrin repeat domain 1) as a protein strongly elevated after triggering senescence in fibroblasts. Here, we set out to investigate the mechanisms driving the elevated production of ANKRD1 in the early stages of senescence. Our results indicated that the rise in ANKRD1 levels after triggering senescence using etoposide (Eto) was the result of moderate increases in transcription and translation, and robust mRNA stabilization. Antisense oligomer (ASO) pulldown followed by mass spectrometry revealed a specific interaction of the RNA-binding protein RBMS1 with ANKRD1 mRNA that was confirmed by ribonucleoprotein immunoprecipitation analysis. RBMS1 abundance decreased in the nucleus and increased in the cytoplasm during Eto-induced senescence; in agreement with the hypothesis that RBMS1 may participate in post-transcriptional stabilization of ANKRD1 mRNA, silencing RBMS1 reduced, while overexpressing RBMS1 enhanced ANKRD1 mRNA half-life after Eto treatment. A segment proximal to the ANKRD1 coding region was identified as binding RBMS1 and conferring RBMS1-dependent increased expression of a heterologous reporter. We propose that RBMS1 increases expression of ANKRD1 during the early stages of senescence by stabilizing ANKRD1 mRNA.


Assuntos
Senescência Celular , Proteínas Nucleares , Estabilidade de RNA , RNA Mensageiro , Proteínas de Ligação a RNA , Proteínas Repressoras , Humanos , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Estabilidade de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Etoposídeo/farmacologia , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Núcleo Celular/metabolismo , Linhagem Celular , Proteínas Musculares
13.
Sci Rep ; 14(1): 10835, 2024 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-38736022

RESUMO

Research on the relationships between oligoelements (OE) and the development of cancer or its prevention is a field that is gaining increasing relevance. The aim was to evaluate OE and their interactions with oncology treatments (cytarabine or etoposide) to determine the effects of this combination on biogenic amines and oxidative stress biomarkers in the brain regions of young Wistar rats. Dopamine (DA), 5-Hydroxyindoleacetic acid (5-Hiaa), Glutathione (Gsh), Tiobarbituric acid reactive substances (TBARS) and Ca+2, Mg+2 ATPase enzyme activity were measured in brain regions tissues using spectrophometric and fluorometric methods previously validated. The combination of oligoelements and cytarabine increased dopamine in the striatum but decreased it in cerebellum/medulla-oblongata, whereas the combination of oligoelements and etoposide reduced lipid peroxidation. These results suggest that supplementation with oligoelements modifies the effects of cytarabine and etoposide by redox pathways, and may become promising therapeutic targets in patients with cancer.


Assuntos
Encéfalo , Citarabina , Dopamina , Etoposídeo , Estresse Oxidativo , Ratos Wistar , Animais , Etoposídeo/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Citarabina/farmacologia , Dopamina/metabolismo , Ratos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Masculino , Peroxidação de Lipídeos/efeitos dos fármacos , Suplementos Nutricionais , Glutationa/metabolismo
14.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731850

RESUMO

When new antitumor therapy drugs are discovered, it is essential to address new target molecules from the point of view of chemical structure and to carry out efficient and systematic evaluation. In the case of natural products and derived compounds, it is of special importance to investigate chemomodulation to further explore antitumoral pharmacological activities. In this work, the compound podophyllic aldehyde, a cyclolignan derived from the chemomodulation of the natural product podophyllotoxin, has been evaluated for its viability, influence on the cell cycle, and effects on intracellular signaling. We used functional proteomics characterization for the evaluation. Compared with the FDA-approved drug etoposide (another podophyllotoxin derivative), we found interesting results regarding the cytotoxicity of podophyllic aldehyde. In addition, we were able to observe the effect of mitotic arrest in the treated cells. The use of podophyllic aldehyde resulted in increased cytotoxicity in solid tumor cell lines, compared to etoposide, and blocked the cycle more successfully than etoposide. High-throughput analysis of the deregulated proteins revealed a selective antimitotic mechanism of action of podophyllic aldehyde in the HT-29 cell line, in contrast with other solid and hematological tumor lines. Also, the apoptotic profile of podophyllic aldehyde was deciphered. The cell death mechanism is activated independently of the cell cycle profile. The results of these targeted analyses have also shown a significant response to the signaling of kinases, key proteins involved in signaling cascades for cell proliferation or metastasis. Thanks to this comprehensive analysis of podophyllic aldehyde, remarkable cytotoxic, antimitotic, and other antitumoral features have been discovered that will repurpose this compound for further chemical transformations and antitumoral analysis.


Assuntos
Ciclo Celular , Podofilotoxina , Proteômica , Humanos , Podofilotoxina/farmacologia , Podofilotoxina/análogos & derivados , Podofilotoxina/química , Proteômica/métodos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Etoposídeo/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Células HT29 , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
15.
J Med Chem ; 67(9): 7301-7311, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38635879

RESUMO

Although the selective and effective clearance of senescent cancer cells can improve cancer treatment, their development is confronted by many challenges. As part of efforts designed to overcome these problems, prodrugs, whose design is based on senescence-associated ß-galactosidase (SA-ß-gal), have been developed to selectively eliminate senescent cells. However, chemotherapies relying on targeted molecular inhibitors as senolytic drugs can induce drug resistance. In the current investigation, we devised a new strategy for selective degradation of target proteins in senescent cancer cells that utilizes a prodrug composed of the SA-ß-gal substrate galactose (galacto) and the proteolysis-targeting chimeras (PROTACs) as senolytic agents. Prodrugs Gal-ARV-771 and Gal-MS99 were found to display senolytic indexes higher than those of ARV-771 and MS99. Significantly, results of in vivo studies utilizing a human lung A549 xenograft mouse model demonstrated that concomitant treatment with etoposide and Gal-ARV-771 leads to a significant inhibition of tumor growth without eliciting significant toxicity.


Assuntos
Senescência Celular , Galactose , Pró-Fármacos , Proteólise , Humanos , Animais , Senescência Celular/efeitos dos fármacos , Galactose/química , Galactose/farmacologia , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Pró-Fármacos/uso terapêutico , Camundongos , Proteólise/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , beta-Galactosidase/metabolismo , Camundongos Nus , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células A549 , Etoposídeo/farmacologia , Senoterapia/farmacologia , Senoterapia/química , Quimera de Direcionamento de Proteólise
16.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38674157

RESUMO

Protein tyrosine phosphatase receptor type E (PTPRE) is a member of the "classical" protein tyrosine phosphatase subfamily and regulates a variety of cellular processes in a tissue-specific manner by antagonizing the function of protein tyrosine kinases. PTPRE plays a tumorigenic role in different human cancer cells, but its role in retinoblastoma (RB), the most common malignant eye cancer in children, remains to be elucidated. Etoposide-resistant RB cell lines and RB patients display significant higher PTPRE expression levels compared to chemosensitive counterparts and the healthy human retina, respectively. PTPRE promotor methylation analyses revealed that PTPRE expression in RB is not regulated via this mechanism. Lentiviral PTPRE knockdown (KD) induced a significant decrease in growth kinetics, cell viability, and anchorage-independent growth of etoposide-resistant Y79 and WERI RB cells. Caspase-dependent apoptosis rates were significantly increased and a re-sensitization for etoposide could be observed after PTPRE depletion. In vivo chicken chorioallantoic membrane (CAM) assays revealed decreased tumor formation capacity as well as reduced tumor size and weight following PTPRE KD. Expression levels of miR631 were significantly downregulated in etoposide-resistant RB cells and patients. Transient miR631 overexpression resulted in significantly decreased PTPRE levels and concomitantly decreased proliferation and increased apoptosis levels in etoposide-resistant RB cells. These impacts mirror PTPRE KD effects, indicating a regulation of PTPRE via this miR. Additionally, PTPRE KD led to altered phosphorylation of protein kinase SGK3 and-dependent on the cell line-AKT and ERK1/2, suggesting potential PTPRE downstream signaling pathways. In summary, these results indicate an oncogenic role of PTPRE in chemoresistant retinoblastoma.


Assuntos
Apoptose , Resistencia a Medicamentos Antineoplásicos , Etoposídeo , Neoplasias da Retina , Retinoblastoma , Humanos , Retinoblastoma/metabolismo , Retinoblastoma/genética , Retinoblastoma/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Animais , Apoptose/efeitos dos fármacos , Etoposídeo/farmacologia , Etoposídeo/uso terapêutico , Neoplasias da Retina/metabolismo , Neoplasias da Retina/genética , Neoplasias da Retina/patologia , Neoplasias da Retina/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino
17.
FEBS Open Bio ; 14(6): 1001-1010, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38531625

RESUMO

Myeloperoxidase (MPO) is found almost exclusively in granulocytes and immature myeloid cells. It plays a key role in the innate immune system, catalysing the formation of reactive oxygen species that are important in anti-microbial action, but MPO also oxidatively transforms the topoisomerase II (TOP2) poison etoposide to chemical forms that have elevated DNA damaging properties. TOP2 poisons such as etoposide are widely used anti-cancer drugs, but they are linked to cases of secondary acute myeloid leukaemias through a mechanism that involves DNA damage and presumably erroneous repair leading to leukaemogenic chromosome translocations. This leads to the possibility that myeloperoxidase inhibitors could reduce the rate of therapy-related leukaemia by protecting haematopoietic cells from TOP2 poison-mediated genotoxic damage while preserving the anti-cancer efficacy of the treatment. We show here that myeloperoxidase inhibition reduces etoposide-induced TOP2B-DNA covalent complexes and resulting DNA double-strand break formation in primary ex vivo expanded CD34+ progenitor cells and unfractionated bone marrow mononuclear cells. Since MPO inhibitors are currently being developed as anti-inflammatory agents this raises the possibility that repurposing of these potential new drugs could provide a means of suppressing secondary acute myeloid leukaemias associated with therapies containing TOP2 poisons.


Assuntos
Dano ao DNA , DNA Topoisomerases Tipo II , Etoposídeo , Peroxidase , Proteínas de Ligação a Poli-ADP-Ribose , Etoposídeo/farmacologia , Humanos , Peroxidase/metabolismo , Dano ao DNA/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Inibidores da Topoisomerase II/farmacologia , Antineoplásicos/farmacologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo
18.
J Clin Invest ; 134(10)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451729

RESUMO

Development of effective strategies to manage the inevitable acquired resistance to osimertinib, a third-generation EGFR inhibitor for the treatment of EGFR-mutant (EGFRm) non-small cell lung cancer (NSCLC), is urgently needed. This study reports that DNA topoisomerase II (Topo II) inhibitors, doxorubicin and etoposide, synergistically decreased cell survival, with enhanced induction of DNA damage and apoptosis in osimertinib-resistant cells; suppressed the growth of osimertinib-resistant tumors; and delayed the emergence of osimertinib-acquired resistance. Mechanistically, osimertinib decreased Topo IIα levels in EGFRm NSCLC cells by facilitating FBXW7-mediated proteasomal degradation, resulting in induction of DNA damage; these effects were lost in osimertinib-resistant cell lines that possess elevated levels of Topo IIα. Increased Topo IIα levels were also detected in the majority of tissue samples from patients with NSCLC after relapse from EGFR tyrosine kinase inhibitor treatment. Enforced expression of an ectopic TOP2A gene in sensitive EGFRm NSCLC cells conferred resistance to osimertinib, whereas knockdown of TOP2A in osimertinib-resistant cell lines restored their susceptibility to osimertinib-induced DNA damage and apoptosis. Together, these results reveal an essential role of Topo IIα inhibition in mediating the therapeutic efficacy of osimertinib against EGFRm NSCLC, providing scientific rationale for targeting Topo II to manage acquired resistance to osimertinib.


Assuntos
Acrilamidas , Compostos de Anilina , Carcinoma Pulmonar de Células não Pequenas , DNA Topoisomerases Tipo II , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Neoplasias Pulmonares , Inibidores da Topoisomerase II , Humanos , Acrilamidas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Compostos de Anilina/farmacologia , Receptores ErbB/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/metabolismo , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Linhagem Celular Tumoral , Inibidores da Topoisomerase II/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Animais , Camundongos , Mutação , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Sinergismo Farmacológico , Dano ao DNA , Piperazinas/farmacologia , Etoposídeo/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
J Pharmacol Exp Ther ; 389(2): 186-196, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38508753

RESUMO

DNA topoisomerase IIß (TOP2ß/180; 180 kDa) is a nuclear enzyme that regulates DNA topology by generation of short-lived DNA double-strand breaks, primarily during transcription. TOP2ß/180 can be a target for DNA damage-stabilizing anticancer drugs, whose efficacy is often limited by chemoresistance. Our laboratory previously demonstrated reduced levels of TOP2ß/180 (and the paralog TOP2α/170) in an acquired etoposide-resistant human leukemia (K562) clonal cell line, K/VP.5, in part due to overexpression of microRNA-9-3p/5p impacting post-transcriptional events. To evaluate the effect on drug sensitivity upon reduction/elimination of TOP2ß/180, a premature stop codon was generated at the TOP2ß/180 gene exon 19/intron 19 boundary (AGAA//GTAA→ATAG//GTAA) in parental K562 cells (which contain four TOP2ß/180 alleles) by CRISPR/Cas9 editing with homology-directed repair to disrupt production of full-length TOP2ß/180. Gene-edited clones were identified and verified by quantitative polymerase chain reaction and Sanger sequencing, respectively. Characterization of TOP2ß/180 gene-edited clones, with one or all four TOP2ß/180 alleles mutated, revealed partial or complete loss of TOP2ß mRNA/protein, respectively. The loss of TOP2ß/180 protein correlated with decreased (2-{4-[(7-chloro-2-quinoxalinyl)oxy]phenoxy}propionic acid)-induced DNA damage and partial resistance in growth inhibition assays. Partial resistance to mitoxantrone was also noted in the gene-edited clone with all four TOP2ß/180 alleles modified. No cross-resistance to etoposide or mAMSA was noted in the gene-edited clones. Results demonstrated the role of TOP2ß/180 in drug sensitivity/resistance in K562 cells and revealed differential paralog activity of TOP2-targeted agents. SIGNIFICANCE STATEMENT: Data indicated that CRISPR/Cas9 editing of the exon 19/intron 19 boundary in the TOP2ß/180 gene to introduce a premature stop codon resulted in partial to complete disruption of TOP2ß/180 expression in human leukemia (K562) cells depending on the number of edited alleles. Edited clones were partially resistant to mitoxantrone and XK469, while lacking resistance to etoposide and mAMSA. Results demonstrated the import of TOP2ß/180 in drug sensitivity/resistance in K562 cells and revealed differential paralog activity of TOP2-targeted agents.


Assuntos
Antineoplásicos , Leucemia , Humanos , Etoposídeo/farmacologia , Células K562 , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Mitoxantrona , Sistemas CRISPR-Cas/genética , Códon sem Sentido , Antineoplásicos/farmacologia , DNA , Fenótipo
20.
Ann Agric Environ Med ; 31(1): 37-46, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38549475

RESUMO

INTRODUCTION AND OBJECTIVE: Including additional compounds that disturb the energy metabolism of cancer cells in advanced cancer therapy regimens may be an approach to overcome the problem of drug resistance and the therapeutic effectiveness of classic chemotherapeutics. One of the compounds that decouple oxidative phosphorylation, and thus alter the activity of energy-producing pathways, is 2,4-DNP (2,4- dinitrophenol). OBJECTIVE: The aim of the study was to assess the ability of the 2,4-DNP to sensitize prostate cancer cells to the action of cisplatin and etoposide, or to intensify their action. MATERIAL AND METHODS: The research was carried out on three prostate cancer cell lines (LNCaP, PC-3, DU-145. To assess the effect of cisplatin or etoposide with 2,4-DNP on prostate cancer cells, MTT assay, analysis of the cell cycle and apoptosis detection was performed. Oxidative stress was investigated by CellRox fluorescence staining and expression of genes related to antioxidant defence. In addition, analysis was conducted of the expression of genes related to cell cycle inhibition, transporters associated with multi-drug resistance and DNA repair. RESULTS: The study showed that the simultaneous incubation of 2,4-DNP with cisplatin or etoposide enhances the cytotoxic effect of the chemotherapeutic agent only in LNCaP cells (oxidative phenotype). CONCLUSIONS: The enhanced cytotoxic effect of chemotherapeutics by 2,4-DNP may be the result of disturbed redox balance, reduced ability of cells to repair DNA, and the oxidative metabolic phenotype of prostate cancer cells.


Assuntos
Antineoplásicos , Neoplasias da Próstata , Masculino , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Etoposídeo/farmacologia , Etoposídeo/uso terapêutico , 2,4-Dinitrofenol/farmacologia , 2,4-Dinitrofenol/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Linhagem Celular , Apoptose , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...