Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 536
Filtrar
1.
Phytomedicine ; 131: 155782, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851102

RESUMO

BACKGROUND: Asthma is a complex disease with mechanisms involving multiple factors, and there is still a lack of highly effective and low-side-effect drugs. Traditional Chinese medicine Fagopyrum Dibotrys Rhizoma (FDR) has been applied for the treatment of acute and chronic bronchitis as well as bronchial asthma due to its favorable pharmacological activity. However, the exact mechanism of FDR remains unclear. OBJECTIVE: A mouse model of asthma was created using OVA and HDM. To investigate the mechanism of FDR in asthma treatment, a combination of network pharmacology, lipidomics, and molecular biology approaches was employed. METHODS: To evaluate the therapeutic effects of FDR on asthma, we established two distinct models of asthma in C57BL/6 J mice using OVA and HDM, respectively. We then employed LC-MS to analyze the major chemical constituents in FDR. Next, the network pharmacology approach was used to predict the potential targets and mechanisms of FDR in asthma treatment. Additionally, lipidomics analysis of mouse serum was conducted using LC-MS. Finally, the impact of FDR on the ERK -cPLA2 signaling pathway was investigated through Western Blotting assay. RESULTS: FDR treatment has been shown to improve histomorphological changes, lung function and inflammation in models of OVA and HDM-induced asthma. Using UPLC/LTQ-Orbitrap-MS, we were able to identify 12 potential active components. Network pharmacology analysis revealed that FDR shares 75 targets with asthma. Further analysis using GO and KEGG pathways demonstrated the involvement of key pathways such as PI3K-Akt, TNF, and MAPK. Additionally, lipidomics analysis of the serum from OVA and HDM induced asthma mice showed disturbances in lipid metabolism, which were effectively ameliorated by FDR treatment. Mechanistically, FDR inhibits ERK1/2-cPLA2, leading to a reduction in lysophospholipids and restoration of lipid balance, thereby aiding in the treatment of asthma. CONCLUSION: FDR has been shown to improve lipid metabolism disorder in the serum of asthmatic mice, thereby potentially serving as a treatment for asthma. This can be achieved by regulating the activation levels of ERK1/2 and p38MAPK. Consequently, the production of lysophosphatide is reduced, thereby alleviating the disorder of lipid metabolism and achieving the desired therapeutic effect in asthma treatment.


Assuntos
Asma , Modelos Animais de Doenças , Fagopyrum , Metabolismo dos Lipídeos , Camundongos Endogâmicos C57BL , Rizoma , Animais , Asma/tratamento farmacológico , Metabolismo dos Lipídeos/efeitos dos fármacos , Rizoma/química , Camundongos , Fagopyrum/química , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Feminino , Medicamentos de Ervas Chinesas/farmacologia , Homeostase/efeitos dos fármacos , Lipidômica , Transdução de Sinais/efeitos dos fármacos , Farmacologia em Rede , Ovalbumina , Fosfolipases A2/metabolismo
2.
J Agric Food Chem ; 72(27): 15387-15397, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38920293

RESUMO

In this study, the protein structural, foaming, and air-water interfacial properties in dough liquor (DL) ultracentrifugated from buckwheat sourdough with different concentrations of an alkali (1.0-2.5% of sodium bicarbonate) were investigated. Results showed that the alkali led to the cross-linking of protein disulfide bonds through the oxidation of free sulfhydryl groups in DL. The alterations in protein secondary and tertiary structures revealed that the alkali caused the proteins in DL to fold, decreased the hydrophobicity, and led to a less flexible but compact structure. The alkali accelerated the diffusion of proteins and decreased the surface tension of DL. In addition, the alkali notably improved the foam stability by up to 34.08% at 2.5% concentration, mainly by increasing the net charge, reducing the bubble size, and strengthening the viscoelasticity of interfacial protein films. Quantitative proteomic analysis showed that histones and puroindolines of wheat and 13S globulin of buckwheat were closely related to the changes in the alkali-induced foaming properties. This study sheds light on the mechanism of alkali-induced improvement in gas cell stabilization and the buckwheat sourdough steamed bread quality from the aspect of the liquid lamella.


Assuntos
Álcalis , Pão , Fagopyrum , Proteínas de Plantas , Proteômica , Fagopyrum/química , Proteínas de Plantas/química , Pão/análise , Álcalis/química , Fermentação , Água/química , Farinha/análise , Interações Hidrofóbicas e Hidrofílicas
3.
Mol Biol Rep ; 51(1): 759, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874818

RESUMO

BACKGROUND: The objective of this research was to elucidate the hypocholesterolemic effects of a bioactive compound extracted from buckwheat, and to delineate its influence on the regulatory mechanisms of cholesterol metabolism. The compound under investigation was identified as quercetin. MATERIAL AND RESULTS: In vitro experiments conducted on HepG2 cells treated with quercetin revealed a significant reduction in intracellular cholesterol accumulation. This phenomenon was rigorously quantified by assessing the transcriptional activity of key genes involved in the biosynthesis and metabolism of cholesterol. A statistically significant reduction in the expression of HMG-CoA reductase (HMGCR) was observed, indicating a decrease in endogenous cholesterol synthesis. Conversely, an upregulation in the expression of cholesterol 7 alpha-hydroxylase (CYP7A1) was also observed, suggesting an enhanced catabolism of cholesterol to bile acids. Furthermore, the study explored the combinatory effects of quercetin and simvastatin, a clinically utilized statin, revealing a synergistic action in modulating cholesterol levels at various dosages. CONCLUSIONS: The findings from this research provide a comprehensive insight into the mechanistic pathways through which quercetin, a phytochemical derived from buckwheat, exerts its hypocholesterolemic effects. Additionally, the observed synergistic interaction between quercetin and simvastatin opens up new avenues for the development of combined therapeutic strategies to manage hyperlipidemia.


Assuntos
Colesterol 7-alfa-Hidroxilase , Colesterol , Fagopyrum , Hidroximetilglutaril-CoA Redutases , Metabolismo dos Lipídeos , Compostos Fitoquímicos , Quercetina , Humanos , Fagopyrum/química , Fagopyrum/metabolismo , Células Hep G2 , Colesterol/metabolismo , Quercetina/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Compostos Fitoquímicos/farmacologia , Hidroximetilglutaril-CoA Redutases/metabolismo , Hidroximetilglutaril-CoA Redutases/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , Colesterol 7-alfa-Hidroxilase/genética , Anticolesterolemiantes/farmacologia , Sinvastatina/farmacologia , Extratos Vegetais/farmacologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos
4.
J Agric Food Chem ; 72(22): 12630-12640, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38779919

RESUMO

Tartary buckwheat is highly valued for its abundant rutin (quercetin 3-O-rutinoside). As a flavonoid glycoside, rutin is synthesized with the crucial involvement of UDP-dependent glycosyltransferases (UGTs). However, the functions and transcriptional regulation of the UGT-encoded genes remain poorly understood. This study identified a key gene, FtUFGT163, potentially encoding flavonol 3-O-glucoside (1 → 6) rhamnosyltransferase in Tartary buckwheat through omics analysis and molecular docking methods. The recombinant FtUFGT163 expressed in Escherichia coli demonstrated the capacity to glycosylate isoquercetin into rutin. Overexpression of FtUFGT163 significantly enhanced the rutin content in Tartary buckwheat. Further investigation identified a novel bZIP transcription factor, FtGBF1, that enhances FtUFGT163 expression by binding to the G-box element within its promoter, thereby augmenting rutin biosynthesis. Additional molecular biology experiments indicated that the specific positive regulator of rutin, FtMYB5/6, could directly activate the FtGBF1 promoter. Collectively, this study elucidates a novel regulatory module, termed "FtMYB5/6-FtGBF1-FtUFGT163", which effectively coordinates the biosynthesis of rutin in Tartary buckwheat, offering insights into the genetic enhancement of nutraceutical components in crops.


Assuntos
Fagopyrum , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Rutina , Fagopyrum/genética , Fagopyrum/metabolismo , Fagopyrum/química , Rutina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Simulação de Acoplamento Molecular
5.
Photochem Photobiol Sci ; 23(5): 1011-1029, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38753286

RESUMO

Photodynamic therapy (PDT) stands out as a noteworthy development as an alternative targeted treatment against skin ailments. While PDT has advanced significantly, research into photo-activatable "Green drugs" derived from plants which are less toxic than the synthetic drugs has not kept pace. This study investigates the potential of Fagopyrin F Containing Fraction (FCF) derived from Fagopyrum tataricum in mediating PDT against Staphylococcus aureus and skin cancer cells (A431). FCF was isolated from the plant extract using thin-layer chromatography, followed by identification of the compound through high-performance liquid chromatography and high-resolution liquid chromatography-mass spectrometry. FCF was tested to determine its antibacterial and anticancer efficacy. Results revealed that FCF-mediated PDT exhibited potent action against S. aureus, significantly reducing bacterial viability (MIC 19.5 µg/100 µL). Moreover, FCF-mediated PDT showed good efficacy against A431 cells, resulting in a notable reduction in cell viability (IC50 29.08 µg/mL). Given the known association between S. aureus and squamous cell carcinoma (SCC), FCF shows the potential to effectively target and eradicate both SCC and the related S. aureus present within the lesions. In silico study reveals that Fagopyrin F effectively binds with the epidermal growth factor (EGFR), one among the highly expressed proteins in the A431 cells, with a binding energy of - 9.6 kcal/mol. The affinity of Fagopyrin F for EGFR on A431 cancer cells along with its cytotoxicity against skin cancer cells while safeguarding the normal cells (L929) plays a major part in the way it targets cancer cells. However, its safety, efficacy, and long-term advantages in treating skin conditions require more investigation, including in vivo investigations and clinical trials.


Assuntos
Antibacterianos , Carcinoma de Células Escamosas , Sobrevivência Celular , Fagopyrum , Fotoquimioterapia , Fármacos Fotossensibilizantes , Staphylococcus aureus , Humanos , Staphylococcus aureus/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Fagopyrum/química , Sobrevivência Celular/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/isolamento & purificação , Testes de Sensibilidade Microbiana , Linhagem Celular Tumoral , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/metabolismo , Simulação de Acoplamento Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação
6.
Food Chem ; 451: 139409, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692236

RESUMO

Herein, nineteen buckwheat honey samples collected from 19 stations of different ecological zones of Kazakhstan were analysed for their pollen density, physicochemical properties, chemical composition, antioxidant, anticholinesterase, tyrosinase inhibitory, and urease inhibitory activities with chemometric approaches. Twelve phenolic compounds and fumaric acid were identified using HPLC-DAD, and mainly fumaric, p-hydroxybenzoic, p-coumaric, trans-2-hydroxy cinnamic acids, and chrysin were detected in all samples. The honey samples collected from the Northern zone exhibited best antioxidant activity in lipid peroxidation inhibitory (IC50:8.65 ± 0.50 mg/mL), DPPH• (IC50:17.07 ± 1.49 mg/mL), ABTS•+ (IC50:8.90 ± 0.65 mg/mL), CUPRAC (A0.50:7.51 ± 0.30 mg/mL) and metal chelating assay (IC50:10.39 ± 0.71 mg/mL). In contrast, South-eastern zone samples indicated better acetylcholinesterase (55.57 ± 0.83%), butyrylcholinesterase (49.59 ± 1.09%), tyrosinase (44.40 ± 1.21%), and moderate urease (24.57 ± 0.33%) inhibitory activities at 20 mg/mL. The chemometric classification of nineteen buckwheat honey was performed using PCA and HCA techniques. Both were supported by correlation analysis. Thirteen compounds contributed significantly to the clustering of buckwheat honey based on geographical origin.


Assuntos
Antioxidantes , Fagopyrum , Mel , Mel/análise , Mel/classificação , Fagopyrum/química , Fagopyrum/classificação , Antioxidantes/química , Antioxidantes/análise , Cazaquistão , Monofenol Mono-Oxigenase/antagonistas & inibidores , Quimiometria , Fenóis/análise , Fenóis/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/análise
7.
Ultrason Sonochem ; 106: 106895, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705082

RESUMO

Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn) leaf has abundant rhamnogalacturonan-I enriched pectic polysaccharides, which exert various health-promoting effects. Nevertheless, the potential relationship between the chemical structure and the biological function of pectic polysaccharides from Tartary buckwheat leaves (TBP) remains unclear. Therefore, to bridge the gap between the chemical structure and the biological function of TBP, the impacts of ultrasound-assisted Fenton degradation (UFD) and mild alkaline de-esterification (MAD) on structural properties and biological effects of TBP were systematically studied. Compared with the native TBP (molecular mass, 9.537 × 104 Da), the molecular masses of degraded TBPs (TBP-MMW, 4.811 × 104 Da; TBP-LMW, 2.101 × 104 Da) were significantly reduced by the UFD modification, while their primary chemical structures were overall stable. Besides, compared with the native TBP (esterification degree, 22.73 %), the esterification degrees of de-esterified TBPs (TBP-MDE, 14.27 %; TBP-LDE, 6.59 %) were notably reduced by the MAD modification, while their primary chemical structures were also overall stable. Furthermore, the results revealed that both UFD and MAD modifications could significantly improve the antioxidant, antiglycation, and immunostimulatory effects of TBP. Indeed, TBP's biological effects were negatively correlated to its molecular mass and esterification degree, while positively linked to its free uronic acids. The findings demonstrate that both UFD and MAD modifications are promising techniques for the structural modification of TBP, which can remarkedly promote its biological effects. Besides, the present results are conducive to better understanding TBP's structure-bioactivity relationship.


Assuntos
Fagopyrum , Pectinas , Folhas de Planta , Ondas Ultrassônicas , Folhas de Planta/química , Fagopyrum/química , Esterificação , Pectinas/química , Pectinas/farmacologia , Ferro/química , Peróxido de Hidrogênio/química , Antioxidantes/química , Antioxidantes/farmacologia , Polissacarídeos/química , Polissacarídeos/farmacologia , Animais
8.
Chemistry ; 30(33): e202400082, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38628039

RESUMO

Fagopyrins are phenantroperylenequinones present in the flowers of Fagopyrum esculentum (buckwheat) endowed with photodynamic activity. It has been reported that fagopyrin extracts actually contain a complex mixture of closely related compounds, differing only on the nature of the perylenequinone substituents. We report our systematic and detailed study on the chemical composition of fagopyrin extracts by a combination of preparative and analytical techniques. The combined use of 1H-NMR and CD spectroscopy was found to be particularly suited to fully characterize all stereochemical aspects of the extracted fagopyrins. For the first time nine isomers have been structurally characterized and their stereochemistry fully elucidated. The presence of two different heterocyclic ring substituents, two stereogenic centers and the inherent axial chirality of the aromatic system provides a complex stereochemical relationships among isomers, thus giving account of the high level of molecular multiplicity found in the extract.


Assuntos
Dicroísmo Circular , Fagopyrum , Flores , Fagopyrum/química , Flores/química , Estereoisomerismo , Espectroscopia de Ressonância Magnética/métodos , Conformação Molecular , Estrutura Molecular , Extratos Vegetais/química , Quinonas
9.
Food Chem ; 449: 139183, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604028

RESUMO

Tartary buckwheat, celebrated as the "king of grains" for its flavonoid and phenolic acid richness, has health-promoting properties. Despite significant morphological and metabolic variations in mature achenes, research on their developmental process is limited. Utilizing Liquid chromatography-mass spectrometry and atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry imaging, we conducted spatial-temporal metabolomics on two cultivars during achene development. Metabolic profiles including 17 phenolic acids and 83 flavonoids are influenced by both varietal distinctions and developmental intricacies. Notably, flavonols, as major flavonoids, accumulated with achene ripening and showed a tissue-specific distribution. Specifically, flavonol glycosides and aglycones concentrated in the embryo, while methylated flavonols and procyanidins in the hull. Black achenes at the green achene stage have higher bioactive compounds and enhanced antioxidant capacity. These findings provide insights into spatial and temporal characteristics of metabolites in Tartary buckwheat achenes and serve as a theoretical guide for selecting optimal resources for food production.


Assuntos
Fagopyrum , Metabolômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fagopyrum/química , Fagopyrum/crescimento & desenvolvimento , Fagopyrum/metabolismo , Flavonoides/metabolismo , Flavonoides/química , Flavonoides/análise , Cromatografia Líquida de Alta Pressão , Extratos Vegetais/metabolismo , Extratos Vegetais/química , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Espectrometria de Massa com Cromatografia Líquida
10.
Int J Food Microbiol ; 417: 110705, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38640815

RESUMO

The effect of a casein hydrolysate (CH) on the fermentation and quality of a naturally-fermented buckwheat sourdough (NFBS) were investigated, through assessing the fermentation characteristics, carbohydrate and protein degradation, texture, and bacterial composition of NFBS. According to the assaying data, CH might both increase the amount of lactic acid bacteria by 2.62 % and shorten the fermentation period by at least 3 h, subsequently leading to enhanced degradation of carbohydrate and protein, accompanied by a softer texture. More importantly, CH increased the relative abundance of lactobacillus in NFBS, making it the dominant bacterial genus and inhibited the growth of spoilage bacteria. In addition, Spearman correlation analysis indicated that the pH value, lactic and acetic acid contents, carbohydrates, protease activity, and these textural indices like hardness, elasticity, and adhesion had a positive/negative correlation with the bacterial composition of NFBS (Spearman correlation coefficient: -0.93-0.95). CH was thus regarded to be helpful to NFBS processing and production mainly by shortening its fermentation time, improving its fermentation performance, causing a finer texture and microstructure, and changing bacterial composition.


Assuntos
Pão , Caseínas , Fagopyrum , Fermentação , Fagopyrum/química , Pão/microbiologia , Caseínas/metabolismo , Microbiologia de Alimentos , Lactobacillus/metabolismo , Lactobacillus/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Bactérias/metabolismo , Bactérias/crescimento & desenvolvimento , Alimentos Fermentados/microbiologia
11.
PeerJ ; 12: e17136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590707

RESUMO

The germinations of three common buckwheat (Fagopyrum esculentum) varieties and two Tartary buckwheat (Fagopyrum tataricum) varieties seeds are known to be affected by high temperature. However, little is known about the physiological mechanism affecting germination and the effect of melatonin (MT) on buckwheat seed germination under high temperature. This work studied the effects of exogenous MT on buckwheat seed germination under high temperature. MT was sprayed. The parameters, including growth, and physiological factors, were examined. The results showed that exogenous MT significantly increased the germination rate (GR), germination potential (GP), radicle length (RL), and fresh weight (FW) of these buckwheat seeds under high-temperature stress and enhanced the content of osmotic adjustment substances and enzyme activity. Comprehensive analysis revealed that under high-temperature stress during germination, antioxidant enzymes play a predominant role, while osmotic adjustment substances work synergistically to reduce the extent of damage to the membrane structure, serving as the primary key indicators for studying high-temperature resistance. Consequently, our results showed that MT had a positive protective effect on buckwheat seeds exposed to high temperature stress, providing a theoretical basis for improving the ability to adapt to high temperature environments.


Assuntos
Fagopyrum , Melatonina , Germinação , Melatonina/farmacologia , Fagopyrum/química , Temperatura , Sementes/química
12.
Food Chem ; 451: 139350, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38663246

RESUMO

The effects of ethanol on the physicochemical, structural and in vitro digestive properties of Tartary buckwheat starch-quercetin/rutin complexes (e-TBSQ and e-TBSR) were investigated. Ethanol restricted the gelatinization of Tartary buckwheat starch (TBS), which resulted an increase in ∆H, G' and G" as well as a decrease in apparent viscosity of e-TBSQ and e-TBSR. The particle size, scanning electron microscopy and X-ray diffraction results showed that ethanol influenced the morphological structure of TBS granules and the starch crystalline structure in e-TBSQ and e-TBSR changed from B-type to V-type when the ethanol concentration was 25%. Saturation transfer difference-nuclear magnetic resonance results revealed that ethanol weakened the binding ability of quercetin/rutin to TBS in e-TBSQ and e-TBSR, leading to a change in the binding site on the quercetin structural unit. The residual ungelatinized TBS granules in e-TBSQ and e-TBSR induced a high slowly digestible starch content, and thus displayed a "resistant-to-digestion".


Assuntos
Digestão , Etanol , Fagopyrum , Quercetina , Rutina , Amido , Fagopyrum/química , Amido/química , Quercetina/química , Etanol/química , Viscosidade , Rutina/química , Tamanho da Partícula , Extratos Vegetais/química , Modelos Biológicos , Difração de Raios X
13.
Artigo em Inglês | MEDLINE | ID: mdl-38635926

RESUMO

A method was developed for the determination of tropane alkaloids (TAs), including atropine, scopolamine, anisodamine and homatropine in buckwheat and related products. This work presents an optimised methodology based on QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) extraction procedure followed by ultra-high performance liquid chromatography combined with time-of-flight mass spectrometry for the determination of TAs (atropine, scopolamine, anisodamine and homatropine) in buckwheat samples. The analytical methodology was successfully validated, demonstrating good linearity, low limit of quantification, repeatability (RSDr < 15%), inter-day precision (RSDR < 19%) and recovery (74-113%). Finally, 13 commercial samples of buckwheat were analysed and the results demonstrated that they were in compliance with the current European regulations regarding TAs.


Assuntos
Fagopyrum , Tropanos , Fagopyrum/química , Cromatografia Líquida de Alta Pressão , Tropanos/análise , Tropanos/química , Espectrometria de Massas , Contaminação de Alimentos/análise
14.
Int J Biol Macromol ; 265(Pt 1): 130686, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460638

RESUMO

To elucidate the effect of starch granule-associated proteins (SGAPs) on retrogradation properties of buckwheat starch, the retrogradation properties of Tartary buckwheat starch (TBS) and common buckwheat starch (CBS) before and after removal of SGAPs were systematically investigated, with wheat starch (WS) as reference. A significant decrease in gel strength of starches and density of starch aggregates were observed after removing SGAPs. The results were in line with the changes in retrogradation enthalpy of starches and short-range ordered structure of starch aggregates. After removing SGAPs, the retrogradation enthalpy of TBS decreased from 4.16 J/g to 3.74 J/g, CBS decreased from 4.05 J/g to 3.35 J/g and WS decreased from 3.27 J/g to 2.81 J/g, respectively. Taken together the results of LF-NMR, FTIR and rheological analysis, it can be concluded that SGAPs could promote the hydrogen bond interactions between starch molecules by competitively binding with water molecules, enhancing the rearrangement of starch molecules and forming a more ordered structure. Overall, the study suggested that the presence of SGAPs could enhanced the interaction between starch molecules chains, thus accelerated the retrogradation process. The research results provide more information about SGAPs in buckwheat starch and support further study for manipulation of starch properties.


Assuntos
Fagopyrum , Amido , Amido/química , Fagopyrum/química , Proteínas de Plantas/química , Termodinâmica
15.
Methods Mol Biol ; 2791: 57-70, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38532092

RESUMO

Immunohistochemistry is a method that allows the detection of individual components of cell walls in an extremely precise way at the level of a single cell and wall domains. The cell wall antibodies detect specific epitopes of pectins, arabinogalactan proteins (AGP), hemicelluloses, and extensins. The presented method visualization of the selected pectic and AGP epitopes using antibodies directed to wall components is described. The method of the analysis of the chemical composition of the wall is present on the example of the shoot apical meristems of Fagopurum esculentum and Fagopyrum tataricum. Recommended protocols for immunostaining and examination on fluorescence microscopy level are presented.


Assuntos
Fagopyrum , Fagopyrum/química , Fagopyrum/metabolismo , Meristema/metabolismo , Pectinas/análise , Imuno-Histoquímica , Epitopos , Parede Celular/química
16.
Methods Mol Biol ; 2791: 81-87, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38532094

RESUMO

This chapter presents the squash chromosome preparation technique for Fagopyrum esculentum and F. tataricum, using the root tips as the source of the material. Using an optimized version of this method, the chromosomes are free of cytoplasmic debris and are spread evenly on the glass slide. What comes of it is the possibility to make observations of the chromosome number and structure at the metaphase stage. This technique's modified version allows micronuclei analysis in interphase cells of buckwheats.


Assuntos
Fagopyrum , Fagopyrum/química , Fagopyrum/genética , Cromossomos
17.
Food Res Int ; 180: 114065, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395582

RESUMO

Tartary buckwheat is rich in nutrients and its protein supports numerous biological functions. However, the digestibility of Tartary buckwheat protein (TBP) poses a significant limitation owing to its inherent structure. This study aimed to assess the impact of high moisture extrusion (HME, 60 % moisture content) on the structural and physicochemical attributes, as well as the in vitro digestibility of TBP. Our results indicated that TBP exhibited unfolded and amorphous microstructures after HME. The protein molecular weight of TBP decreased after HME, and a greater degradation was observed at 70 °C than 100 °C. In particular, HME at 70 °C caused an almost complete disappearance of bands near 35 kDa compared with HME at 100 °C. In addition, compared with native TBP (NTBP, 44.53 µmol/g protein), TBP subjected to HME at 70 °C showed a lower disulfide bond (SS) content (42.67 µmol/g protein), whereas TBP subjected to HME at 100 °C demonstrated a higher SS content (45.70 µmol/g protein). These changes endowed TBP with good solubility (from 55.96 % to 83.31 % at pH 7), foaming ability (20.00 %-28.57 %), and surface hydrophobicity (8.34-23.07). Furthermore, the emulsifying activity (EA) and in vitro digestibility are closely related to SS content. Notably, extruded TBP (ETBP) obtained at 70 °C exhibited higher EA and digestibility than NTBP, whereas ETBP obtained at 100 °C showed the opposite trend. Consequently, HME (especially at 70 °C) demonstrated significant potential as a processing technique for improving the functional and digestive properties of TBP.


Assuntos
Fagopyrum , Fagopyrum/química , Solubilidade , Digestão , Proteínas de Ligação ao GTP/metabolismo
18.
Sci Rep ; 14(1): 3127, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326346

RESUMO

This research aimed to enhance the nutritional and sensory qualities of Balady bread by adding locally Egyptian buckwheat flours, Fagopyrum esculentum (FE) and Fagopyrum tataricum (FT), to Hard Wheat Flour (HWF) 82% extraction at three levels (10%, 20%, and 30%). The chemical composition, rheological properties, color, sensory evaluation and stalling of the balady bread were determined. The chemical composition of raw materials revealed that FE was significantly (P ≤ 0.05) higher in protein and fat contents compared to HWF and FT. While FT was higher in fiber and ash contents. The findings show that a 30% replacement with FE or FT significantly enhances the bread's nutritional profile, notably increasing protein, fiber, ash, and moisture content. Rheological analysis revealed that FE and FT alter dough handling, with a notable improvement in dough stability and mixing tolerance at 30% FT. Sensory evaluation indicated acceptable qualities even at higher substitution levels, although 30% FE showed slight declines in certain attributes. Furthermore, bread supplemented with 30% FT demonstrated slower staling and potentially extended shelf life. These results highlight the potential of FE and FT as nutritional enhancers in bread formulations, with 30% FT emerging as the optimal replacement level for balancing nutritional benefits and sensory acceptance.


Assuntos
Fagopyrum , Farinha , Farinha/análise , Pão/análise , Fagopyrum/química , Egito , Triticum/química , Carboidratos
19.
Ecotoxicol Environ Saf ; 270: 115833, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38181602

RESUMO

Elaborating on the fate tendency of thifluzamide (thiazole-amide fungicide) in buckwheat based on nationwide application is vital for grain security and human health based on nationwide application. A rapid and sensitive analytical method was developed to trace thifluzamide in buckwheat matrices using an ultrahigh-performance liquid chromatography-tandem triple quadrupole mass spectrometer (UHPLC-MS/MS), with a retention time of 2.90 min and limit of quantitation (LOQ) of 0.001 mg/kg. Thifluzamide could be stably stored for 84 d in buckwheat matrices under -20 °C under dark condition. The occurrence, dissipation and terminal magnitudes of thifluzamide were reflected by the primary deposition of 0.02-0.55 mg/kg, half-lives of 12-14 d, and highest residues of 0.41 mg/kg. The long-term risks (ADI%) of thifluzamide were 37.268 %-131.658 % in registered crops, and the risks for the rural population were significantly higher than those of the urban population. The unacceptable dietary risks of thifluzamide should be continuously emphasized for children aged 2-7 with an ADI% values of 100.750 %-131.658 %. A probabilistic model was further introduced to evaluate the risk discrepancy of thifluzamide in buckwheat, showing the risks in Tartary buckwheat (Fagopyrum tararicum Gaerth) were 1.5-75.4 times than that in sweet buckwheat (Fagopyrum esculentum Moench). Despite the low risks for dietary buckwheat, the high-potential health hazards of thifluzamide should be pay more attention given the increasing applications and cumulative effects.


Assuntos
Anilidas , Fagopyrum , Criança , Humanos , Fagopyrum/química , Espectrometria de Massas em Tandem , Cromatografia Líquida , Tiazóis
20.
Int J Biol Macromol ; 257(Pt 2): 127504, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37858650

RESUMO

Tartary buckwheat protein-rutin/quercetin covalent complex was synthesized in alkaline oxygen-containing environment, and its binding sites, conformational changes and functional properties were evaluated by multispectral technique and proteomics. The determination of total sulfhydryl and free amino groups showed that rutin/quercetin can form a covalent complex with BPI and could significantly reduce the group content. Ultraviolet-visible spectrum analysis showed that protein could form new characteristic peaks after binding with rutin/quercetin. Circular dichroism spectrum analysis showed that rutin and quercetin caused similar changes in the secondary structure of proteins, both promoting ß-sheet to α-helix, ß-ture and random coil transformation. The fluorescence spectrometry results showed that the combination of phenols can cause the fluorescence quenching, and the combination of rutin was stronger than the quercetin. Proteomics showed that there were multiple covalent binding sites between phenols and protein. Rutin had a high affinity for arginine, and quercetin and cysteine had high affinity. Meanwhile, the combination of rutin/quercetin and protein had reduced the surface hydrophobic ability of the protein, and improved the foaming, stability and antioxidant properties of the protein. This study expounded the mechanism of the combination of BPI and rutin/quercetin, and analysed the differences of the combination of protein and phenols in different structures. The findings can provide a theoretical basis for the development of complexes in the area of food.


Assuntos
Fagopyrum , Quercetina , Quercetina/química , Fenóis , Fenol , Fagopyrum/química , Rutina/química , Sítios de Ligação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...