Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 334
Filtrar
1.
Nature ; 628(8009): 887-893, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538796

RESUMO

Efficient termination is required for robust gene transcription. Eukaryotic organisms use a conserved exoribonuclease-mediated mechanism to terminate the mRNA transcription by RNA polymerase II (Pol II)1-5. Here we report two cryogenic electron microscopy structures of Saccharomyces cerevisiae Pol II pre-termination transcription complexes bound to the 5'-to-3' exoribonuclease Rat1 and its partner Rai1. Our structures show that Rat1 displaces the elongation factor Spt5 to dock at the Pol II stalk domain. Rat1 shields the RNA exit channel of Pol II, guides the nascent RNA towards its active centre and stacks three nucleotides at the 5' terminus of the nascent RNA. The structures further show that Rat1 rotates towards Pol II as it shortens RNA. Our results provide the structural mechanism for the Rat1-mediated termination of mRNA transcription by Pol II in yeast and the exoribonuclease-mediated termination of mRNA transcription in other eukaryotes.


Assuntos
Microscopia Crioeletrônica , Exorribonucleases , RNA Polimerase II , RNA Mensageiro , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Terminação da Transcrição Genética , Exorribonucleases/química , Exorribonucleases/metabolismo , Exorribonucleases/ultraestrutura , Modelos Moleculares , Ligação Proteica , RNA Polimerase II/química , RNA Polimerase II/metabolismo , RNA Polimerase II/ultraestrutura , RNA Mensageiro/biossíntese , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/ultraestrutura , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/ultraestrutura , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/metabolismo , Fatores de Elongação da Transcrição/ultraestrutura , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/ultraestrutura , Domínios Proteicos , RNA Fúngico/biossíntese , RNA Fúngico/química , RNA Fúngico/genética , RNA Fúngico/ultraestrutura
2.
J Mol Biol ; 436(6): 168487, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38341172

RESUMO

Synonymous mutations in messenger RNAs (mRNAs) can reduce protein-protein binding substantially without changing the protein's amino acid sequence. Here, we use coarse-grain simulations of protein synthesis, post-translational dynamics, and dimerization to understand how synonymous mutations can influence the dimerization of two E. coli homodimers, oligoribonuclease and ribonuclease T. We synthesize each protein from its wildtype, fastest- and slowest-translating synonymous mRNAs in silico and calculate the ensemble-averaged interaction energy between the resulting dimers. We find synonymous mutations alter oligoribonuclease's dimer properties. Relative to wildtype, the dimer interaction energy becomes 4% and 10% stronger, respectively, when translated from its fastest- and slowest-translating mRNAs. Ribonuclease T dimerization, however, is insensitive to synonymous mutations. The structural and kinetic origin of these changes are misfolded states containing non-covalent lasso-entanglements, many of which structurally perturb the dimer interface, and whose probability of occurrence depends on translation speed. These entangled states are kinetic traps that persist for long time scales. Entanglements cause altered dimerization energies for oligoribonuclease, as there is a large association (odds ratio: 52) between the co-occurrence of non-native self-entanglements and weak-binding dimer conformations. Simulated at all-atom resolution, these entangled structures persist for long timescales, indicating the conclusions are independent of model resolution. Finally, we show that regions of the protein we predict to have changes in entanglement are also structurally perturbed during refolding, as detected by limited-proteolysis mass spectrometry. Thus, non-native changes in entanglement at dimer interfaces is a mechanism through which oligomer structure and stability can be altered.


Assuntos
Membrana Celular , Escherichia coli , Exorribonucleases , Multimerização Proteica , Mutação Silenciosa , Escherichia coli/enzimologia , Exorribonucleases/química , Exorribonucleases/genética , Cinética , Dobramento de Proteína , Multimerização Proteica/genética , Membrana Celular/enzimologia
3.
Nat Struct Mol Biol ; 31(5): 826-834, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38374449

RESUMO

Shortening of messenger RNA poly(A) tails, or deadenylation, is a rate-limiting step in mRNA decay and is highly regulated during gene expression. The incorporation of non-adenosines in poly(A) tails, or 'mixed tailing', has been observed in vertebrates and viruses. Here, to quantitate the effect of mixed tails, we mathematically modeled deadenylation reactions at single-nucleotide resolution using an in vitro deadenylation system reconstituted with the complete human CCR4-NOT complex. Applying this model, we assessed the disrupting impact of single guanosine, uridine or cytosine to be equivalent to approximately 6, 8 or 11 adenosines, respectively. CCR4-NOT stalls at the 0, -1 and -2 positions relative to the non-adenosine residue. CAF1 and CCR4 enzyme subunits commonly prefer adenosine but exhibit distinct sequence selectivities and stalling positions. Our study provides an analytical framework to monitor deadenylation and reveals the molecular basis of tail sequence-dependent regulation of mRNA stability.


Assuntos
Poli A , Estabilidade de RNA , RNA Mensageiro , Humanos , Cinética , Poli A/metabolismo , Poli A/química , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/química , Adenosina/metabolismo , Receptores CCR4/metabolismo , Receptores CCR4/genética , Exorribonucleases/metabolismo , Exorribonucleases/química , RNA Nucleotidiltransferases
4.
Comput Biol Med ; 170: 107899, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232455

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the rapidly evolving RNA virus behind the COVID-19 pandemic, has spawned numerous variants since its 2019 emergence. The multifunctional Nonstructural protein 14 (NSP14) enzyme, possessing exonuclease and messenger RNA (mRNA) capping capabilities, serves as a key player. Notably, single and co-occurring mutations within NSP14 significantly influence replication fidelity and drive variant diversification. This study comprehensively examines 120 co-mutations, 68 unique mutations, and 160 conserved residues across NSP14 homologs, shedding light on their implications for phylogenetic patterns, pathogenicity, and residue interactions. Quantitative physicochemical analysis categorizes 3953 NSP14 variants into three clusters, revealing genetic diversity. This research underscoresthe dynamic nature of SARS-CoV-2 evolution, primarily governed by NSP14 mutations. Understanding these genetic dynamics provides valuable insights for therapeutic and vaccine development.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Pandemias , Filogenia , COVID-19/genética , Replicação Viral/genética , Exorribonucleases/química , Exorribonucleases/genética , Exorribonucleases/metabolismo , Mutação/genética
5.
Comput Biol Chem ; 104: 107768, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36842392

RESUMO

Nucleoside analogs/derivatives (NAs/NDs) with potent antiviral activities are now deemed very convenient choices for the treatment of coronavirus disease 2019 (COVID-19) arisen by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. At the same time, the appearance of a new strain of SARS-CoV-2, the Omicron variant, necessitates multiplied efforts in fighting COVID-19. Counteracting the crucial SARS-CoV-2 enzymes RNA-dependent RNA polymerase (RdRp) and 3'-to-5' exoribonuclease (ExoN) jointly altogether using the same inhibitor is a quite successful new plan to demultiplicate SARS-CoV-2 particles and eliminate COVID-19 whatever the SARS-CoV-2 subtype is (due to the significant conservation nature of RdRps and ExoNs in the different SARS-CoV-2 strains). Successive in silico screening of known NAs finally disclosed six different promising NAs, which are riboprine/forodesine/tecadenoson/nelarabine/vidarabine/maribavir, respectively, that predictably can act through the planned dual-action mode. Further in vitro evaluations affirmed the anti-SARS-CoV-2/anti-COVID-19 potentials of these NAs, with riboprine and forodesine being at the top. The two NAs are able to effectively antagonize the replication of the new virulent SARS-CoV-2 strains with considerably minute in vitro anti-RdRp and anti-SARS-CoV-2 EC50 values of 189 and 408 nM for riboprine and 207 and 657 nM for forodesine, respectively, surpassing both remdesivir and the new anti-COVID-19 drug molnupiravir. Furthermore, the favorable structural characteristics of the two molecules qualify them for varied types of isosteric and analogistic chemical derivatization. In one word, the present important outcomes of this comprehensive dual study revealed the anticipating repurposing potentials of some known nucleosides, led by the two NAs riboprine and forodesine, to successfully discontinue the coronaviral-2 polymerase/exoribonuclease interactions with RNA nucleotides in the SARS-CoV-2 Omicron variant (BA.5 sublineage) and accordingly alleviate COVID-19 infections, motivating us to initiate the two drugs' diverse anti-COVID-19 pharmacological evaluations to add both of them betimes in the COVID-19 therapeutic protocols.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Nucleosídeos/farmacologia , Exorribonucleases/química , Exorribonucleases/genética , Exorribonucleases/farmacologia , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/farmacologia , Antivirais/farmacologia , Antivirais/química
6.
Sci Rep ; 13(1): 350, 2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36611052

RESUMO

In recent years, the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as the cause of the coronavirus disease (COVID-19) global pandemic, and its variants, especially those with higher transmissibility and substantial immune evasion, have highlighted the imperative for developing novel therapeutics as sustainable solutions other than vaccination to combat coronaviruses (CoVs). Beside receptor recognition and virus entry, members of the SARS-CoV-2 replication/transcription complex are promising targets for designing antivirals. Here, the interacting residues that mediate protein-protein interactions (PPIs) of nsp10 with nsp16 and nsp14 were comprehensively analyzed, and the key residues' interaction maps, interaction energies, structural networks, and dynamics were investigated. Nsp10 stimulates both nsp14's exoribonuclease (ExoN) and nsp16's 2'O-methyltransferase (2'O-MTase). Nsp14 ExoN is an RNA proofreading enzyme that supports replication fidelity. Nsp16 2'O-MTase is responsible for the completion of RNA capping to ensure efficient replication and translation and escape from the host cell's innate immune system. The results of the PPIs analysis proposed crucial information with implications for designing SARS-CoV-2 antiviral drugs. Based on the predicted shared protein-protein interfaces of the nsp16-nsp10 and nsp14-nsp10 interactions, a set of dual-target peptide inhibitors was designed. The designed peptides were evaluated by molecular docking, peptide-protein interaction analysis, and free energy calculations, and then further optimized by in silico saturation mutagenesis. Based on the predicted evolutionary conservation of the interacted target residues among CoVs, the designed peptides have the potential to be developed as dual target pan-coronavirus inhibitors.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Simulação de Acoplamento Molecular , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/química , Replicação Viral/genética , Metiltransferases/genética , Peptídeos/farmacologia , Antivirais/farmacologia , RNA/farmacologia , Exorribonucleases/genética , Exorribonucleases/química
7.
Org Biomol Chem ; 20(38): 7582-7586, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36156055

RESUMO

N-Acylsulfonamides possess an additional carbonyl function compared to their sulfonamide analogues. Due to their unique physico-chemical properties, interest in molecules containing the N-acylsulfonamide moiety and especially nucleoside derivatives is growing in the field of medicinal chemistry. The recent renewal of interest in antiviral drugs derived from nucleosides containing a sulfonamide function has led us to evaluate the therapeutic potential of N-acylsulfonamide analogues. While these compounds are usually obtained by a difficult acylation of sulfonamides, we report here the easy and efficient synthesis of 20 4'-(N-acylsulfonamide) adenosine derivatives via the sulfo-click reaction. The target compounds were obtained from thioacid and sulfonyl azide synthons in excellent yields and were evaluated as potential inhibitors of the SARS-CoV-2 RNA cap N7-guanine-methyltransferase nsp14.


Assuntos
Tratamento Farmacológico da COVID-19 , Metiltransferases , Adenosina/farmacologia , Antivirais/farmacologia , Azidas , Exorribonucleases/química , Exorribonucleases/genética , Guanina , Humanos , Nucleosídeos/farmacologia , Capuzes de RNA , RNA Viral/genética , SARS-CoV-2 , Sulfonamidas/farmacologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
8.
Cell Mol Immunol ; 19(8): 872-882, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35732914

RESUMO

Most deaths from the COVID-19 pandemic are due to acute respiratory distress syndrome (ARDS)-related respiratory failure. Cytokine storms and oxidative stress are the major players in ARDS development during respiratory virus infections. However, it is still unknown how oxidative stress is regulated by viral and host factors in response to SARS-CoV-2 infection. Here, we found that activation of NRF2/HMOX1 significantly suppressed SARS-CoV-2 replication in multiple cell types by producing the metabolite biliverdin, whereas SARS-CoV-2 impaired the NRF2/HMOX1 axis through the action of the nonstructural viral protein NSP14. Mechanistically, NSP14 interacts with the catalytic domain of the NAD-dependent deacetylase Sirtuin 1 (SIRT1) and inhibits its ability to activate the NRF2/HMOX1 pathway. Furthermore, both genetic and pharmaceutical evidence corroborated the novel antiviral activity of SIRT1 against SARS-CoV-2. Therefore, our findings reveal a novel mechanism by which SARS-CoV-2 dysregulates the host antioxidant defense system and emphasize the vital role played by the SIRT1/NRF2 axis in host defense against SARS-CoV-2.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Antivirais/farmacologia , Exorribonucleases/química , Exorribonucleases/genética , Exorribonucleases/metabolismo , Heme Oxigenase-1 , Humanos , Fator 2 Relacionado a NF-E2 , Pandemias , SARS-CoV-2 , Sirtuína 1 , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética
9.
Structure ; 30(8): 1050-1054.e2, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35609600

RESUMO

During RNA replication, coronaviruses require proofreading to maintain the integrity of their large genomes. Nsp14 associates with viral polymerase complex to excise the mismatched nucleotides. Aside from the exonuclease activity, nsp14 methyltransferase domain mediates cap methylation, facilitating translation initiation and protecting viral RNA from recognition by the innate immune sensors. The nsp14 exonuclease activity is modulated by a protein co-factor nsp10. While the nsp10/nsp14 complex structure is available, the mechanistic basis for nsp10-mediated modulation remains unclear in the absence of the nsp14 structure. Here, we provide a crystal structure of nsp14 in an apo-form. Comparative analysis of the apo- and nsp10-bound structures explain the modulatory role of the co-factor protein and reveal the allosteric nsp14 control mechanism essential for drug discovery. Further, the flexibility of the N-terminal lid of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nsp14 structure presented in this study rationalizes the recently proposed idea of nsp14/nsp10/nsp16 ternary complex.


Assuntos
Exorribonucleases , Proteínas não Estruturais Virais , Proteínas Virais Reguladoras e Acessórias , Exonucleases , Exorribonucleases/química , Metiltransferases/química , Dobramento de Proteína , RNA Viral/metabolismo , SARS-CoV-2 , Proteínas não Estruturais Virais/química , Proteínas Virais Reguladoras e Acessórias/química
10.
J Med Chem ; 65(8): 6231-6249, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35439007

RESUMO

Enzymes involved in RNA capping of SARS-CoV-2 are essential for the stability of viral RNA, translation of mRNAs, and virus evasion from innate immunity, making them attractive targets for antiviral agents. In this work, we focused on the design and synthesis of nucleoside-derived inhibitors against the SARS-CoV-2 nsp14 (N7-guanine)-methyltransferase (N7-MTase) that catalyzes the transfer of the methyl group from the S-adenosyl-l-methionine (SAM) cofactor to the N7-guanosine cap. Seven compounds out of 39 SAM analogues showed remarkable double-digit nanomolar inhibitory activity against the N7-MTase nsp14. Molecular docking supported the structure-activity relationships of these inhibitors and a bisubstrate-based mechanism of action. The three most potent inhibitors significantly stabilized nsp14 (ΔTm ≈ 11 °C), and the best inhibitor demonstrated high selectivity for nsp14 over human RNA N7-MTase.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , SARS-CoV-2 , COVID-19/virologia , Exorribonucleases/antagonistas & inibidores , Exorribonucleases/química , Humanos , Metiltransferases , Simulação de Acoplamento Molecular , RNA Viral/genética , S-Adenosilmetionina , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Sulfonamidas/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química
11.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35165203

RESUMO

High-fidelity replication of the large RNA genome of coronaviruses (CoVs) is mediated by a 3'-to-5' exoribonuclease (ExoN) in nonstructural protein 14 (nsp14), which excises nucleotides including antiviral drugs misincorporated by the low-fidelity viral RNA-dependent RNA polymerase (RdRp) and has also been implicated in viral RNA recombination and resistance to innate immunity. Here, we determined a 1.6-Å resolution crystal structure of severe acute respiratory syndrome CoV 2 (SARS-CoV-2) ExoN in complex with its essential cofactor, nsp10. The structure shows a highly basic and concave surface flanking the active site, comprising several Lys residues of nsp14 and the N-terminal amino group of nsp10. Modeling suggests that this basic patch binds to the template strand of double-stranded RNA substrates to position the 3' end of the nascent strand in the ExoN active site, which is corroborated by mutational and computational analyses. We also show that the ExoN activity can rescue a stalled RNA primer poisoned with sofosbuvir and allow RdRp to continue its extension in the presence of the chain-terminating drug, biochemically recapitulating proofreading in SARS-CoV-2 replication. Molecular dynamics simulations further show remarkable flexibility of multidomain nsp14 and suggest that nsp10 stabilizes ExoN for substrate RNA binding to support its exonuclease activity. Our high-resolution structure of the SARS-CoV-2 ExoN-nsp10 complex serves as a platform for future development of anticoronaviral drugs or strategies to attenuate the viral virulence.


Assuntos
Exorribonucleases/química , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Domínios Proteicos , RNA Viral/química , SARS-CoV-2/enzimologia , Proteínas não Estruturais Virais/química , Sítios de Ligação/genética , COVID-19/virologia , Domínio Catalítico , Cristalografia por Raios X , Exorribonucleases/genética , Exorribonucleases/metabolismo , Humanos , Lisina/química , Lisina/genética , Lisina/metabolismo , Mutação de Sentido Incorreto , Ligação Proteica , RNA Viral/genética , RNA Viral/metabolismo , SARS-CoV-2/fisiologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
12.
Virology ; 566: 1-8, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808564

RESUMO

Subviral agents are nucleic acids which lack the features for classification as a virus. Tombusvirus-like associated RNAs (tlaRNAs) are subviral positive-sense, single-stranded RNAs that replicate autonomously, yet depend on a coinfecting virus for encapsidation and transmission. TlaRNAs produce abundant subgenomic RNA (sgRNA) upon infection. Here, we investigate how the well-studied tlaRNA, ST9, produces sgRNA and its function. We found ST9 is a noncoding RNA, due to its lack of protein coding capacity. We used resistance assays with eukaryotic Exoribonuclease-1 (XRN1) to investigate sgRNA production via incomplete degradation of genomic RNA. The ST9 3' untranslated region stalled XRN1 very near the 5' sgRNA end. Thus, the XRN family of enzymes drives sgRNA accumulation in ST9-infected tissue by incomplete degradation of ST9 RNA. This work suggests tlaRNAs are not just parasites of viruses with compatible capsids, but also mutually beneficial partners that influence host cell RNA biology.


Assuntos
Genoma Viral , Luteoviridae/genética , Nicotiana/virologia , RNA não Traduzido/genética , RNA Viral/genética , Tombusvirus/genética , Regiões 3' não Traduzidas , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Agrobacterium tumefaciens/virologia , Sequência de Bases , Exorribonucleases/química , Interações Hospedeiro-Patógeno/genética , Luteoviridae/metabolismo , Mutação , Plantas Geneticamente Modificadas , Clivagem do RNA , RNA não Traduzido/metabolismo , RNA Viral/metabolismo , Tombusvirus/metabolismo , Transformação Genética
13.
Protein Sci ; 31(3): 758-764, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34923703

RESUMO

Regulated degradation of mature, cytoplasmic mRNA is a key step in eukaryotic gene regulation. This process is typically initiated by the recruitment of deadenylase enzymes by cis-acting elements in the 3' untranslated region resulting in the shortening and removal of the 3' poly(A) tail of the target mRNA. The Ccr4-Not complex, a major eukaryotic deadenylase, contains two exoribonuclease subunits with selectivity toward poly(A): Caf1 and Ccr4. The Caf1 deadenylase subunit binds the MIF4G domain of the large subunit CNOT1 (Not1) that is the scaffold of the complex. The Ccr4 nuclease is connected to the complex via its leucine-rich repeat (LRR) domain, which binds Caf1, whereas the catalytic activity of Ccr4 is provided by its EEP domain. While the relative positions of the MIF4G domain of CNOT1, the Caf1 subunit, and the LRR domain of Ccr4 are clearly defined in current models, the position of the EEP nuclease domain of Ccr4 is ambiguous. Here, we use X-ray crystallography, the AlphaFold resource of predicted protein structures, and pulse electron paramagnetic resonance spectroscopy to determine and validate the position of the EEP nuclease domain of Ccr4 resulting in an improved model of the human Ccr4-Not nuclease module.


Assuntos
Exorribonucleases , Ribonucleases , Fatores de Transcrição , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Exorribonucleases/química , Exorribonucleases/genética , Exorribonucleases/metabolismo , Humanos , Poli A , RNA Mensageiro/metabolismo , Ribonucleases/química , Fatores de Transcrição/química
14.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34845015

RESUMO

As coronaviruses (CoVs) replicate in the host cell cytoplasm, they rely on their own capping machinery to ensure the efficient translation of their messenger RNAs (mRNAs), protect them from degradation by cellular 5' exoribonucleases (ExoNs), and escape innate immune sensing. The CoV nonstructural protein 14 (nsp14) is a bifunctional replicase subunit harboring an N-terminal 3'-to-5' ExoN domain and a C-terminal (N7-guanine)-methyltransferase (N7-MTase) domain that is presumably involved in viral mRNA capping. Here, we aimed to integrate structural, biochemical, and virological data to assess the importance of conserved N7-MTase residues for nsp14's enzymatic activities and virus viability. We revisited the crystal structure of severe acute respiratory syndrome (SARS)-CoV nsp14 to perform an in silico comparative analysis between betacoronaviruses. We identified several residues likely involved in the formation of the N7-MTase catalytic pocket, which presents a fold distinct from the Rossmann fold observed in most known MTases. Next, for SARS-CoV and Middle East respiratory syndrome CoV, site-directed mutagenesis of selected residues was used to assess their importance for in vitro enzymatic activity. Most of the engineered mutations abolished N7-MTase activity, while not affecting nsp14-ExoN activity. Upon reverse engineering of these mutations into different betacoronavirus genomes, we identified two substitutions (R310A and F426A in SARS-CoV nsp14) abrogating virus viability and one mutation (H424A) yielding a crippled phenotype across all viruses tested. Our results identify the N7-MTase as a critical enzyme for betacoronavirus replication and define key residues of its catalytic pocket that can be targeted to design inhibitors with a potential pan-coronaviral activity spectrum.


Assuntos
Exorribonucleases/química , Modelos Moleculares , Conformação Proteica , Proteínas não Estruturais Virais/química , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Domínio Catalítico , Sequência Conservada , Exorribonucleases/genética , Exorribonucleases/metabolismo , Viabilidade Microbiana , Motivos de Nucleotídeos , RNA Viral/química , RNA Viral/genética , Proteínas de Ligação a RNA , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética
15.
Chembiochem ; 22(24): 3410-3413, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34542936

RESUMO

The SARS-CoV-2 non-structural protein 14 (nsp14), known as exoribonuclease is encoded from the large polyprotein of viral genome and is a major constituent of the transcription replication complex (TRC) machinery of the viral RNA synthesis. This protein is highly conserved among the coronaviruses and is a potential target for the development of a therapeutic drug. Here, we report the SARS-CoV-2 nsp14 expression, show its structural characterization, and ss-RNA exonuclease activity through vibrational and electronic spectroscopies. The deconvolution of amide-I band in the FTIR spectrum of the protein revealed a composition of 35 % α-helix and 25 % ß-sheets. The binding between protein and RNA is evidenced from the spectral changes in the amide-I region of the nsp14, showing protein conformational changes during the binding process. A value of 20.60±3.81 mol L-1 of the binding constant (KD ) is obtained for nsp14/RNA complex. The findings reported here can motivate further studies to develop structural models for better understanding the mechanism of exonuclease enzymes for correcting the viral genome and can help in the development of drugs against SARS-CoV-2.


Assuntos
Exorribonucleases/metabolismo , RNA Viral/metabolismo , SARS-CoV-2/enzimologia , Proteínas não Estruturais Virais/metabolismo , Exorribonucleases/química , Ligação Proteica , Conformação Proteica , RNA Viral/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Proteínas não Estruturais Virais/química
16.
Chembiochem ; 22(21): 3099-3106, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34431199

RESUMO

RNA is an emerging platform for drug delivery, but the susceptibility of RNA to nuclease degradation remains a major barrier to its implementation in vivo. Here, we engineered flaviviral Xrn1-resistant RNA (xrRNA) motifs to host small interfering RNA (siRNA) duplexes. The xrRNA-siRNA molecules self-assemble in vitro, resist degradation by the conserved eukaryotic 5' to 3' exoribonuclease Xrn1, and trigger gene silencing in 293T cells. The resistance of the molecules to Xrn1 does not translate to stability in blood serum. Nevertheless, our results demonstrate that flavivirus-derived xrRNA motifs can confer Xrn1 resistance on a model therapeutic payload and set the stage for further investigations into using the motifs as building blocks in RNA nanotechnology.


Assuntos
Exorribonucleases/metabolismo , Flavivirus/metabolismo , Inativação Gênica , RNA Interferente Pequeno/metabolismo , RNA Viral/metabolismo , Exorribonucleases/química , Flavivirus/química , Células HEK293 , Humanos , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , RNA Viral/química , RNA Viral/genética
17.
Science ; 373(6559): 1142-1146, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34315827

RESUMO

Coronavirus 3'-to-5' exoribonuclease (ExoN), residing in the nonstructural protein (nsp) 10­nsp14 complex, boosts replication fidelity by proofreading RNA synthesis and is critical for the virus life cycle. ExoN also recognizes and excises nucleotide analog inhibitors incorporated into the nascent RNA, undermining the effectiveness of nucleotide analog­based antivirals. Here we present cryo­electron microscopy structures of both wild-type and mutant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nsp10-nsp14 in complex with an RNA substrate bearing a 3'-end mismatch at resolutions ranging from 2.5 to 3.9 angstroms. The structures reveal the molecular determinants of ExoN substrate specificity and offer insight into the molecular mechanisms of mismatch correction during coronavirus RNA synthesis. Our findings provide guidance for rational design of improved anticoronavirus therapies.


Assuntos
Reparo de Erro de Pareamento de DNA , Exorribonucleases/química , SARS-CoV-2/enzimologia , Proteínas não Estruturais Virais/química , Proteínas Virais Reguladoras e Acessórias/química , Antivirais/química , Antivirais/farmacologia , Microscopia Crioeletrônica , Desenho de Fármacos , Exorribonucleases/genética , Humanos , Domínios Proteicos , RNA Viral/biossíntese , RNA Viral/química , RNA Viral/genética , SARS-CoV-2/genética , Especificidade por Substrato , Proteínas não Estruturais Virais/genética , Proteínas Virais Reguladoras e Acessórias/genética
18.
RNA ; 27(9): 1046-1067, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34162742

RESUMO

RNA exosomopathies, a growing family of diseases, are linked to missense mutations in genes encoding structural subunits of the evolutionarily conserved, 10-subunit exoribonuclease complex, the RNA exosome. This complex consists of a three-subunit cap, a six-subunit, barrel-shaped core, and a catalytic base subunit. While a number of mutations in RNA exosome genes cause pontocerebellar hypoplasia, mutations in the cap subunit gene EXOSC2 cause an apparently distinct clinical presentation that has been defined as a novel syndrome SHRF (short stature, hearing loss, retinitis pigmentosa, and distinctive facies). We generated the first in vivo model of the SHRF pathogenic amino acid substitutions using budding yeast by modeling pathogenic EXOSC2 missense mutations (p.Gly30Val and p.Gly198Asp) in the orthologous S. cerevisiae gene RRP4 The resulting rrp4 mutant cells show defects in cell growth and RNA exosome function. Consistent with altered RNA exosome function, we detect significant transcriptomic changes in both coding and noncoding RNAs in rrp4-G226D cells that model EXOSC2 p.Gly198Asp, suggesting defects in nuclear surveillance. Biochemical and genetic analyses suggest that the Rrp4 G226D variant subunit shows impaired interactions with key RNA exosome cofactors that modulate the function of the complex. These results provide the first in vivo evidence that pathogenic missense mutations present in EXOSC2 impair the function of the RNA exosome. This study also sets the stage to compare exosomopathy models to understand how defects in RNA exosome function underlie distinct pathologies.


Assuntos
Exorribonucleases/genética , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Mutação de Sentido Incorreto , RNA Fúngico/genética , Proteínas de Ligação a RNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Nanismo/enzimologia , Nanismo/genética , Nanismo/patologia , Exorribonucleases/química , Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/química , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Fácies , Expressão Gênica , Glicina/química , Glicina/metabolismo , Perda Auditiva/enzimologia , Perda Auditiva/genética , Perda Auditiva/patologia , Humanos , Modelos Biológicos , Modelos Moleculares , Conformação Proteica , RNA Fúngico/química , RNA Fúngico/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Retinose Pigmentar/enzimologia , Retinose Pigmentar/genética , Retinose Pigmentar/patologia , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Síndrome
19.
Nucleic Acids Res ; 49(9): 5382-5392, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33956156

RESUMO

The emergence of SARS-CoV-2 infection has posed unprecedented threat to global public health. The virus-encoded non-structural protein 14 (nsp14) is a bi-functional enzyme consisting of an exoribonuclease (ExoN) domain and a methyltransferase (MTase) domain and plays a pivotal role in viral replication. Here, we report the structure of SARS-CoV-2 nsp14-ExoN domain bound to its co-factor nsp10 and show that, compared to the SARS-CoV nsp10/nsp14-full-length complex, SARS-CoV-2 nsp14-ExoN retains an integral exoribonuclease fold and preserves an active configuration in the catalytic center. Analysis of the nsp10/nsp14-ExoN interface reveals a footprint in nsp10 extensively overlapping with that observed in the nsp10/nsp16 structure. A marked difference in the co-factor when engaging nsp14 and nsp16 lies in helix-α1', which is further experimentally ascertained to be involved in nsp14-binding but not in nsp16-engagement. Finally, we also show that nsp10/nsp14-ExoN is enzymatically active despite the absence of nsp14-MTase domain. These data demonstrate that SARS-CoV-2 nsp10/nsp14-ExoN functions as an exoribonuclease with both structural and functional integrity.


Assuntos
Biocatálise , Exorribonucleases/química , Exorribonucleases/metabolismo , SARS-CoV-2/química , SARS-CoV-2/enzimologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/química , Proteínas Virais Reguladoras e Acessórias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Exorribonucleases/genética , Guanina , Metiltransferases/química , Metiltransferases/deficiência , Metiltransferases/genética , Metiltransferases/metabolismo , Modelos Moleculares , Domínios Proteicos/genética , SARS-CoV-2/genética , Proteínas não Estruturais Virais/genética , Proteínas Virais Reguladoras e Acessórias/genética
20.
Nucleic Acids Res ; 49(11): 6489-6510, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34038562

RESUMO

The CCR4 and CAF1 deadenylases physically interact to form the CCR4-CAF1 complex and function as the catalytic core of the larger CCR4-NOT complex. Together, they are responsible for the eventual removal of the 3'-poly(A) tail from essentially all cellular mRNAs and consequently play a central role in the posttranscriptional regulation of gene expression. The individual properties of CCR4 and CAF1, however, and their respective contributions in different organisms and cellular environments are incompletely understood. Here, we determined the crystal structure of a human CCR4-CAF1 complex and characterized its enzymatic and substrate recognition properties. The structure reveals specific molecular details affecting RNA binding and hydrolysis, and confirms the CCR4 nuclease domain to be tethered flexibly with a considerable distance between both enzyme active sites. CCR4 and CAF1 sense nucleotide identity on both sides of the 3'-terminal phosphate, efficiently differentiating between single and consecutive non-A residues. In comparison to CCR4, CAF1 emerges as a surprisingly tunable enzyme, highly sensitive to pH, magnesium and zinc ions, and possibly allowing distinct reaction geometries. Our results support a picture of CAF1 as a primordial deadenylase, which gets assisted by CCR4 for better efficiency and by the assembled NOT proteins for selective mRNA targeting and regulation.


Assuntos
Exorribonucleases/química , Proteínas Repressoras/química , Ribonucleases/química , Domínio Catalítico , Cristalografia por Raios X , Exorribonucleases/metabolismo , Fungos/enzimologia , Humanos , Concentração de Íons de Hidrogênio , Magnésio , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Proteínas Repressoras/metabolismo , Ribonucleases/metabolismo , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...