Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 42(7): 4160-79, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24464998

RESUMO

Ribonuclease H-like (RNHL) superfamily, also called the retroviral integrase superfamily, groups together numerous enzymes involved in nucleic acid metabolism and implicated in many biological processes, including replication, homologous recombination, DNA repair, transposition and RNA interference. The RNHL superfamily proteins show extensive divergence of sequences and structures. We conducted database searches to identify members of the RNHL superfamily (including those previously unknown), yielding >60 000 unique domain sequences. Our analysis led to the identification of new RNHL superfamily members, such as RRXRR (PF14239), DUF460 (PF04312, COG2433), DUF3010 (PF11215), DUF429 (PF04250 and COG2410, COG4328, COG4923), DUF1092 (PF06485), COG5558, OrfB_IS605 (PF01385, COG0675) and Peptidase_A17 (PF05380). Based on the clustering analysis we grouped all identified RNHL domain sequences into 152 families. Phylogenetic studies revealed relationships between these families, and suggested a possible history of the evolution of RNHL fold and its active site. Our results revealed clear division of the RNHL superfamily into exonucleases and endonucleases. Structural analyses of features characteristic for particular groups revealed a correlation between the orientation of the C-terminal helix with the exonuclease/endonuclease function and the architecture of the active site. Our analysis provides a comprehensive picture of sequence-structure-function relationships in the RNHL superfamily that may guide functional studies of the previously uncharacterized protein families.


Assuntos
Ribonuclease H/química , Ribonuclease H/classificação , Análise por Conglomerados , Evolução Molecular , Exonucleases/classificação , Filogenia , Estrutura Terciária de Proteína , Ribonuclease H/genética , Alinhamento de Sequência
2.
Nucleic Acids Res ; 39(4): 1187-96, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20961958

RESUMO

PD-(D/E)XK nucleases, initially represented by only Type II restriction enzymes, now comprise a large and extremely diverse superfamily of proteins. They participate in many different nucleic acids transactions including DNA degradation, recombination, repair and RNA processing. Different PD-(D/E)XK families, although sharing a structurally conserved core, typically display little or no detectable sequence similarity except for the active site motifs. This makes the identification of new superfamily members using standard homology search techniques challenging. To tackle this problem, we developed a method for the detection of PD-(D/E)XK families based on the binary classification of profile-profile alignments using support vector machines (SVMs). Using a number of both superfamily-specific and general features, SVMs were trained to identify true positive alignments of PD-(D/E)XK representatives. With this method we identified several PFAM families of uncharacterized proteins as putative new members of the PD-(D/E)XK superfamily. In addition, we assigned several unclassified restriction enzymes to the PD-(D/E)XK type. Results show that the new method is able to make confident assignments even for alignments that have statistically insignificant scores. We also implemented the method as a freely accessible web server at http://www.ibt.lt/bioinformatics/software/pdexk/.


Assuntos
Inteligência Artificial , Endonucleases/classificação , Alinhamento de Sequência/métodos , Sequência de Aminoácidos , Domínio Catalítico , Sequência Conservada , Enzimas de Restrição do DNA/química , Enzimas de Restrição do DNA/classificação , Endonucleases/química , Exonucleases/classificação , Resolvases de Junção Holliday/química , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Software
3.
Biochem Biophys Res Commun ; 346(3): 889-95, 2006 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-16782061

RESUMO

Apurinic/apyrimidinic (AP) sites arise in DNA through the spontaneous loss of bases or through the release of damaged bases from DNA by DNA glycosylases. AP sites in DNA can be catalyzed by AP endonucleases such as exonuclease III and endonuclease IV, generating a 3'-hydroxyl group and a 5'-terminal sugar phosphate. Here, we have identified and characterized a novel endonuclease IV from a hyperthermophilic bacterium Thermus thermophilus designated as TthNfo. TthNfo efficiently removed AP site from double-stranded oligonucleotide substrate. No significant difference was observed in the rate of reaction of four bases opposite AP site with TthNfo. In addition, TthNfo possesses a 3'-5' exonuclease activity similar to that of Escherichia coli exonuclease III. Surprisingly, we found that TthNfo also catalyzes the excision of uracil from DNA. In comparison with other endonuclease IV proteins, the removal of uracil residue was unique to TthNfo. Based on these observations and the absence of exonuclease III in T. thermophilus, we suggest that versatile enzyme activities of TthNfo play an important role in counteracting DNA base damage in vivo.


Assuntos
Desoxirribonuclease IV (Fago T4-Induzido)/metabolismo , Exonucleases/metabolismo , Thermus thermophilus/enzimologia , Uracila/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sequência Conservada , DNA/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Desoxirribonuclease IV (Fago T4-Induzido)/química , Desoxirribonuclease IV (Fago T4-Induzido)/classificação , Desoxirribonuclease IV (Fago T4-Induzido)/isolamento & purificação , Exonucleases/química , Exonucleases/classificação , Exonucleases/isolamento & purificação , Dados de Sequência Molecular , Alinhamento de Sequência , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...