Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 11(10)2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992890

RESUMO

The yeast Exophiala dermatitidis exhibits high resistance to γ-radiation in comparison to many other fungi. Several aspects of this phenotype have been characterized, including its dependence on homologous recombination for the repair of radiation-induced DNA damage, and the transcriptomic response invoked by acute γ-radiation exposure in this organism. However, these findings have yet to identify unique γ-radiation exposure survival strategies-many genes that are induced by γ-radiation exposure do not appear to be important for recovery, and the homologous recombination machinery of this organism is not unique compared to more sensitive species. To identify features associated with γ-radiation resistance, here we characterized the proteomes of two E. dermatitidis strains-the wild type and a hyper-resistant strain developed through adaptive laboratory evolution-before and after γ-radiation exposure. The results demonstrate that protein intensities do not change substantially in response to this stress. Rather, the increased resistance exhibited by the evolved strain may be due in part to increased basal levels of single-stranded binding proteins and a large increase in ribosomal content, possibly allowing for a more robust, induced response during recovery. This experiment provides evidence enabling us to focus on DNA replication, protein production, and ribosome levels for further studies into the mechanism of γ-radiation resistance in E. dermatitidis and other fungi.


Assuntos
Exophiala/crescimento & desenvolvimento , Proteínas Fúngicas/metabolismo , Raios gama/efeitos adversos , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Proteoma/metabolismo , Tolerância a Radiação , Transcriptoma/efeitos da radiação , DNA Fúngico/análise , DNA Fúngico/genética , Exophiala/genética , Exophiala/metabolismo , Exophiala/efeitos da radiação , Proteínas Fúngicas/genética , Melaninas/metabolismo , Proteoma/análise
2.
Fungal Biol ; 124(5): 368-375, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32389299

RESUMO

Black fungi withstand extreme stresses partly due to the presence of melanin. Melanin is associated with structural integrity and resistance to chemical and radiation stress. This results in improved health and fitness, specifically in extreme conditions. Our goal was to exploit the radiation sensing nature of melanized fungus in order to develop a radioadapted strain capable of responding to radiation in the environment. The protracted exposure of a melanized fungus, Wangiella dermatitidis, to a mixed source of radiation altered the electron transport properties. There was no effect in an albino mutant wdpsk1. We then tested the growth response to radiation in the environment, with shielding from direct exposure to the radiation. Gamma radiation caused increased colony growth irrespective of exposure history in melanized fungus. Beta particles produced growth inhibition. The previously exposed melanized strain demonstrated colony growth in response to alpha particles in the environment. Alpha particles have a higher linear energy transfer, which produces more reactive oxygen species. Our previously exposed melanized strain was resistant to the toxic effects of H2O2, while the naïve and non-melanized strains were sensitive. We propose that previous radiation exposure introduces adaptations that equip melanized fungi to tolerate, sense, and respond to radiation byproducts.


Assuntos
Meio Ambiente , Exophiala , Melaninas , Radiação Ionizante , Partículas alfa , Partículas beta , Exophiala/genética , Exophiala/crescimento & desenvolvimento , Exophiala/efeitos da radiação , Raios gama , Melaninas/metabolismo , Mutação
3.
Environ Microbiol ; 22(4): 1310-1326, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32011087

RESUMO

The melanized yeast Exophiala dermatitidis is resistant to many environmental stresses and is used as a model for understanding the diverse roles of melanin in fungi. Here, we describe the extent of resistance of E. dermatitidis to acute γ-radiation exposure and the major mechanisms it uses to recover from this stress. We find that melanin does not protect E. dermatitidis from γ-radiation. Instead, environmental factors such as nutrient availability, culture age and culture density are much greater determinants of cell survival after exposure. We also observe a dramatic transcriptomic response to γ-radiation that mobilizes pathways involved in morphological development, protein degradation and DNA repair, and is unaffected by the presence of melanin. Together, these results suggest that the ability of E. dermatitidis to survive γ-radiation exposure is determined by the prior and the current metabolic state of the cells as well as DNA repair mechanisms, and that small changes in these conditions can lead to large effects in radiation resistance, which should be taken into account when understanding how diverse fungi recover from this unique stress.


Assuntos
Exophiala/metabolismo , Exophiala/efeitos da radiação , Melaninas/metabolismo , Reparo do DNA/efeitos da radiação , DNA Fúngico/efeitos da radiação , Exophiala/genética , Tolerância a Radiação , Estresse Fisiológico , Transcrição Gênica/efeitos da radiação , Transcriptoma
4.
PLoS One ; 7(11): e48674, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23139812

RESUMO

Observations of enhanced growth of melanized fungi under low-dose ionizing radiation in the laboratory and in the damaged Chernobyl nuclear reactor suggest they have adapted the ability to survive or even benefit from exposure to ionizing radiation. However, the cellular and molecular mechanism of fungal responses to such radiation remains poorly understood. Using the black yeast Wangiella dermatitidis as a model, we confirmed that ionizing radiation enhanced cell growth by increasing cell division and cell size. Using RNA-seq technology, we compared the transcriptomic profiles of the wild type and the melanin-deficient wdpks1 mutant under irradiation and non-irradiation conditions. It was found that more than 3000 genes were differentially expressed when these two strains were constantly exposed to a low dose of ionizing radiation and that half were regulated at least two fold in either direction. Functional analysis indicated that many genes for amino acid and carbohydrate metabolism and cell cycle progression were down-regulated and that a number of antioxidant genes and genes affecting membrane fluidity were up-regulated in both irradiated strains. However, the expression of ribosomal biogenesis genes was significantly up-regulated in the irradiated wild-type strain but not in the irradiated wdpks1 mutant, implying that melanin might help to contribute radiation energy for protein translation. Furthermore, we demonstrated that long-term exposure to low doses of radiation significantly increased survivability of both the wild-type and the wdpks1 mutant, which was correlated with reduced levels of reactive oxygen species (ROS), increased production of carotenoid and induced expression of genes encoding translesion DNA synthesis. Our results represent the first functional genomic study of how melanized fungal cells respond to low dose ionizing radiation and provide clues for the identification of biological processes, molecular pathways and individual genes regulated by radiation.


Assuntos
Adaptação Fisiológica/efeitos da radiação , Exophiala/fisiologia , Exophiala/efeitos da radiação , Radiação Ionizante , Adaptação Fisiológica/genética , Antioxidantes/metabolismo , Transporte Biológico/genética , Transporte Biológico/efeitos da radiação , Carotenoides/biossíntese , Ciclo Celular/genética , Ciclo Celular/efeitos da radiação , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Exophiala/citologia , Exophiala/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Genes Fúngicos/genética , Melaninas/metabolismo , Fluidez de Membrana/genética , Fluidez de Membrana/efeitos da radiação , Viabilidade Microbiana/genética , Viabilidade Microbiana/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribossomos/genética , Ribossomos/efeitos da radiação , Transcriptoma/genética , Transcriptoma/efeitos da radiação , Regulação para Cima/genética , Regulação para Cima/efeitos da radiação , Água/metabolismo
5.
Mikrobiol Z ; 72(3): 8-13, 2010.
Artigo em Russo | MEDLINE | ID: mdl-20695223

RESUMO

Microbiological analysis of terrestrial biotopes of the Antarctic Region has shown, that vertical rocks of the Antarctic islands open for the Sun were characterized by special microcenoses. The wide distribution of pigmented microorganisms in the rock Antarctic samples, a higher frequency of their occurrence, the total number and biologic diversity, than in other Antarctic biotopes, has been demonstrated. For the first time the presence of bacteria and yeast, resistant to high doses of UV radiation on the vertical rocks in the Antarctic Region was shown. The lethal doze of UV radiation for the Antarctic pink pigmented Methylobacterium strains exceeded 200-300 J/m2, for coal-black yeast--500-800 J/m2, for red yeast--1200-1500 J/m2. The distinctions in lethal UV effect against strains of Methylobacterium isolated from the regions with different climate have not been found. Probably, adaptation of the rock microcenosis to extreme factors of the environment proceeds by natural selection of microorganisms, which resistance to this factor is genetically determined.


Assuntos
Exophiala , Sedimentos Geológicos/microbiologia , Methylobacteriaceae , Tolerância a Radiação , Raios Ultravioleta , Adaptação Fisiológica , Altitude , Regiões Antárticas , Exophiala/crescimento & desenvolvimento , Exophiala/efeitos da radiação , Methylobacteriaceae/crescimento & desenvolvimento , Methylobacteriaceae/efeitos da radiação
6.
PLoS One ; 2(5): e457, 2007 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-17520016

RESUMO

BACKGROUND: Melanin pigments are ubiquitous in nature. Melanized microorganisms are often the dominating species in certain extreme environments, such as soils contaminated with radionuclides, suggesting that the presence of melanin is beneficial in their life cycle. We hypothesized that ionizing radiation could change the electronic properties of melanin and might enhance the growth of melanized microorganisms. METHODOLOGY/PRINCIPAL FINDINGS: Ionizing irradiation changed the electron spin resonance (ESR) signal of melanin, consistent with changes in electronic structure. Irradiated melanin manifested a 4-fold increase in its capacity to reduce NADH relative to non-irradiated melanin. HPLC analysis of melanin from fungi grown on different substrates revealed chemical complexity, dependence of melanin composition on the growth substrate and possible influence of melanin composition on its interaction with ionizing radiation. XTT/MTT assays showed increased metabolic activity of melanized C. neoformans cells relative to non-melanized cells, and exposure to ionizing radiation enhanced the electron-transfer properties of melanin in melanized cells. Melanized Wangiella dermatitidis and Cryptococcus neoformans cells exposed to ionizing radiation approximately 500 times higher than background grew significantly faster as indicated by higher CFUs, more dry weight biomass and 3-fold greater incorporation of (14)C-acetate than non-irradiated melanized cells or irradiated albino mutants. In addition, radiation enhanced the growth of melanized Cladosporium sphaerospermum cells under limited nutrients conditions. CONCLUSIONS/SIGNIFICANCE: Exposure of melanin to ionizing radiation, and possibly other forms of electromagnetic radiation, changes its electronic properties. Melanized fungal cells manifested increased growth relative to non-melanized cells after exposure to ionizing radiation, raising intriguing questions about a potential role for melanin in energy capture and utilization.


Assuntos
Cryptococcus neoformans/efeitos da radiação , Exophiala/efeitos da radiação , Melaninas/metabolismo , Radiação Ionizante , Cromatografia Líquida de Alta Pressão , Cryptococcus neoformans/crescimento & desenvolvimento , Cryptococcus neoformans/metabolismo , Exophiala/crescimento & desenvolvimento , Exophiala/metabolismo , Melaninas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...