Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52.015
Filtrar
1.
Front Immunol ; 15: 1396827, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855102

RESUMO

Glucocorticoids, which have long served as fundamental therapeutics for diverse inflammatory conditions, are still widely used, despite associated side effects limiting their long-term use. Among their key mediators is glucocorticoid-induced leucine zipper (GILZ), recognized for its anti-inflammatory and immunosuppressive properties. Here, we explore the immunomodulatory effects of GILZ in macrophages through transcriptomic analysis and functional assays. Bulk RNA sequencing of GILZ knockout and GILZ-overexpressing macrophages revealed significant alterations in gene expression profiles, particularly impacting pathways associated with the inflammatory response, phagocytosis, cell death, mitochondrial function, and extracellular structure organization activity. GILZ-overexpression enhances phagocytic and antibacterial activity against Salmonella typhimurium and Escherichia coli, potentially mediated by increased nitric oxide production. In addition, GILZ protects macrophages from pyroptotic cell death, as indicated by a reduced production of reactive oxygen species (ROS) in GILZ transgenic macrophages. In contrast, GILZ KO macrophages produced more ROS, suggesting a regulatory role of GILZ in ROS-dependent pathways. Additionally, GILZ overexpression leads to decreased mitochondrial respiration and heightened matrix metalloproteinase activity, suggesting its involvement in tissue remodeling processes. These findings underscore the multifaceted role of GILZ in modulating macrophage functions and its potential as a therapeutic target for inflammatory disorders, offering insights into the development of novel therapeutic strategies aimed at optimizing the benefits of glucocorticoid therapy while minimizing adverse effects.


Assuntos
Macrófagos , Mitocôndrias , Fagocitose , Piroptose , Fatores de Transcrição , Animais , Mitocôndrias/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Imunomodulação , Espécies Reativas de Oxigênio/metabolismo , Camundongos Knockout , Glucocorticoides/farmacologia , Camundongos Endogâmicos C57BL , Salmonella typhimurium/imunologia , Escherichia coli/imunologia
2.
Sci Rep ; 14(1): 13618, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871799

RESUMO

The mechanism by which subarachnoid hemorrhage (SAH) leads to chronic neurologic deficits is unclear. One possibility is that blood activates microglia to drive inflammation that leads to synaptic loss and impaired brain function. Using the endovascular perforation model of SAH in rats, we investigated short-term effects on microglia together with long-term effects on EEG and neurologic function for up to 3 months. Within the first week, microglia were increased both at the site of injury and diffusely across the cortex (2.5-fold increase in SAH compared to controls, p = 0.012). Concomitantly, EEGs from SAH animals showed focal increases in slow wave activity and diffuse reduction in fast activity. When expressed as a fast-slow spectral ratio, there were significant interactions between group and time (p < 0.001) with less ipsilateral recovery over time. EEG changes were most pronounced during the first week and correlated with neurobehavioral impairment. In vitro, the blood product hemin was sufficient to increase microglia phagocytosis nearly six-fold (p = 0.032). Immunomodulatory treatment with fingolimod after SAH reduced microglia, improved neurological function, and increased survival. These findings, which parallel many of the EEG changes seen in patients, suggest that targeting neuroinflammation could reduce long-term neurologic dysfunction following SAH.


Assuntos
Modelos Animais de Doenças , Eletroencefalografia , Microglia , Hemorragia Subaracnóidea , Hemorragia Subaracnóidea/fisiopatologia , Hemorragia Subaracnóidea/complicações , Animais , Microglia/patologia , Microglia/metabolismo , Ratos , Masculino , Fagocitose , Ratos Sprague-Dawley
3.
Sci Immunol ; 9(96): eadl2388, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38848343

RESUMO

Professional phagocytes like neutrophils and macrophages tightly control what they consume, how much they consume, and when they move after cargo uptake. We show that plasma membrane abundance is a key arbiter of these cellular behaviors. Neutrophils and macrophages lacking the G protein subunit Gß4 exhibited profound plasma membrane expansion, accompanied by marked reduction in plasma membrane tension. These biophysical changes promoted the phagocytosis of bacteria, fungus, apoptotic corpses, and cancer cells. We also found that Gß4-deficient neutrophils are defective in the normal inhibition of migration following cargo uptake. Sphingolipid synthesis played a central role in these phenotypes by driving plasma membrane accumulation in cells lacking Gß4. In Gß4 knockout mice, neutrophils not only exhibited enhanced phagocytosis of inhaled fungal conidia in the lung but also increased trafficking of engulfed pathogens to other organs. Together, these results reveal an unexpected, biophysical control mechanism central to myeloid functional decision-making.


Assuntos
Membrana Celular , Camundongos Knockout , Fagocitose , Animais , Fagocitose/imunologia , Membrana Celular/metabolismo , Membrana Celular/imunologia , Camundongos , Células Mieloides/imunologia , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Macrófagos/imunologia
4.
Front Immunol ; 15: 1383498, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827743

RESUMO

This study investigates immune priming effects associated with granulocytes in crickets through a comprehensive analysis. Kaplan-Meier survival analysis reveals a significant contrast in survival rates, with the heat-killed Bacillus thuringiensis (Bt)-primed group exhibiting an impressive ~80% survival rate compared to the PBS buffer-primed group with only ~10% survival 60 hours post live Bt infection. Hemocyte analysis underscores elevated hemocyte counts, particularly in granulocytes of the killed Bt-primed group, suggesting a correlation between the heat-killed Bt priming and heightened immune activation. Microscopy techniques further explore granulocyte morphology, unveiling distinctive immune responses in the killed Bt-primed group characterized by prolonged immune activation, heightened granulocyte activity, phagocytosis, and extracellular trap formation, contributing to enhanced survival rates. In particular, after 24 hours of injecting live Bt, most granulocytes in the PBS buffer-primed group exhibited extracellular DNA trap cell death (ETosis), while in the killed Bt-primed group, the majority of granulocytes were observed to maintain highly activated extracellular traps, sustaining the immune response. Gene expression analysis supports these findings, revealing differential regulation of immune-related genes such as antibacterial humoral response, detection of bacterial lipopeptides, and cellular response to bacteria lipopeptides. Additionally, the heat-killed Bt-primed group, the heat-killed E. coli-primed group, and the PBS-primed group were re-injected with live Bt 2 and 9 days post priming. Two days later, only the PBS-primed group displayed low survival rates. After injecting live Bt 9 days later, the heat-killed E. coli-primed group surprisingly showed a similarly low survival rate, while the heat-killed Bt-primed group exhibited a high survival rate of ~60% after 60 hours, with actively moving and healthy crickets. In conclusion, this research provides valuable insights into both short-term and long-term immune priming effects in crickets, contributing to our understanding of invertebrate immunity with potential applications in public health.


Assuntos
Bacillus thuringiensis , Granulócitos , Gryllidae , Animais , Granulócitos/imunologia , Gryllidae/imunologia , Bacillus thuringiensis/imunologia , Fagocitose/imunologia , Hemócitos/imunologia , Armadilhas Extracelulares/imunologia
5.
Front Immunol ; 15: 1415573, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835772

RESUMO

Efferocytosis, the process of engulfing and removing apoptotic cells, plays an essential role in preserving tissue health and averting undue inflammation. While macrophages are primarily known for this task, dendritic cells (DCs) also play a significant role. This review delves into the unique contributions of various DC subsets to efferocytosis, highlighting the distinctions in how DCs and macrophages recognize and handle apoptotic cells. It further explores how efferocytosis influences DC maturation, thereby affecting immune tolerance. This underscores the pivotal role of DCs in orchestrating immune responses and sustaining immune equilibrium, providing new insights into their function in immune regulation.


Assuntos
Células Dendríticas , Macrófagos , Fagocitose , Células Dendríticas/imunologia , Humanos , Fagocitose/imunologia , Animais , Macrófagos/imunologia , Apoptose/imunologia , Tolerância Imunológica , Eferocitose
6.
Front Immunol ; 15: 1358853, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835780

RESUMO

Introduction: Innate immunity is crucial to reducing parasite burden and contributing to survival in severe malaria. Monocytes are key actors in the innate response and, like macrophages, are plastic cells whose function and phenotype are regulated by the signals from the microenvironment. In the context of cerebral malaria (CM), monocyte response constitutes an important issue to understand. We previously demonstrated that decreased percentages of nonclassical monocytes were associated with death outcomes in CM children. In the current study, we postulated that monocyte phagocytosis function is impacted by the severity of malaria infection. Methods: To study this hypothesis, we compared the opsonic and nonopsonic phagocytosis capacity of circulant monocytes from Beninese children with uncomplicated malaria (UM) and CM. For the CM group, samples were obtained at inclusion (D0) and 3 and 30 days after treatment (D3, D30). The phagocytosis capacity of monocytes and their subsets was characterized by flow cytometry and transcriptional profiling by studying genes known for their functional implication in infected-red blood cell (iRBC) elimination or immune escape. Results: Our results confirm our hypothesis and highlight the higher capacity of nonclassical monocytes to phagocyte iRBC. We also confirm that a low number of nonclassical monocytes is associated with CM outcome when compared to UM, suggesting a mobilization of this subpopulation to the cerebral inflammatory site. Finally, our results suggest the implication of the inhibitory receptors LILRB1, LILRB2, and Tim3 in phagocytosis control. Discussion: Taken together, these data provide a better understanding of the interplay between monocytes and malaria infection in the pathogenicity of CM.


Assuntos
Malária Cerebral , Monócitos , Fagocitose , Humanos , Malária Cerebral/imunologia , Malária Cerebral/parasitologia , Monócitos/imunologia , Masculino , Pré-Escolar , Feminino , Criança , Lactente , Plasmodium falciparum/imunologia , Proteínas Opsonizantes/metabolismo , Proteínas Opsonizantes/imunologia , Eritrócitos/parasitologia , Eritrócitos/imunologia , Imunidade Inata
7.
Sci Adv ; 10(23): eadj3289, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38838160

RESUMO

Tissue stiffening is a predominant feature of fibrotic disorders, but the response of macrophages to changes in tissue stiffness and cellular context in fibrotic diseases remains unclear. Here, we found that the mechanosensitive ion channel Piezo1 was up-regulated in hepatic fibrosis. Macrophages lacking Piezo1 showed sustained inflammation and impaired spontaneous resolution of early liver fibrosis. Further analysis revealed an impairment of clearance of apoptotic cells by macrophages in the fibrotic liver. Macrophages showed enhanced efferocytosis when cultured on rigid substrates but not soft ones, suggesting stiffness-dependent efferocytosis of macrophages required Piezo1 activation. Besides, Piezo1 was involved in the efficient acidification of the engulfed cargo in the phagolysosomes and affected the subsequent expression of anti-inflammation genes after efferocytosis. Pharmacological activation of Piezo1 increased the efferocytosis capacity of macrophages and accelerated the resolution of inflammation and fibrosis. Our study supports the antifibrotic role of Piezo1-mediated mechanical sensation in liver fibrosis, suggesting that targeting PIEZO1 to enhance macrophage efferocytosis could induce fibrosis regression.


Assuntos
Canais Iônicos , Cirrose Hepática , Macrófagos , Fagocitose , Canais Iônicos/metabolismo , Canais Iônicos/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/genética , Animais , Macrófagos/metabolismo , Camundongos , Humanos , Apoptose , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Eferocitose
8.
AAPS PharmSciTech ; 25(5): 125, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834759

RESUMO

DOX liposomes have better therapeutic effects and lower toxic side effects. The targeting ability of liposomes is one of the key factors affecting the therapeutic effect of DOX liposomes. This study developed two types of targeted liposomes. Sialic acid (SA)-modified liposomes were designed to target the highly expressed Siglec-1 receptor on tumor-associated macrophages surface. Phosphatidylserine (PS)-modified liposomes were designed to promote phagocytosis by monocyte-derived macrophages through PS apoptotic signaling. In order to assess and compare the therapeutic potential of different targeted pathways in the context of anti-tumor treatment, we compared four phosphatidylserine membrane materials (DOPS, DSPS, DPPS and DMPS) and found that liposomes prepared using DOPS as material could significantly improve the uptake ability of RAW264.7 cells for DOX liposomes. On this basis, normal DOX liposomes (CL-DOX) and SA-modified DOX liposomes (SAL-DOX), PS-modified DOX liposomes (PS-CL-DOX), SA and PS co-modified DOX liposomes (PS-SAL-DOX) were prepared. The anti-tumor cells function of each liposome on S180 and RAW264.7 in vitro was investigated, and it was found that SA on the surface of liposomes can increase the inhibitory effect. In vivo efficacy results exhibited that SAL-DOX and PS-CL-DOX were superior to other groups in terms of ability to inhibit tumor growth and tumor inhibition index, among which SAL-DOX had the best anti-tumor effect. Moreover, SAL-DOX group mice had high expression of IFN-γ as well as IL-12 factors, which could significantly inhibit mice tumor growth, improve the immune microenvironment of the tumor site, and have excellent targeted delivery potential.


Assuntos
Doxorrubicina , Lipossomos , Ácido N-Acetilneuramínico , Fosfatidilserinas , Macrófagos Associados a Tumor , Animais , Camundongos , Ácido N-Acetilneuramínico/química , Células RAW 264.7 , Fosfatidilserinas/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/metabolismo , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Fagocitose/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Apoptose/efeitos dos fármacos
9.
J Clin Invest ; 134(11)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38828721

RESUMO

The adoptive transfer of T cell receptor-engineered (TCR-engineered) T cells (ACT) targeting the HLA-A2-restricted cancer-testis epitope NY-ESO-1157-165 (A2/NY) has yielded favorable clinical responses against several cancers. Two approaches to improve ACT are TCR affinity optimization and T cell coengineering to express immunomodulatory molecules that can exploit endogenous immunity. By computational design we previously developed a panel of binding-enhanced A2/NY-TCRs including A97L, which augmented the in vitro function of gene-modified T cells as compared with WT. Here, we demonstrated higher persistence and improved tumor control by A97L-T cells. In order to harness macrophages in tumors, we further coengineered A97L-T cells to secrete a high-affinity signal regulatory protein α (SiRPα) decoy (CV1) that blocks CD47. While CV1-Fc-coengineered A97L-T cells mediated significantly better control of tumor outgrowth and survival in Winn assays, in subcutaneous xenograft models the T cells, coated by CV1-Fc, were depleted. Importantly, there was no phagocytosis of CV1 monomer-coengineered T cells by human macrophages. Moreover, avelumab and cetuximab enhanced macrophage-mediated phagocytosis of tumor cells in vitro in the presence of CV1 and improved tumor control upon coadministration with A97L-T cells. Taken together, our study indicates important clinical promise for harnessing macrophages by combining CV1-coengineered TCR-T cells with targeted antibodies to direct phagocytosis against tumor cells.


Assuntos
Macrófagos , Fagocitose , Receptores Imunológicos , Animais , Humanos , Camundongos , Antígenos de Diferenciação/imunologia , Antígenos de Neoplasias/imunologia , Antígeno CD47/imunologia , Linhagem Celular Tumoral , Antígeno HLA-A2/imunologia , Antígeno HLA-A2/genética , Imunoterapia Adotiva , Macrófagos/imunologia , Macrófagos/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Masculino , Feminino
10.
Front Immunol ; 15: 1403150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873597

RESUMO

The interplay between myeloid cells and T-lymphocytes is critical to the regulation of host defense and inflammation resolution. Dysregulation of this interaction can contribute to the development of chronic inflammatory diseases. Important among these diseases is atherosclerosis, which refers to focal lesions in the arterial intima driven by elevated apolipoprotein B-containing lipoproteins, notably low-density lipoprotein (LDL), and characterized by the formation of a plaque composed of inflammatory immune cells, a collection of dead cells and lipids called the necrotic core, and a fibrous cap. As the disease progresses, the necrotic core expands, and the fibrous cap becomes thin, which increases the risk of plaque rupture or erosion. Plaque rupture leads to a rapid thrombotic response that can give rise to heart attack, stroke, or sudden death. With marked lowering of circulating LDL, however, plaques become more stable and cardiac risk is lowered-a process known as atherosclerosis regression. A critical aspect of both atherosclerosis progression and regression is the crosstalk between innate (myeloid cells) and adaptive (T-lymphocytes) immune cells. Myeloid cells are specialized at clearing apoptotic cells by a process called efferocytosis, which is necessary for inflammation resolution. In advanced disease, efferocytosis is impaired, leading to secondary necrosis of apoptotic cells, inflammation, and, most importantly, defective tissue resolution. In regression, efferocytosis is reawakened aiding in inflammation resolution and plaque stabilization. Here, we will explore how efferocytosing myeloid cells could affect T-cell function and vice versa through antigen presentation, secreted factors, and cell-cell contacts and how this cellular crosstalk may contribute to the progression or regression of atherosclerosis.


Assuntos
Aterosclerose , Células Mieloides , Linfócitos T , Humanos , Aterosclerose/imunologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células Mieloides/imunologia , Células Mieloides/metabolismo , Animais , Comunicação Celular/imunologia , Fagocitose , Apoptose , Placa Aterosclerótica/imunologia , Placa Aterosclerótica/patologia
11.
Carbohydr Polym ; 339: 122256, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823922

RESUMO

Recently, the intestinal lymphatic transport based on Peyer's patches (PPs) is emerging as a promising absorption pathway for natural polysaccharides. Herein, the aim of this study is to investigate the PP-based oral absorption of a pectic polysaccharide from Smilax china L. (SCLP), as well as its uptake and transport mechanisms in related immune cells. Taking advantages of the traceability of fluorescently labeled SCLP, we confirmed that SCLP could be absorbed into PPs and captured by their mononuclear phagocytes (dendritic cells and macrophages) following oral administration. Subsequently, the systematic in vitro study suggested that the endocytic mechanisms of SCLP by model mononuclear phagocytes (BMDCs and RAW264.7 cells) mainly involved caveolae-mediated endocytosis, macropinocytosis and phagocytosis. More importantly, SCLP directly binds and interacts with toll-like receptor 2 (TLR2) and galectin 3 (Gal-3) receptor, and was taken up by mononuclear phagocytes in receptor-mediated manner. After internalization, SCLP was intracellularly transported primarily through endolysosomal pathway and ultimately localized in lysosomes. In summary, this work reveals novel information and perspectives about the in vivo fate of SCLP, which will contribute to further research and utilization of SCLP and other pectic polysaccharides.


Assuntos
Nódulos Linfáticos Agregados , Smilax , Animais , Camundongos , Células RAW 264.7 , Nódulos Linfáticos Agregados/metabolismo , Smilax/química , Endocitose , Pectinas/química , Pectinas/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Fagócitos/metabolismo , Fagócitos/efeitos dos fármacos , Receptor 2 Toll-Like/metabolismo , Camundongos Endogâmicos BALB C , Masculino , Células Dendríticas/metabolismo , Células Dendríticas/efeitos dos fármacos , Administração Oral
12.
Immunity ; 57(6): 1189-1191, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38865964

RESUMO

Phagocytic microglia such as proliferative region-associated microglia and disease-associated microglia appear in the brain transiently during development and across various brain pathologies, but their function and degree of plasticity remain unclear. In this issue of Immunity, Barclay et al. established a novel Clec7a-CreERT2 mouse line to uncover the plasticity of this cell state and its role in a model of myelin injury.


Assuntos
Plasticidade Celular , Microglia , Fagocitose , Microglia/imunologia , Microglia/fisiologia , Animais , Camundongos , Plasticidade Celular/imunologia , Bainha de Mielina/imunologia , Bainha de Mielina/metabolismo , Humanos , Encéfalo/imunologia
13.
Nat Commun ; 15(1): 4724, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830855

RESUMO

Respiratory infection by Pseudomonas aeruginosa, common in hospitalized immunocompromised and immunocompetent ventilated patients, can be life-threatening because of antibiotic resistance. This raises the question of whether the host's immune system can be educated to combat this bacterium. Here we show that prior exposure to a single low dose of lipopolysaccharide (LPS) protects mice from a lethal infection by P. aeruginosa. LPS exposure trained the innate immune system by promoting expansion of neutrophil and interstitial macrophage populations distinguishable from other immune cells with enrichment of gene sets for phagocytosis- and cell-killing-associated genes. The cell-killing gene set in the neutrophil population uniquely expressed Lgals3, which encodes the multifunctional antibacterial protein, galectin-3. Intravital imaging for bacterial phagocytosis, assessment of bacterial killing and neutrophil-associated galectin-3 protein levels together with use of galectin-3-deficient mice collectively highlight neutrophils and galectin-3 as central players in LPS-mediated protection. Patients with acute respiratory failure revealed significantly higher galectin-3 levels in endotracheal aspirates (ETAs) of survivors compared to non-survivors, galectin-3 levels strongly correlating with a neutrophil signature in the ETAs and a prognostically favorable hypoinflammatory plasma biomarker subphenotype. Taken together, our study provides impetus for harnessing the potential of galectin-3-expressing neutrophils to protect from lethal infections and respiratory failure.


Assuntos
Galectina 3 , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Neutrófilos , Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Galectina 3/metabolismo , Galectina 3/genética , Neutrófilos/imunologia , Neutrófilos/metabolismo , Humanos , Camundongos , Infecções por Pseudomonas/imunologia , Masculino , Feminino , Insuficiência Respiratória/metabolismo , Camundongos Knockout , Fagocitose , Imunidade Inata , Galectinas/metabolismo , Galectinas/genética
14.
Sci Adv ; 10(23): eadl6083, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38838151

RESUMO

Hepatocellular carcinoma (HCC) acquires an immunosuppressive microenvironment, leading to unbeneficial therapeutic outcomes. Hyaluronan-mediated motility receptor (HMMR) plays a crucial role in tumor progression. Here, we found that aberrant expression of HMMR could be a predictive biomarker for the immune suppressive microenvironment of HCC, but the mechanism remains unclear. We established an HMMR-/- liver cancer mouse model to elucidate the HMMR-mediated mechanism of the dysregulated "don't eat me" signal. HMMR knockout inhibited liver cancer growth and induced phagocytosis. HMMRhigh liver cancer cells escaped from phagocytosis via sustaining CD47 signaling. Patients with HMMRhighCD47high expression showed a worse prognosis than those with HMMRlowCD47low expression. HMMR formed a complex with FAK/SRC in the cytoplasm to activate NF-κB signaling, which could be independent of membrane interaction with CD44. Notably, targeting HMMR could enhance anti-PD-1 treatment efficiency by recruiting CD8+ T cells. Overall, our data revealed a regulatory mechanism of the "don't eat me" signal and knockdown of HMMR for enhancing anti-PD-1 treatment.


Assuntos
Antígeno CD47 , Carcinoma Hepatocelular , Receptores de Hialuronatos , Neoplasias Hepáticas , Fagócitos , Fagocitose , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Antígeno CD47/metabolismo , Antígeno CD47/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Quinase 1 de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/genética , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/genética , Evasão da Resposta Imune , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Camundongos Knockout , NF-kappa B/metabolismo , Fagócitos/metabolismo , Fagócitos/imunologia , Transdução de Sinais , Evasão Tumoral , Microambiente Tumoral/imunologia
15.
Clin Exp Med ; 24(1): 122, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856863

RESUMO

Regulatory T cells (Tregs) are known to facilitate tumor progression by suppressing CD8+ T cells within the tumor microenvironment (TME), thereby also hampering the effectiveness of immune checkpoint inhibitors (ICIs). While systemic depletion of Tregs can enhance antitumor immunity, it also triggers undesirable autoimmune responses. Therefore, there is a need for therapeutic agents that selectively target Tregs within the TME without affecting systemic Tregs. In this study, as shown also by others, the chemokine (C-C motif) receptor 8 (CCR8) was found to be predominantly expressed on Tregs within the TME of both humans and mice, representing a unique target for selective depletion of tumor-residing Tregs. Based on this, we developed BAY 3375968, a novel anti-human CCR8 antibody, along with respective surrogate anti-mouse CCR8 antibodies, and demonstrated their in vitro mode-of-action through induction of potent antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP) activities. In vivo, anti-mouse CCR8 antibodies effectively depleted Tregs within the TME primarily via ADCP, leading to increased CD8+ T cell infiltration and subsequent tumor growth inhibition across various cancer models. This monotherapeutic efficacy was significantly enhanced in combination with ICIs. Collectively, these findings suggest that CCR8 targeting represents a promising strategy for Treg depletion in cancer therapies. BAY 3375968 is currently under investigation in a Phase I clinical trial (NCT05537740).


Assuntos
Receptores CCR8 , Linfócitos T Reguladores , Microambiente Tumoral , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Receptores CCR8/imunologia , Receptores CCR8/antagonistas & inibidores , Animais , Camundongos , Humanos , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Feminino , Citotoxicidade Celular Dependente de Anticorpos , Depleção Linfocítica , Linhagem Celular Tumoral , Fagocitose/efeitos dos fármacos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico
16.
Nat Cell Biol ; 26(6): 868-877, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38849542

RESUMO

Despite a distinct developmental origin, extraembryonic cells in mice contribute to gut endoderm and converge to transcriptionally resemble their embryonic counterparts. Notably, all extraembryonic progenitors share a non-canonical epigenome, raising several pertinent questions, including whether this landscape is reset to match the embryonic regulation and if extraembryonic cells persist into later development. Here we developed a two-colour lineage-tracing strategy to track and isolate extraembryonic cells over time. We find that extraembryonic gut cells display substantial memory of their developmental origin including retention of the original DNA methylation landscape and resulting transcriptional signatures. Furthermore, we show that extraembryonic gut cells undergo programmed cell death and neighbouring embryonic cells clear their remnants via non-professional phagocytosis. By midgestation, we no longer detect extraembryonic cells in the wild-type gut, whereas they persist and differentiate further in p53-mutant embryos. Our study provides key insights into the molecular and developmental fate of extraembryonic cells inside the embryo.


Assuntos
Apoptose , Linhagem da Célula , Metilação de DNA , Endoderma , Regulação da Expressão Gênica no Desenvolvimento , Animais , Endoderma/citologia , Endoderma/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Fagocitose , Camundongos Endogâmicos C57BL , Camundongos , Diferenciação Celular , Feminino , Desenvolvimento Embrionário , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Camundongos Transgênicos , Trato Gastrointestinal/citologia , Trato Gastrointestinal/embriologia , Trato Gastrointestinal/metabolismo
17.
Invest Ophthalmol Vis Sci ; 65(6): 17, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38861275

RESUMO

Purpose: N6-methyladenosine (m6A) methylation is a chemical modification that occurs on RNA molecules, where the hydrogen atom of adenine (A) nucleotides is replaced by a methyl group, forming N6-methyladenosine. This modification is a dynamic and reversible process that plays a crucial role in regulating various biological processes, including RNA stability, transport, translation, and degradation. Currently, there is a lack of research on the role of m6A modifications in maintaining the characteristics of RPE cells. m6A readers play a crucial role in executing the functions of m6A modifications, which prompted our investigation into their regulatory roles in the RPE. Methods: Phagocytosis assays, immunofluorescence staining, flow cytometry experiments, ß-galactosidase staining, and RNA sequencing (RNA-seq) were conducted to assess the functional and cellular characteristics changes in retinal pigment epithelium (RPE) cells following short-hairpin RNA-mediated knockdown of insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2). RNA-seq and ultraviolet crosslinking immunoprecipitation with high-throughput sequencing (HITS-CLIP) were employed to identify the target genes regulated by IGF2BP2. adeno-associated virus (AAV) subretinal injection was performed in 6- to 8-week-old C57 mice to reduce IGF2BP2 expression in the RPE, and the impact of IGF2BP2 knockdown on mouse visual function was assessed using immunofluorescence, quantitative real-time PCR, optical coherence tomography, and electroretinography. Results: IGF2BP2 was found to have a pronounced effect on RPE phagocytosis. Subsequent in-depth exploration revealed that IGF2BP2 modulates the mRNA stability of PAX6 and OTX2, and the loss of IGF2BP2 induces inflammatory and aging phenotypes in RPE cells. IGF2BP2 knockdown impaired RPE function, leading to retinal dysfunction in vivo. Conclusions: Our data suggest a crucial role of IGF2BP2 as an m6A reader in maintaining RPE homeostasis by regulating the stability of PAX6 and OTX2, making it a potential target for preventing the occurrence of retinal diseases related to RPE malfunction.


Assuntos
Homeostase , Camundongos Endogâmicos C57BL , Fatores de Transcrição Otx , Fator de Transcrição PAX6 , Proteínas de Ligação a RNA , Epitélio Pigmentado da Retina , Epitélio Pigmentado da Retina/metabolismo , Animais , Camundongos , Fator de Transcrição PAX6/genética , Fator de Transcrição PAX6/metabolismo , Homeostase/fisiologia , Fatores de Transcrição Otx/metabolismo , Fatores de Transcrição Otx/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Fagocitose/fisiologia , Citometria de Fluxo , Regulação da Expressão Gênica/fisiologia , Tomografia de Coerência Óptica , Eletrorretinografia , Células Cultivadas
18.
Proc Natl Acad Sci U S A ; 121(25): e2312499121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38857395

RESUMO

Ex vivo expansion of human CD34+ hematopoietic stem and progenitor cells remains a challenge due to rapid differentiation after detachment from the bone marrow niche. In this study, we assessed the capacity of an inducible fusion protein to enable sustained ex vivo proliferation of hematopoietic precursors and their capacity to differentiate into functional phagocytes. We fused the coding sequences of an FK506-Binding Protein 12 (FKBP12)-derived destabilization domain (DD) to the myeloid/lymphoid lineage leukemia/eleven nineteen leukemia (MLL-ENL) fusion gene to generate the fusion protein DD-MLL-ENL and retrovirally expressed the protein switch in human CD34+ progenitors. Using Shield1, a chemical inhibitor of DD fusion protein degradation, we established large-scale and long-term expansion of late monocytic precursors. Upon Shield1 removal, the cells lost self-renewal capacity and spontaneously differentiated, even after 2.5 y of continuous ex vivo expansion. In the absence of Shield1, stimulation with IFN-γ, LPS, and GM-CSF triggered terminal differentiation. Gene expression analysis of the obtained phagocytes revealed marked similarity with naïve monocytes. In functional assays, the novel phagocytes migrated toward CCL2, attached to VCAM-1 under shear stress, produced reactive oxygen species, and engulfed bacterial particles, cellular particles, and apoptotic cells. Finally, we demonstrated Fcγ receptor recognition and phagocytosis of opsonized lymphoma cells in an antibody-dependent manner. Overall, we have established an engineered protein that, as a single factor, is useful for large-scale ex vivo production of human phagocytes. Such adjustable proteins have the potential to be applied as molecular tools to produce functional immune cells for experimental cell-based approaches.


Assuntos
Diferenciação Celular , Fagócitos , Humanos , Fagócitos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Leucemia/genética , Leucemia/patologia , Leucemia/metabolismo , Engenharia de Proteínas/métodos , Fagocitose
19.
Carbohydr Polym ; 340: 122259, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38858019

RESUMO

Our previous investigations have successfully identified the repeating structural units of EPS53, an exopolysaccharide derived from Streptococcus thermophilus XJ53 fermented milk, and substantiated its potential immunomodulatory properties. The present study further elucidated the structural characteristics of EPS53 and investigated the underlying mechanisms governing its in vitro immunoreactivity as well as its in vivo immunoreactivity. The results obtained from multi-detector high performance gel filtration chromatography revealed that EPS53 adopted a rigid rod conformation in aqueous solution, with the weight-average molecular weight of 1464 kDa, the number-average molecular weight of 694 kDa, and the polydispersity index of 2.11. Congo red experiment confirmed the absence of a triple helix conformation. Scanning electron microscopy showed that EPS53 displayed a three-dimensional fibrous structure covered with flakes. The in vitro findings indicated that EPS53 enhanced phagocytosis ability, reactive oxygen species (ROS) production, and cytokine levels of macrophages via the TLR4-mediated NF-κB/MAPK signaling pathways as confirmed by immunofluorescence staining experiments, inhibition blocking experiments, and Western blot assay. Additionally, the in vivo experiments demonstrated that EPS53 significantly increased macrophage and neutrophil number while enhancing NO and ROS levels in zebrafish larvae; thus, providing further evidence for the immunomodulatory efficacy of EPS53.


Assuntos
Fagocitose , Polissacarídeos Bacterianos , Streptococcus thermophilus , Peixe-Zebra , Animais , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/farmacologia , Camundongos , Células RAW 264.7 , Fagocitose/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Citocinas/metabolismo , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Transdução de Sinais/efeitos dos fármacos
20.
Front Immunol ; 15: 1397541, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774870

RESUMO

Aim: Despite the significant therapeutic outcomes achieved in systemic treatments for liver hepatocellular carcinoma (LIHC), it is an objective reality that only a low proportion of patients exhibit an improved objective response rate (ORR) to current immunotherapies. Antibody-dependent cellular phagocytosis (ADCP) immunotherapy is considered the new engine for precision immunotherapy. Based on this, we aim to develop an ADCP-based LIHC risk stratification system and screen for relevant targets. Method: Utilizing a combination of single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq data, we screened for ADCP modulating factors in LIHC and identified differentially expressed genes along with their involved functional pathways. A risk scoring model was established by identifying ADCP-related genes with prognostic value through LASSO Cox regression analysis. The risk scoring model was then subjected to evaluations of immune infiltration and immunotherapy relevance, with pan-cancer analysis and in vitro experimental studies conducted on key targets. Results: Building on the research by Kamber RA et al., we identified GYPA, CLDN18, and IRX5 as potential key target genes regulating ADCP in LIHC. These genes demonstrated significant correlations with immune infiltration cells, such as M1-type macrophages, and the effectiveness of immunotherapy in LIHC, as well as a close association with clinical pathological staging and patient prognosis. Pan-cancer analysis revealed that CLDN18 was prognostically and immunologically relevant across multiple types of cancer. Validation through tissue and cell samples confirmed that GYPA and CLDN18 were upregulated in liver cancer tissues and cells. Furthermore, in vitro knockdown of CLDN18 inhibited the malignancy capabilities of liver cancer cells. Conclusion: We have identified an ADCP signature in LIHC comprising three genes. Analysis based on a risk scoring model derived from these three genes, coupled with subsequent experimental validation, confirmed the pivotal role of M1-type macrophages in ADCP within LIHC, establishing CLDN18 as a critical ADCP regulatory target in LIHC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA-Seq , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/terapia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/terapia , Prognóstico , Imunoterapia/métodos , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Análise de Célula Única , Fagocitose/genética , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Perfilação da Expressão Gênica , Masculino , Claudinas/genética , Feminino , Análise da Expressão Gênica de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...