Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 774
Filtrar
1.
Front Immunol ; 15: 1401852, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994350

RESUMO

Exosomes, as a class of small extracellular vesicles closely related to the biological behavior of various types of tumors, are currently attracting research attention in cancer diagnosis and treatment. Regarding cancer diagnosis, the stability of their membrane structure and their wide distribution in body fluids render exosomes promising biomarkers. It is expected that exosome-based liquid biopsy will become an important tool for tumor diagnosis in the future. For cancer treatment, exosomes, as the "golden communicators" between cells, can be designed to deliver different drugs, aiming to achieve low-toxicity and low-immunogenicity targeted delivery. Signaling pathways related to exosome contents can also be used for safer and more effective immunotherapy against tumors. Exosomes are derived from a wide range of sources, and exhibit different biological characteristics as well as clinical application advantages in different cancer therapies. In this review, we analyzed the main sources of exosomes that have great potential and broad prospects in cancer diagnosis and therapy. Moreover, we compared their therapeutic advantages, providing new ideas for the clinical application of exosomes.


Assuntos
Biomarcadores Tumorais , Exossomos , Neoplasias , Humanos , Exossomos/metabolismo , Exossomos/imunologia , Neoplasias/terapia , Neoplasias/imunologia , Animais , Imunoterapia/métodos , Biópsia Líquida/métodos
2.
Front Immunol ; 15: 1435426, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39007145

RESUMO

Exosomes are small disk-shaped extracellular vesicles (EVs) that are naturally released into the environment by different types of cells. Exosomes range from 30-150 nm in size and contain complex RNA and proteins. They are widely found in body fluids such as blood, saliva, urine and breast milk and participate in cell communication by functioning as cell messengers. Almost all cell types can transmit information and exchange substances through the production and release of exosomes to regulate proliferation, differentiation, apoptosis, the immune response, inflammation, and other biological functions. Because exosomes exist widely in various body fluids, they are easy to obtain and detect and have the potential for use in disease diagnosis and prognosis detection. Exosomes can be genetically fused with targeted proteins, enhancing their biocompatibility and immunogenicity. Therefore, exosomes are the preferred vector tools for vaccines. In this review, we describe the characteristics of exosomes and discuss their unique and ambiguous functions in the immune microenvironment after infection. In this regard, we explored the ability of exosomes to carry immunogenic virus antigens and to establish adaptive immune responses. Exosomes can provide an interesting platform for antigen presentation and since vaccines are a powerful method for the prevention of infectious diseases, we further review the advantages and disadvantages of the use of exosomes in vaccine preparation. Overall, exosomes are emerging as a promising avenue for vaccine development.


Assuntos
Exossomos , Desenvolvimento de Vacinas , Exossomos/imunologia , Exossomos/metabolismo , Humanos , Animais , Vacinas/imunologia , Sistemas de Liberação de Medicamentos
3.
Cancer Lett ; 595: 216989, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-38825162

RESUMO

Exosomes, a subset of extracellular vesicles, are released by all active cells and play a crucial role in intercellular communications. Exosomes could facilitate the transfer of various biologically active molecules, such as DNA, non-coding RNAs, and proteins, from donor to recipient cells, thereby participating in diverse biological and pathological processes. Besides, exosomes possess unique characteristics, including non-toxicity, low-immunogenicity, and stability within biological systems, rendering them highly advantageous for cancer drug development. Meanwhile, accumulating evidence suggests that exosomes originating from tumor cells and immune cells possess distinct composition profiles that play a direct role in anticancer immunotherapy. Of note, exosomes can transport their contents to specific cells, thereby exerting an impact on the phenotype and immune-regulatory functions of targeted cells. Therapeutic cancer vaccines, an emerging therapeutics of immunotherapy, could enhance antitumor immune responses by delivering a large number of tumor antigens, thereby augmenting the immune response against tumor cells. Therefore, the therapeutic rationale of cancer vaccines and exosome-based immunotherapy are almost similar to some extent, but some challenges have hindered their application in the clinical setting. Here, in this review, we first summarized the biogenesis, structure, compositions, and biological functions of exosomes. Then we described the roles of exosomes in cancer biology, particularly in tumor immunity. We also comprehensively reviewed current exosome-based anticancer vaccine development and we divided them into three types. Finally, we give some insights into clinical translation and clinical trial progress of exosome-based anticancer vaccines for future direction.


Assuntos
Vacinas Anticâncer , Exossomos , Imunoterapia , Neoplasias , Humanos , Exossomos/imunologia , Exossomos/metabolismo , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Neoplasias/imunologia , Neoplasias/terapia , Imunoterapia/métodos , Animais
4.
Immun Inflamm Dis ; 12(6): e1325, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38934401

RESUMO

OBJECTIVE: Asthma, a chronic inflammatory disease with diverse pathomechanisms, presents challenges in developing personalized diagnostic and therapeutic approaches. This review aims to provide a comprehensive overview of the role of exosomes, small extracellular vesicles, in asthma pathophysiology and explores their potential as diagnostic biomarkers and therapeutic tools. METHODS: A literature search was conducted to identify recent studies investigating the involvement of exosomes in asthma. The retrieved articles were analyzed to extract relevant information on the role of exosomes in maintaining lung microenvironment homeostasis, regulating inflammatory responses, and their diagnostic and therapeutic potential for asthma. RESULTS: Exosomes secreted by various cell types, have emerged as crucial mediators of intercellular communication in healthy and diseased conditions. Evidence suggest that exosomes play a significant role in maintaining lung microenvironment homeostasis and contribute to asthma pathogenesis by regulating inflammatory responses. Differential exosomal content between healthy individuals and asthmatics holds promise for the development of novel asthma biomarkers. Furthermore, exosomes secreted by immune and nonimmune cells, as well as those detected in biofluids, demonstrate potential in promoting or regulating immune responses, making them attractive candidates for designing new treatment strategies for inflammatory conditions such as asthma. CONCLUSION: Exosomes, with their ability to modulate immune responses and deliver therapeutic cargo, offer potential as targeted therapeutic tools in asthma management. Further research and clinical trials are required to fully understand the mechanisms underlying exosome-mediated effects and translate these findings into effective diagnostic and therapeutic strategies for asthma patients.


Assuntos
Asma , Biomarcadores , Exossomos , Exossomos/metabolismo , Exossomos/imunologia , Humanos , Asma/imunologia , Asma/metabolismo , Asma/terapia , Asma/diagnóstico , Animais , Pulmão/imunologia , Pulmão/patologia , Pulmão/metabolismo , Comunicação Celular/imunologia
5.
Front Immunol ; 15: 1401867, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846947

RESUMO

Tuberculosis (TB), caused by the bacterial pathogen Mycobacterium tuberculosis (MTB), remains one of the most prevalent and deadly infectious diseases worldwide. Currently, there are complex interactions between host cells and pathogens in TB. The onset, progression, and regression of TB are correlated not only with the virulence of MTB but also with the immunity of TB patients. Exosomes are cell-secreted membrane-bound nanovesicles with lipid bilayers that contain a variety of biomolecules, such as metabolites, lipids, proteins, and nucleic acids. Exosome-mediated cell-cell communication and interactions with the microenvironment represent crucial mechanisms through which exosomes exert their functional effects. Exosomes harbor a wide range of regulatory roles in physiological and pathological conditions, including MTB infection. Exosomes can regulate the immune response, metabolism, and cellular death to remodel the progression of MTB infection. During MTB infection, exosomes display distinctive profiles and quantities that may act as diagnostic biomarkers, suggesting that exosomes provide a revealing glimpse into the evolving landscape of MTB infections. Furthermore, exosomes derived from MTB and mesenchymal stem cells can be harnessed as vaccine platforms and drug delivery vehicles for the precise targeting and treatment of TB. In this review, we highlight the functions and mechanisms through which exosomes influence the progression of TB. Additionally, we unravel the critical significance of exosomal constituents in the diagnosis and therapeutic applications of TB, aiming to offer novel perspectives and strategies for combating TB.


Assuntos
Biomarcadores , Exossomos , Mycobacterium tuberculosis , Tuberculose , Exossomos/imunologia , Exossomos/metabolismo , Humanos , Tuberculose/imunologia , Tuberculose/diagnóstico , Tuberculose/terapia , Tuberculose/microbiologia , Mycobacterium tuberculosis/imunologia , Animais , Antituberculosos/uso terapêutico
6.
J Nanobiotechnology ; 22(1): 315, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840207

RESUMO

Chronic hepatitis B poses a significant global burden, modulating immune cells, leading to chronic inflammation and long-term damage. Due to its hepatotropism, the hepatitis B virus (HBV) cannot infect other cells. The mechanisms underlying the intercellular communication among different liver cells in HBV-infected individuals and the immune microenvironment imbalance remain elusive. Exosomes, as important intercellular communication and cargo transportation tools between HBV-infected hepatocytes and immune cells, have been shown to assist in HBV cargo transportation and regulate the immune microenvironment. However, the role of exosomes in hepatitis B has only gradually received attention in recent years. Minimal literature has systematically elaborated on the role of exosomes in reshaping the immune microenvironment of the liver. This review unfolds sequentially based on the biological processes of exosomes: exosomes' biogenesis, release, transport, uptake by recipient cells, and their impact on recipient cells. We delineate how HBV influences the biogenesis of exosomes, utilizing exosomal covert transmission, and reshapes the hepatic immune microenvironment. And based on the characteristics and functions of exosomes, potential applications of exosomes in hepatitis B are summarized and predicted.


Assuntos
Exossomos , Vírus da Hepatite B , Hepatite B Crônica , Hepatócitos , Fígado , Exossomos/imunologia , Exossomos/metabolismo , Humanos , Vírus da Hepatite B/imunologia , Fígado/imunologia , Fígado/virologia , Animais , Hepatite B Crônica/imunologia , Hepatócitos/virologia , Hepatócitos/imunologia , Comunicação Celular , Microambiente Celular/imunologia , Hepatite B/imunologia , Hepatite B/virologia
7.
Int Immunopharmacol ; 137: 112484, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38885605

RESUMO

Melanoma is a malignant skin tumor with a high mortality rate. Regulatory T cells (Tregs) are immune cells with immunosuppressive roles, however, the precise mechanisms governing Treg involvement in melanoma remain enigmatic. Experimental findings unveiled different transcription factor switches between normal and tumor T cell, with heightened FOXP3 and BATF in the latter. These factors induced immunosuppressive molecules and Treg maintenance genes, polarizing tumor T cells into Tregs. Spatial transcriptomics illuminated the preferential settlement of Tregs at the melanoma periphery. Within this context, FOXP3 in Tregs facilitated direct enhancement of specific ligand gene expression, fostering communication with neighboring cells. Novel functional molecules bound to FOXP3 or BATF in Tregs, such as SPOCK2, SH2D2A, and ligand molecules ITGB2, LTA, CLEC2C, CLEC2D, were discovered, which had not been previously reported in melanoma Treg studies. Furthermore, we validated our findings in a large number of clinical samples and identified the Melanoma Treg-Specific Regulatory Tag Set (Mel TregS). ELISA analysis showed that the protein levels of Mel TregS in melanoma Tregs were higher than in normal Tregs. We then utilized SERS technology to measure the signal values of Mel TregS in exosome, and successfully discriminated between healthy individuals and melanoma patients, as well as early and late-stage patients. This approach significantly enhanced detection sensitivity. In sum, our research elucidated fresh insights into the mechanisms governing Treg self-maintenance and communication with surrounding cells in melanoma. We also introduced an innovative method for clinical disease monitoring through SERS technology.


Assuntos
Fatores de Transcrição Forkhead , Melanoma , Neoplasias Cutâneas , Linfócitos T Reguladores , Melanoma/imunologia , Melanoma/genética , Humanos , Linfócitos T Reguladores/imunologia , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/genética , Regulação Neoplásica da Expressão Gênica , Exossomos/metabolismo , Exossomos/genética , Exossomos/imunologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo
8.
Int Immunopharmacol ; 137: 112509, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38889509

RESUMO

Tumor-derived extracellular vesicles (EVs) are one of the most important ways of intercellular communication and signaling. Cancer stem cells (CSCs) secrete EVs to modulate immune checkpoint molecules and evade immune surveillance. Activated CD8+ T cells known as cytotoxic T lymphocytes (CTLs) are the most powerful anti-cancer adaptive cells. Their activity is compromised upon encountering cells and signaling within the tumor microenvironment (TME), resulting in hyporesponsiveness called exhaustion. CSC-derived exosomes express programmed death ligand-1 (PD-L1) and upregulate programmed death-1 (PD-1) on CD8+ T cells to promote their exhaustion. PD-L1 expression on tumor-derived exosomes appears to be induced by CSC-derived exosomes containing transforming growth factor (TGF)-ß. Tenascin-C is another constituent of CSC exosomes that acts on mammalian target of rapamycin (mTOR) signaling in T cells. Glycolysis is a metabolic event promoted by the inducing effect of CSC-derived exosomes on hypoxia-inducible factor-1α (HIF-1α). CSC interaction with CD8+ T cells is even more complex as the CSC-derived exosomes contain Notch1 to stimulate stemness in non-tumor cells, and the inducible effect of Notch1 on PD-1 promotes CD8+ T cell exhaustion. CSC exosome targeting has not been extensively studied yet. Advances in the field will open up new therapeutic windows and shape the future of cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Exossomos , Neoplasias , Células-Tronco Neoplásicas , Microambiente Tumoral , Humanos , Exossomos/metabolismo , Exossomos/imunologia , Linfócitos T CD8-Positivos/imunologia , Animais , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Microambiente Tumoral/imunologia , Neoplasias/imunologia , Neoplasias/metabolismo , Antígeno B7-H1/metabolismo , Antígeno B7-H1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Transdução de Sinais , Exaustão das Células T
9.
Front Immunol ; 15: 1384946, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835784

RESUMO

Breast cancer has a high incidence and a heightened propensity for metastasis. The absence of precise targets for effective intervention makes it imperative to devise enhanced treatment strategies. Exosomes, characterized by a lipid bilayer and ranging in size from 30 to 150 nm, can be actively released by various cells, including those in tumors. Exosomes derived from distinct subsets of immune cells have been shown to modulate the immune microenvironment within tumors and influence breast cancer progression. In addition, tumor-derived exosomes have been shown to contribute to breast cancer development and progression and may become a new target for breast cancer immunotherapy. Tumor immunotherapy has become an option for managing tumors, and exosomes have become therapeutic vectors that can be used for various pathological conditions. Edited exosomes can be used as nanoscale drug delivery systems for breast cancer therapy, contributing to the remodeling of immunosuppressive tumor microenvironments and influencing the efficacy of immunotherapy. This review discusses the regulatory role of exosomes from different cells in breast cancer and the latest applications of exosomes as nanoscale drug delivery systems and immunotherapeutic agents in breast cancer, showing the development prospects of exosomes in the clinical treatment of breast cancer.


Assuntos
Neoplasias da Mama , Exossomos , Imunoterapia , Microambiente Tumoral , Exossomos/imunologia , Exossomos/metabolismo , Humanos , Neoplasias da Mama/terapia , Neoplasias da Mama/imunologia , Feminino , Imunoterapia/métodos , Microambiente Tumoral/imunologia , Animais , Sistemas de Liberação de Medicamentos
10.
Front Immunol ; 15: 1400112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38868769

RESUMO

Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide and has a poor prognosis. Although immune checkpoint inhibitors have entered a new era of HCC treatment, their response rates are modest, which can be attributed to the immunosuppressive tumor microenvironment within HCC tumors. Accumulating evidence has shown that tumor growth is fueled by cancer stem cells (CSCs), which contribute to therapeutic resistance to the above treatments. Given that CSCs can regulate cellular and physical factors within the tumor niche by secreting various soluble factors in a paracrine manner, there have been increasing efforts toward understanding the roles of CSC-derived secretory factors in creating an immunosuppressive tumor microenvironment. In this review, we provide an update on how these secretory factors, including growth factors, cytokines, chemokines, and exosomes, contribute to the immunosuppressive TME, which leads to immune resistance. In addition, we present current therapeutic strategies targeting CSC-derived secretory factors and describe future perspectives. In summary, a better understanding of CSC biology in the TME provides a rational therapeutic basis for combination therapy with ICIs for effective HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células-Tronco Neoplásicas , Microambiente Tumoral , Humanos , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Microambiente Tumoral/imunologia , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Animais , Exossomos/metabolismo , Exossomos/imunologia , Citocinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
11.
Front Immunol ; 15: 1357378, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720885

RESUMO

Exosomes carry proteins, metabolites, nucleic acids and lipids from their parent cell of origin. They are derived from cells through exocytosis, are ingested by target cells, and can transfer biological signals between local or distant cells. Therefore, exosomes are often modified in reaction to pathological processes, including infection, cancer, cardiovascular diseases and in response to metabolic perturbations such as obesity and diabetes, all of which involve a significant inflammatory aspect. Here, we discuss how immune cell-derived exosomes origin from neutrophils, T lymphocytes, macrophages impact on the immune reprogramming of diabetes and the associated complications. Besides, exosomes derived from stem cells and their immunomodulatory properties and anti-inflammation effect in diabetes are also reviewed. Moreover, As an important addition to previous reviews, we describes promising directions involving engineered exosomes as well as current challenges of clinical applications in diabetic therapy. Further research on exosomes will explore their potential in translational medicine and provide new avenues for the development of effective clinical diagnostics and therapeutic strategies for immunoregulation of diabetes.


Assuntos
Diabetes Mellitus , Exossomos , Imunomodulação , Exossomos/imunologia , Exossomos/metabolismo , Humanos , Diabetes Mellitus/imunologia , Diabetes Mellitus/terapia , Animais , Macrófagos/imunologia , Macrófagos/metabolismo
12.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(5): 460-464, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38790103

RESUMO

Allergic rhinitis (AR), a common disease in otolaryngology, is a key risk factor for poorly controlled asthma and many complications, although it is not life-threatening. The negative impact of AR on social productive forces and human health is no less than that of asthma. Dendritic cells (DCs) play an important role in AR. In addition to sharing some of DC's biological characteristics, DCs-derived exosomes (DEXs) can promote the priming and activation of T cells and the maturation and differentiation of T helper type 2 (Th2) cells. Multiple signaling pathways in AR can be modulated by DEXs, which present allergens and participate in allergic immune responses. Anti-allergic drugs can be carried by DEXs to alleviate allergic airway inflammation and treat Th2-mediated AR effectively. Therefore, DEXs are crucial in the pathogenesis and treatment of AR.


Assuntos
Células Dendríticas , Exossomos , Rinite Alérgica , Exossomos/imunologia , Exossomos/metabolismo , Células Dendríticas/imunologia , Humanos , Rinite Alérgica/imunologia , Rinite Alérgica/terapia , Animais , Células Th2/imunologia
13.
Gene ; 925: 148601, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-38788817

RESUMO

Tumor-derived exosomes (TDEs), as topologies of tumor cells, not only carry biological information from the mother, but also act as messengers for cellular communication. It has been demonstrated that TDEs play a key role in inducing an immunosuppressive tumor microenvironment (TME). They can reprogram immune cells indirectly or directly by delivering inhibitory proteins, cytokines, RNA and other substances. They not only inhibit the maturation and function of dendritic cells (DCs) and natural killer (NK) cells, but also remodel M2 macrophages and inhibit T cell infiltration to promote immunosuppression and create a favorable ecological niche for tumor growth, invasion and metastasis. Based on the specificity of TDEs, targeting TDEs has become a new strategy to monitor tumor progression and enhance treatment efficacy. This paper reviews the intricate molecular mechanisms underlying the immunosuppressive effects induced by TDEs to establish a theoretical foundation for cancer therapy. Additionally, the challenges of TDEs as a novel approach to tumor treatment are discussed.


Assuntos
Exossomos , Neoplasias , Microambiente Tumoral , Exossomos/imunologia , Exossomos/metabolismo , Humanos , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Microambiente Tumoral/imunologia , Animais , Células Dendríticas/imunologia , Reprogramação Celular/imunologia , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Comunicação Celular/imunologia
14.
Int J Biol Macromol ; 270(Pt 2): 132236, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38768924

RESUMO

Antigen presenting cells (APCs)-derived exosomes are nano-vesicles that can induce antigen-specific T cell responses, and possess therapeutic effects in clinical settings. Moreover, dendritic cells (DCs)-based vaccines have been developed to combat human immunodeficiency virus-1 (HIV-1) infection in preclinical and clinical trials. We investigated the immunostimulatory effects (B- and T-cells activities) of DCs- and exosomes-based vaccine constructs harboring HIV-1 Nefmut-Tat fusion protein as an antigen candidate and heat shock protein 70 (Hsp70) as an adjuvant in mice. The modified DCs and engineered exosomes harboring Nefmut-Tat protein or Hsp70 were prepared using lentiviral vectors compared to electroporation, characterized and evaluated by in vitro and in vivo immunological tests. Our data indicated that the engineered exosomes induced high levels of total IgG, IgG2a, IFN-γ, TNF-α and Granzyme B. Moreover, co-injection of exosomes harboring Hsp70 could significantly increase the secretion of antibodies, cytokines and Granzyme B. The highest levels of IFN-γ and TNF-α were observed in exosomes harboring Nefmut-Tat combined with exosomes harboring Hsp70 (Exo-Nefmut-Tat + Exo-Hsp70) regimen after single-cycle replicable (SCR) HIV-1 exposure. Generally, Exo-Nefmut-Tat + Exo-Hsp70 regimen can be considered as a promising safe vaccine candidate due to high T-cells (Th1 and CTL) activity and its maintenance against SCR HIV-1 exposure.


Assuntos
Vacinas contra a AIDS , Células Dendríticas , Exossomos , HIV-1 , Proteínas de Choque Térmico HSP70 , Produtos do Gene nef do Vírus da Imunodeficiência Humana , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Exossomos/imunologia , Exossomos/metabolismo , Células Dendríticas/imunologia , Animais , HIV-1/imunologia , HIV-1/genética , Proteínas de Choque Térmico HSP70/imunologia , Proteínas de Choque Térmico HSP70/genética , Vacinas contra a AIDS/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Camundongos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Humanos , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/genética , Feminino , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Citocinas/metabolismo
15.
Expert Opin Investig Drugs ; 33(7): 721-740, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38795060

RESUMO

INTRODUCTION: Extracellular vesicles (EVs) are membrane-bound nanoparticles for intercellular communication. Subtypes of EVs, namely exosomes and microvesicles transfer diverse, bioactive cargo to their target cells and eventually interfere with immune responses. Despite being a promising approach, cancer immunotherapy currently faces several challenges including immune resistance. EVs secreted from various sources in the tumor microenvironment provoke immune cell exhaustion and lower the efficacy of immunological treatments, such as CAR T cells and immune checkpoint inhibitors. AREAS COVERED: This article goes through the mechanisms of action of various types of EVs in inhibiting immune response and immunotherapies, and provides a comprehensive review of EV-based treatments. EXPERT OPINION: By making use of the distinctive features of EVs, natural or modified EVs are innovatively utilized as novel cancer therapeutics. They are occasionally coupled with currently established treatments to overcome their inadequacies. Investigating the properties and interactions of EVs and EV-based treatments is crucial for determining future steps in cancer therapeutics.


Assuntos
Vesículas Extracelulares , Inibidores de Checkpoint Imunológico , Imunoterapia , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/patologia , Neoplasias/tratamento farmacológico , Vesículas Extracelulares/imunologia , Imunoterapia/métodos , Microambiente Tumoral/imunologia , Animais , Inibidores de Checkpoint Imunológico/farmacologia , Resistencia a Medicamentos Antineoplásicos , Exossomos/imunologia , Comunicação Celular
16.
J Biochem Mol Toxicol ; 38(6): e23719, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38764138

RESUMO

Cancer stem cells (CSCs) are associated with the tumor microenvironment (TME). CSCs induce tumorigenesis, tumor recurrence and progression, and resistance to standard therapies. Indeed, CSCs pose an increasing challenge to current cancer therapy due to their stemness or self-renewal properties. The molecular and cellular interactions between heterogeneous CSCs and surrounding TME components and tumor-supporting immune cells show synergistic effects toward treatment failure. In the immunosuppressive TME, CSCs express various immunoregulatory proteins, growth factors, metabolites and cytokines, and also produce exosomes, a type of extracellular vesicles, to protect themselves from host immune surveillance. Among these, the identification and application of CSC-derived exosomes could be considered for the development of therapeutic approaches to eliminate CSCs or cancer, in addition to targeting the modulators that remodel the composition of the TME, as reviewed in this study. Here, we introduce the role of CSCs and how their interaction with TME complicates immunotherapies, and then present the CSC-based immunotherapy and the limitation of these therapies. We describe the biology and role of tumor/CSC-derived exosomes that induce immune suppression in the TME, and finally, introduce their potentials for the development of CSC-based targeted immunotherapy in the future.


Assuntos
Células Dendríticas , Exossomos , Inibidores de Checkpoint Imunológico , Imunoterapia , Células-Tronco Neoplásicas , Microambiente Tumoral , Humanos , Exossomos/imunologia , Exossomos/metabolismo , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Imunoterapia/métodos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Vacinas Anticâncer/imunologia , Animais
17.
Front Immunol ; 15: 1402468, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799471

RESUMO

Ischemic heart disease (IHD) is a leading cause of disability and death worldwide, with immune regulation playing a crucial role in its pathogenesis. Various immune cells are involved, and as one of the key immune cells residing in the heart, macrophages play an indispensable role in the inflammatory and reparative processes during cardiac ischemia. Exosomes, extracellular vesicles containing lipids, nucleic acids, proteins, and other bioactive molecules, have emerged as important mediators in the regulatory functions of macrophages and hold promise as a novel therapeutic target for IHD. This review summarizes the regulatory mechanisms of different subsets of macrophages and their secreted exosomes during cardiac ischemia over the past five years. It also discusses the current status of clinical research utilizing macrophages and their exosomes, as well as strategies to enhance their therapeutic efficacy through biotechnology. The aim is to provide valuable insights for the treatment of IHD.


Assuntos
Exossomos , Macrófagos , Isquemia Miocárdica , Exossomos/metabolismo , Exossomos/imunologia , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Isquemia Miocárdica/imunologia , Isquemia Miocárdica/metabolismo , Animais
18.
Elife ; 132024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743056

RESUMO

Mutations in the gene for ß-catenin cause liver cancer cells to release fewer exosomes, which reduces the number of immune cells infiltrating the tumor.


Assuntos
Evasão Tumoral , Humanos , beta Catenina/metabolismo , beta Catenina/genética , Exossomos/imunologia , Exossomos/metabolismo , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/genética , Mutação , Sistema Imunitário/imunologia , Neoplasias/imunologia , Neoplasias/genética
19.
Front Immunol ; 15: 1395332, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726017

RESUMO

PD-1/PD-L1 signaling is a key factor of local immunosuppression in the tumor microenvironment. Immune checkpoint inhibitors targeting PD-1/PD-L1 signaling have achieved tremendous success in clinic. However, several types of cancer are particularly refractory to the anti-PD-1/PD-L1 treatment. Recently, a series of studies reported that IFN-γ can stimulate cancer cells to release exosomal PD-L1 (exoPD-L1), which possesses the ability to suppress anticancer immune responses and is associated with anti-PD-1 response. In this review, we introduce the PD-1/PD-L1 signaling, including the so-called 'reverse signaling'. Furthermore, we summarize the immune treatments of cancers and pay more attention to immune checkpoint inhibitors targeting PD-1/PD-L1 signaling. Additionally, we review the action mechanisms and regulation of exoPD-L1. We also introduce the function of exoPD-L1 as biomarkers. Finally, we review the methods for analyzing and quantifying exoPD-L1, the therapeutic strategies targeting exoPD-L1 to enhance immunotherapy and the roles of exoPD-L1 beyond cancer. This comprehensive review delves into recent advances of exoPD-L1 and all these findings suggest that exoPD-L1 plays an important role in both cancer and other fields.


Assuntos
Antígeno B7-H1 , Exossomos , Imunoterapia , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/imunologia , Neoplasias/metabolismo , Antígeno B7-H1/metabolismo , Antígeno B7-H1/imunologia , Exossomos/metabolismo , Exossomos/imunologia , Microambiente Tumoral/imunologia , Animais , Imunoterapia/métodos , Transdução de Sinais , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Biomarcadores Tumorais
20.
Int J Nanomedicine ; 19: 3943-3956, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708179

RESUMO

Autoimmune diseases refer to a group of conditions where the immune system produces an immune response against self-antigens, resulting in tissue damage. These diseases have profound impacts on the health of patients. In recent years, with the rapid development in the field of biomedicine, engineered exosomes have emerged as a noteworthy class of biogenic nanoparticles. By precisely manipulating the cargo and surface markers of exosomes, engineered exosomes have gained enhanced anti-inflammatory, immunomodulatory, and tissue reparative abilities, providing new prospects for the treatment of autoimmune diseases. Engineered exosomes not only facilitate the efficient delivery of bioactive molecules including nucleic acids, proteins, and cytokines, but also possess the capability to modulate immune cell functions, suppress inflammation, and restore immune homeostasis. This review mainly focuses on the applications of engineered exosomes in several typical autoimmune diseases. Additionally, this article comprehensively summarizes the current approaches for modification and engineering of exosomes and outlines their prospects in clinical applications. In conclusion, engineered exosomes, as an innovative therapeutic approach, hold promise for the management of autoimmune diseases. However, while significant progress has been made, further rigorous research is still needed to address the challenges that engineered exosomes may encounter in the therapeutic intervention process, in order to facilitate their successful translation into clinical practice and ultimately benefit a broader population of patients.


Assuntos
Doenças Autoimunes , Exossomos , Exossomos/imunologia , Humanos , Doenças Autoimunes/terapia , Doenças Autoimunes/imunologia , Animais , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...