Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.405
Filtrar
1.
Nat Commun ; 15(1): 4901, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851779

RESUMO

Antimicrobial resistance remains a significant global threat, driving up mortality rates worldwide. Ribosomally synthesized and post-translationally modified peptides have emerged as a promising source of novel peptide antibiotics due to their diverse chemical structures. Here, we report the discovery of new aminovinyl-(methyl)cysteine (Avi(Me)Cys)-containing peptide antibiotics through a synergistic approach combining biosynthetic rule-based omics mining and heterologous expression. We first bioinformatically identify 1172 RiPP biosynthetic gene clusters (BGCs) responsible for Avi(Me)Cys-containing peptides formation from a vast pool of over 50,000 bacterial genomes. Subsequently, we successfully establish the connection between three identified BGCs and the biosynthesis of five peptide antibiotics via biosynthetic rule-guided metabolic analysis. Notably, we discover a class V lanthipeptide, massatide A, which displays excellent activity against gram-positive pathogens, including drug-resistant clinical isolates like linezolid-resistant S. aureus and methicillin-resistant S. aureus, with a minimum inhibitory concentration of 0.25 µg/mL. The remarkable performance of massatide A in an animal infection model, coupled with a relatively low risk of resistance and favorable safety profile, positions it as a promising candidate for antibiotic development. Our study highlights the potential of Avi(Me)Cys-containing peptides in expanding the arsenal of antibiotics against multi-drug-resistant bacteria, offering promising drug leads in the ongoing battle against infectious diseases.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/química , Humanos , Família Multigênica , Camundongos , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana/efeitos dos fármacos , Genoma Bacteriano/genética , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Biologia Computacional/métodos , Cisteína/metabolismo , Cisteína/química
2.
J Colloid Interface Sci ; 671: 751-769, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38824748

RESUMO

Chemotherapy and surgery stand as primary cancer treatments, yet the unique traits of the tumor microenvironment hinder their effectiveness. The natural compound epigallocatechin gallate (EGCG) possesses potent anti-tumor and antibacterial traits. However, the tumor's adaptability to chemotherapy due to its acidic pH and elevated glutathione (GSH) levels, coupled with the challenges posed by drug-resistant bacterial infections post-surgery, impede treatment outcomes. To address these challenges, researchers strive to explore innovative treatment strategies, such as multimodal combination therapy. This study successfully synthesized Cu-EGCG, a metal-polyphenol network, and detailly characterized it by using synchrotron radiation and high-resolution mass spectrometry (HRMS). Through chemodynamic therapy (CDT), photothermal therapy (PTT), and photodynamic therapy (PDT), Cu-EGCG showed robust antitumor and antibacterial effects. Cu+ in Cu-EGCG actively participates in a Fenton-like reaction, generating hydroxyl radicals (·OH) upon exposure to hydrogen peroxide (H2O2) and converting to Cu2+. This Cu2+ interacts with GSH, weakening the oxidative stress response of bacteria and tumor cells. Density functional theory (DFT) calculations verified Cu-EGCG's efficient GSH consumption during its reaction with GSH. Additionally, Cu-EGCG exhibited outstanding photothermal conversion when exposed to 808 nm near-infrared (NIR) radiation and produced singlet oxygen (1O2) upon laser irradiation. In both mouse tumor and wound models, Cu-EGCG showcased remarkable antitumor and antibacterial properties.


Assuntos
Antibacterianos , Antineoplásicos , Catequina , Cobre , Nanocompostos , Antibacterianos/farmacologia , Antibacterianos/química , Cobre/química , Cobre/farmacologia , Nanocompostos/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Animais , Camundongos , Humanos , Catequina/química , Catequina/farmacologia , Catequina/análogos & derivados , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/efeitos dos fármacos , Fotoquimioterapia , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/patologia , Infecção dos Ferimentos/microbiologia , Ensaios de Seleção de Medicamentos Antitumorais , Staphylococcus aureus/efeitos dos fármacos , Terapia Fototérmica , Tamanho da Partícula , Escherichia coli/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Propriedades de Superfície , Proliferação de Células/efeitos dos fármacos
3.
Molecules ; 29(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38893366

RESUMO

The development of antimicrobial drugs with novel structures and clear mechanisms of action that are active against drug-resistant bacteria has become an urgent need of safeguarding human health due to the rise of bacterial drug resistance. The discovery of AMPs and the development of amphipathic peptidomimetics have lay the foundation for novel antimicrobial agents to combat drug resistance due to their overall strong antimicrobial activities and unique membrane-active mechanisms. To break the limitation of AMPs, researchers have invested in great endeavors through various approaches in the past years. This review summarized the recent advances including the development of antibacterial small molecule peptidomimetics and peptide-mimic cationic oligomers/polymers, as well as mechanism-of-action studies. As this exciting interdisciplinary field is continuously expanding and growing, we hope this review will benefit researchers in the rational design of novel antimicrobial peptidomimetics in the future.


Assuntos
Peptidomiméticos , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Peptidomiméticos/síntese química , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Testes de Sensibilidade Microbiana , Bactérias/efeitos dos fármacos
4.
Molecules ; 29(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38893378

RESUMO

Metabolic reprogramming mediates antibiotic efficacy. However, metabolic adaptation of microbes evolving from antibiotic sensitivity to resistance remains undefined. Therefore, untargeted metabolomics was conducted to unveil relevant metabolic reprogramming and potential intervention targets involved in gentamicin resistance. In total, 61 metabolites and 52 metabolic pathways were significantly altered in gentamicin-resistant E. coli. Notably, the metabolic reprogramming was characterized by decreases in most metabolites involved in carbohydrate and amino acid metabolism, and accumulation of building blocks for nucleotide synthesis in gentamicin-resistant E. coli. Meanwhile, fatty acid metabolism and glycerolipid metabolism were also significantly altered in gentamicin-resistant E. coli. Additionally, glycerol, glycerol-3-phosphate, palmitoleate, and oleate were separately defined as the potential biomarkers for identifying gentamicin resistance in E. coli. Moreover, palmitoleate and oleate could attenuate or even abolished killing effects of gentamicin on E. coli, and separately increased the minimum inhibitory concentration of gentamicin against E. coli by 2 and 4 times. Furthermore, palmitoleate and oleate separately decreased intracellular gentamicin contents, and abolished gentamicin-induced accumulation of reactive oxygen species, indicating involvement of gentamicin metabolism and redox homeostasis in palmitoleate/oleate-promoted gentamicin resistance in E. coli. This study identifies the metabolic reprogramming, potential biomarkers and intervention targets related to gentamicin resistance in bacteria.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Escherichia coli , Ácidos Graxos Monoinsaturados , Gentamicinas , Ácido Oleico , Gentamicinas/farmacologia , Gentamicinas/metabolismo , Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Ácido Oleico/metabolismo , Ácido Oleico/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Antibacterianos/farmacologia , Ácidos Graxos Monoinsaturados/metabolismo , Ácidos Graxos Monoinsaturados/farmacologia , Testes de Sensibilidade Microbiana , Metabolômica/métodos , Redes e Vias Metabólicas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima/efeitos dos fármacos
5.
Phys Chem Chem Phys ; 26(24): 17011-17027, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38835320

RESUMO

Pseudomonas aeruginosa, a formidable pathogen renowned for its antimicrobial resistance, poses a significant threat to immunocompromised individuals. In this regard, the MexAB-OprM efflux pump acts as a pivotal line of defense by extruding antimicrobials from bacterial cells. The inner membrane homotrimeric protein MexB captures antibiotics and translocates them into the outer membrane OprM channel protein connected through the MexA adaptor protein. Despite extensive efforts, competitive inhibitors targeting the tight (T) protomer of the MexB protein have not received FDA approval for medical use. Over the past few years, allosteric inhibitors have become popular as alternatives to the classical competitive inhibitor-based approach because of their higher specificity, lower dosage, and reduced toxicological effects. Hence, in this study, we unveiled the existence of a transmembrane allosteric binding pocket of MexB inspired by the recent discovery of an important allosteric inhibitor, BDM88855, for the homolog AcrB protein. While repurposing BDM88855 proved ineffective in controlling the MexB loose (L) protomer, our investigation identified a promising alternative: a chlorine-containing variant of DB08385 (2-Cl DB08385 or Variant 1). Molecular dynamics simulations, including binding free energy estimation coupled with heterogeneous dielectric implicit membrane model (implicit-membrane MM/PBSA), interaction entropy (IE) analysis and potential of mean force (PMF) calculation, demonstrated Variant 1's superior binding affinity to the transmembrane pocket, displaying the highest energy barrier in the ligand unbinding process. To elucidate the allosteric crosstalk between the transmembrane and porter domain of MexB, we employed the 'eigenvector centrality' measure in the linear mutual information obtained from the protein correlation network. Notably, this study confirmed the presence of an allosteric transmembrane site in the MexB L protomer. In addition to this, Variant 1 emerged as a potent regulator of allosteric crosstalk, inducing an 'O-L intermediate state' in the MexB L protomer. This induced state might hold the potential to diminish substrate intake into the access pocket, leading to the ineffective efflux of antibiotics.


Assuntos
Antibacterianos , Proteínas da Membrana Bacteriana Externa , Simulação de Dinâmica Molecular , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Regulação Alostérica/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/química , Farmacorresistência Bacteriana/efeitos dos fármacos
6.
PLoS One ; 19(6): e0304980, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38905247

RESUMO

BACKGROUND: Antibiotic resistance genes (ARGs) transfer rapidly among bacterial species all over the world contributing to the aggravation of antibiotic resistance crisis. Antibiotics at sub-inhibitory concentration induce horizontal gene transfer (HRT) between bacteria, especially through conjugation. The role of common non-antibiotic pharmaceuticals in the market in disseminating antibiotic resistance is not well studied. OBJECTIVES: In this work, we indicated the effect of some commonly used non-antibiotic pharmaceuticals including antiemetic (metoclopramide HCl) and antispasmodics (hyoscine butyl bromide and tiemonium methyl sulfate) on the plasmid-mediated conjugal transfer of antibiotic resistance genes between pathogenic E. coli in the gastric intestinal tract (GIT). METHODS: Broth microdilution assay was used to test the antibacterial activity of the tested non-antibiotic pharmaceuticals. A conjugation mating system was applied in presence of the studied non-antibiotic pharmaceuticals to test their effect on conjugal transfer frequency. Plasmid extraction and PCR were performed to confirm the conjugation process. Transmission electron microscopy (TEM) was used for imaging the effect of non-antibiotic pharmaceuticals on bacterial cells. RESULTS: No antibacterial activity was reported for the used non-antibiotic pharmaceuticals. Plasmid-mediated conjugal transfer between isolates was induced by metoclopramide HCl but suppressed by hyoscine butyl bromide. Tiemonium methylsulfate slightly promoted conjugal transfer. Aggregation between cells and periplasmic bridges was clear in the case of metoclopramide HCl while in presence of hyoscine butyl bromide little affinity was observed. CONCLUSION: This study indicates the contribution of non-antibiotic pharmaceuticals to the dissemination and evolution of antibiotic resistance at the community level. Metoclopramide HCl showed an important role in the spread of antibiotic resistance.


Assuntos
Escherichia coli , Transferência Genética Horizontal , Plasmídeos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Plasmídeos/genética , Metoclopramida/farmacologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana/efeitos dos fármacos , Conjugação Genética , Resistência Microbiana a Medicamentos/genética , Resistência Microbiana a Medicamentos/efeitos dos fármacos
7.
PeerJ ; 12: e17463, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827315

RESUMO

Background: The use of antimicrobials to treat food animals may result in antimicrobial residues in foodstuffs of animal origin. The European Medicines Association (EMA) and World Health Organization (WHO) define safe antimicrobial concentrations in food based on acceptable daily intakes (ADIs). It is unknown if ADI doses of antimicrobials in food could influence the antimicrobial susceptibility of human-associated bacteria. Objectives: This aim of this study was to evaluate if the consumption of ADI doses of erythromycin could select for erythromycin resistance in a Galleria mellonella model of Streptococcus pneumoniae infection. Methods: A chronic model of S. pneumoniae infection in G. mellonella larvae was used for the experiment. Inoculation of larvae with S. pneumoniae was followed by injections of erythromycin ADI doses (0.0875 and 0.012 µg/ml according to EMA and WHO, respectively). Isolation of S. pneumoniae colonies was then performed on selective agar plates. Minimum inhibitory concentrations (MICs) of resistant colonies were measured, and whole genome sequencing (WGS) was performed followed by variant calling to determine the genetic modifications. Results: Exposure to single doses of both EMA and WHO ADI doses of erythromycin resulted in the emergence of erythromycin resistance in S. pneumoniae. Emergent resistance to erythromycin was associated with a mutation in rplA, which codes for the L1 ribosomal protein and has been linked to macrolide resistance in previous studies. Conclusion: In our in vivo model, even single doses of erythromycin that are classified as acceptable by the WHO and EMA induced significant increases in erythromycin MICs in S. pneumoniae. These results suggest the need to include the induction of antimicrobial resistance (AMR) as a significant criterion for determining ADIs.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Eritromicina , Larva , Testes de Sensibilidade Microbiana , Mariposas , Streptococcus pneumoniae , Eritromicina/farmacologia , Animais , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/genética , Antibacterianos/farmacologia , Mariposas/microbiologia , Mariposas/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana/efeitos dos fármacos , Larva/microbiologia , Larva/efeitos dos fármacos , Infecções Pneumocócicas/tratamento farmacológico , Infecções Pneumocócicas/microbiologia , Modelos Animais de Doenças , Humanos
8.
J Mater Chem B ; 12(23): 5645-5660, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38747306

RESUMO

The increasing frequency of drug-resistant pathogens poses serious health issues to humans around the globe, leading to the development of new antibacterial agents to conquer drug resistance and bacterial infections. In view of this, we have synthesized a series of bis-naphthalimides to respond to awful drug resistance. Bioactivity assay and structure-activity relationship disclosed that compounds 5d and 5o exhibit potent antibacterial activity against E. faecalis, outperforming the marketed antibiotics. These drug candidates not only inhibit the biofilm formation of E. faecalis but also display rapid bactericidal properties, thus delaying the development of drug resistance within 20 passages. To explore the mechanism of antibacterial activity against E. faecalis, biofunctional examination was carried out which unveiled that 5d and 5o effectively disrupt bacterial cell membranes, causing the leakage of cytoplasmic contents and metabolic activity loss. Concurrently, 5d and 5o effectively intercalate with DNA to block DNA replication, causing the build-up of excessive reactive oxygen species and inhibiting the glutathione activity, ultimately leading to oxidative damage of E. faecalis and cell death. In addition, these compounds readily bind with HSA with a high binding constant, indicating that these drug candidates could be easily delivered to the target site. The above finding manifested that these newly synthesized bis-naphthalimides with multitargeting antibacterial properties offer a new prospect to overcome drug resistance.


Assuntos
Antibacterianos , Enterococcus faecalis , Testes de Sensibilidade Microbiana , Naftalimidas , Enterococcus faecalis/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Naftalimidas/química , Naftalimidas/farmacologia , Humanos , Relação Estrutura-Atividade , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Estrutura Molecular , Morte Celular/efeitos dos fármacos
9.
ACS Appl Bio Mater ; 7(5): 3330-3336, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38701398

RESUMO

The threat of bacterial infections, especially drug-resistant strains, to human health necessitates the development of high-efficient, broad-spectrum and nonantibiotic nanodisinfectant. However, the effect of interfacial charge on the antibacterial properties of nanodisinfectant remains a mystery, which greatly limits the development of highly antibacterial active nanodisinfectant. Herein, we developed three types of ultrasmall (d < 3 nm) gold-nanoparticles (AuNPs) modified with 5-carboxylic(C)/methoxy(M)amino(A)/-2-mercaptobenzimidazole (C/M/A MB) to investigate their interfacial charge on antibacterial performance. Our results showed that both the electropositive AMB-AuNPs and electronegative CMB-AuNPs exhibited no antibacterial activity against both Gram-positive (G+) and Gram-negative (G-) bacteria. However, the electroneutral MMB-AuNPs exhibited unique antibacterial performance against both G+ and G- bacteria, even against methicillin-resistant Staphylococcus aureus (MRSA). Mechanistic investigation revealed a multipathway synergistic bacteriostatic mechanism involving MMB-AuNPs inducing damage to bacterial cell membranes, disruption of membrane potential and downregulation of ATP levels, ultimately leading to bacterial demise. Furthermore, two additional electroneutral AuNPs modified with 5-methyl-2-mercaptobenzimidazole (mMB-AuNPs) and 5-ethoxy-2-mercaptobenzimidazole (EMB-AuNPs) also demonstrated commendable antibacterial efficacy against E. coli, S. aureus, and MRSA; however, their performance was comparatively inferior to that of MMB-AuNPs. This work provides valuable insights for the development of high-performance antibacterial nanomaterials.


Assuntos
Antibacterianos , Benzimidazóis , Ouro , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Ouro/química , Ouro/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Nanopartículas Metálicas/química , Benzimidazóis/química , Benzimidazóis/farmacologia , Teste de Materiais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos
10.
J Photochem Photobiol B ; 256: 112928, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723545

RESUMO

INTRODUCTION: Emerging antibiotic resistance among bacterial pathogens has forced an urgent need for alternative non-antibiotic strategies development that could combat drug resistant-associated infections. Suppression of virulence of ESKAPE pathogens' by targeting multiple virulence traits provides a promising approach. OBJECTIVES: Here we propose an iron-blocking antibacterial therapy based on a cationic heme-mimetic gallium porphyrin (GaCHP), which antibacterial efficacy could be further enhanced by photodynamic inactivation. METHODS: We used gallium heme mimetic porphyrin (GaCHP) excited with light to significantly reduce microbial viability and suppress both the expression and biological activity of several virulence traits of both Gram-positive and Gram-negative ESKAPE representatives, i.e., S. aureus and P. aeruginosa. Moreover, further improvement of the proposed strategy by combining it with routinely used antimicrobials to resensitize the microbes to antibiotics and provide enhanced bactericidal efficacy was investigated. RESULTS: The proposed strategy led to substantial inactivation of critical priority pathogens and has been evidenced to suppress the expression and biological activity of multiple virulence factors in S. aureus and P. aeruginosa. Finally, the combination of GaCHP phototreatment and antibiotics resulted in promising strategy to overcome antibiotic resistance of the studied microbes and to enhance disinfection of drug resistant pathogens. CONCLUSION: Lastly, considering high safety aspects of the proposed treatment toward host cells, i.e., lack of mutagenicity, no dark toxicity and mild phototoxicity, we describe an efficient alternative that simultaneously suppresses the functionality of multiple virulence factors in ESKAPE pathogens.


Assuntos
Antibacterianos , Gálio , Heme , Fármacos Fotossensibilizantes , Porfirinas , Pseudomonas aeruginosa , Staphylococcus aureus , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Gálio/química , Gálio/farmacologia , Porfirinas/química , Porfirinas/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Heme/química , Antibacterianos/farmacologia , Antibacterianos/química , Virulência/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Luz , Farmacorresistência Bacteriana/efeitos dos fármacos
11.
J Hazard Mater ; 472: 134475, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38733781

RESUMO

Narrow spectrum nano-antibiotics are supposedly the future trouble-shooters to improve the efficacy of conventional antimicrobials for treatment of severe bacterial infections, remove contamination from water and diminish the development of antibiotic resistance. In this study, antimicrobial peptide functionalized boron-carbon-nitride nanosheets ((Ant)pep@BCN NSs) are developed that are a promising wastewater disinfector and antibiotic resistant bactericide agent. These nanosheets are developed for selective removal and effective inactivation of antibiotic resistant bacteria (ARB) from water in presence of two virulent bacteria. The (Ant)pep@BCN NSs provide reactive surface receptors specific to the ARB. They mimic muralytic enzymes to damage the cell membrane of ARB. These NSs demonstrate 3-fold higher antimicrobial efficiency against the targeted ARB compared to pristine BCN even at lower concentrations. To the best of our knowledge, this is the first time that functionalized BCN has been developed to remove ARB selectively from wastewater. Furthermore, the (Ant)pep@BCN selectively reduced the microbiological load and led to morphological changes in Gram negative ARB in a mixed bacterial inoculum. These ARBs excreted outer-inner membrane vesicles (OIMVs) of triangular shape as a stimuli response to (Ant)pep@BCN NSs. These novel antimicrobial peptide-NSs have potential to improve treatment efficacy against ARB infections and water contamination.


Assuntos
Antibacterianos , Purificação da Água , Antibacterianos/farmacologia , Antibacterianos/química , Purificação da Água/métodos , Águas Residuárias/química , Nanoestruturas/química , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Poluentes Químicos da Água/química , Farmacorresistência Bacteriana/efeitos dos fármacos , Compostos de Boro/química , Compostos de Boro/farmacologia
12.
J Photochem Photobiol B ; 255: 112905, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703452

RESUMO

Bacterial antibiotic resistance is one of the most significant challenges for public health. The increase in bacterial resistance, mainly due to microorganisms harmful to health, and the need to search for alternative treatments to contain infections that cannot be treated by conventional antibiotic therapy has been aroused. An alternative widely studied in recent decades is antimicrobial photodynamic therapy (aPDT), a treatment that can eliminate microorganisms through oxidative stress. Although this therapy has shown satisfactory results in infection control, it is still controversial in the scientific community whether bacteria manage to develop resistance after successive applications of aPDT. Thus, this work provides an overview of the articles that performed successive aPDT applications in models using bacteria published since 2010, focusing on sublethal dose cycles, highlighting the main PSs tested, and addressing the possible mechanisms for developing tolerance or resistance to aPDT, such as efflux pumps, biofilm formation, OxyR and SoxRS systems, catalase and superoxide dismutase enzymes and quorum sensing.


Assuntos
Biofilmes , Farmacorresistência Bacteriana , Fotoquimioterapia , Fármacos Fotossensibilizantes , Farmacorresistência Bacteriana/efeitos dos fármacos , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Biofilmes/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Percepção de Quorum/efeitos dos fármacos , Humanos , Catalase/metabolismo , Estresse Oxidativo/efeitos dos fármacos
13.
PLoS One ; 19(5): e0304491, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38805522

RESUMO

Due to high tolerance to antibiotics and pronounced virulence, bacterial biofilms are considered a key factor and major clinical challenge in persistent wound infections. They are typically composed of multiple species, whose interactions determine the biofilm's structural development, functional properties and thus the progression of wound infections. However, most attempts to study bacterial biofilms in vitro solely rely on mono-species populations, since cultivating multi-species biofilms, especially for prolonged periods of time, poses significant challenges. To address this, the present study examined the influence of bacterial composition on structural biofilm development, morphology and spatial organization, as well as antibiotic tolerance and virulence on human skin cells in the context of persistent wound infections. By creating a wound-mimetic microenvironment, the successful cultivation of dual-species biofilms of two of the most prevalent wound pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, was realized over a period of 72 h. Combining quantitative analysis with electron microscopy and label-free imaging enabled a comprehensive evaluation of the dynamics of biofilm formation and matrix secretion, revealing a twofold increased maturation of dual-species biofilms. Antibiotic tolerance was comparable for both mono-species cultures, however, dual-species communities showed a 50% increase in tolerance, mediated by a significantly reduced penetration of the applied antibiotic into the biofilm matrix. Further synergistic effects were observed, where dual-species biofilms exacerbated wound healing beyond the effects observed from either Pseudomonas or Staphylococcus. Consequently, predicting biofilm development, antimicrobial tolerance and virulence for multi-species biofilms based solely on the results from mono-species biofilms is unreliable. This study underscores the substantial impact of a multi-species composition on biofilm functional properties and emphasizes the need to tailor future studies reflecting the bacterial composition of the respective in vivo situation, leading to a more comprehensive understanding of microbial communities in the context of basic microbiology and the development of effective treatments.


Assuntos
Antibacterianos , Biofilmes , Pseudomonas aeruginosa , Staphylococcus aureus , Infecção dos Ferimentos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/patogenicidade , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Humanos , Virulência/efeitos dos fármacos , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/tratamento farmacológico , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/tratamento farmacológico
14.
J Mater Chem B ; 12(22): 5525-5534, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38746970

RESUMO

Diabetic foot ulcers are a significant complication affecting roughly 15% of diabetic patients. These chronic wounds can be incredibly burdensome, leading to high treatment costs, potential amputations, and additional health complications. Microbiological studies reveal that bacterial infections are the primary culprit behind delayed wound healing. To solve the problem of infection at the wound site, the most fundamental thing is to kill the pathogenic bacteria. Herein, a neoteric strategy to construct novel antibacterial hydrogel COA-T3 that combined photosensitizers (PSs) and antimicrobial peptides (AMPs) via covalent coupling was proposed. Hydrogel COA-T3 composed of quaternized chitosan (QCS) and oxidized dextran (OD) was constructed for co-delivery of the photosensitizer TPI-PN and the antimicrobial peptide HHC10. In vitro and in vivo experiments demonstrated remarkable effectiveness of COA-T3 against drug-resistant bacteria. Furthermore, the hydrogel significantly promoted healing of diabetic infected wounds. This enhanced antibacterial activity is attributed to the pH-sensitive release of both PSs and AMPs within the hydrogel. Additionally, COA-T3 exhibits excellent biocompatibility, making it a promising candidate for wound dressing materials. These findings indicated that the COA-T3 hydrogel is a promising wound dressing material for promoting the healing of diabetic foot ulcers by providing an environment conducive to improved wound healing in diabetic patients.


Assuntos
Antibacterianos , Biofilmes , Hidrogéis , Cicatrização , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/síntese química , Biofilmes/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Animais , Camundongos , Testes de Sensibilidade Microbiana , Pé Diabético/tratamento farmacológico , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Humanos , Diabetes Mellitus Experimental/tratamento farmacológico , Farmacorresistência Bacteriana/efeitos dos fármacos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Quitosana/química , Quitosana/farmacologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-38772565

RESUMO

The misuse of antibiotics has led to increased bacterial resistance, posing a global public health crisis and seriously endangering lives. Currently, antibiotic therapy remains the most common approach for treating bacterial infections, but its effectiveness against multidrug-resistant bacteria is diminishing due to the slow development of new antibiotics and the increase of bacterial drug resistance. Consequently, developing new a\ntimicrobial strategies and improving antibiotic efficacy to combat bacterial infection has become an urgent priority. The emergence of nanotechnology has revolutionized the traditional antibiotic treatment, presenting new opportunities for refractory bacterial infection. Here we comprehensively review the research progress in nanotechnology-based antimicrobial drug delivery and highlight diverse platforms designed to target different bacterial resistance mechanisms. We also outline the use of nanotechnology in combining antibiotic therapy with other therapeutic modalities to enhance the therapeutic effectiveness of drug-resistant bacterial infections. These innovative therapeutic strategies have the potential to enhance bacterial susceptibility and overcome bacterial resistance. Finally, the challenges and prospects for the application of nanomaterial-based antimicrobial strategies in combating bacterial resistance are discussed. This article is categorized under: Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.


Assuntos
Antibacterianos , Infecções Bacterianas , Nanotecnologia , Humanos , Infecções Bacterianas/tratamento farmacológico , Animais , Farmacorresistência Bacteriana/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Nanomedicina
16.
Iran J Med Sci ; 49(5): 332-338, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38751870

RESUMO

The present study aimed to investigate secondary bacterial infections among patients infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Coagulase-negative Staphylococci can infect immunocompromised patients. Linezolid resistance among Staphylococcus epidermidis is one of the most critical issues. In 2019, 185 SARS-CoV-2-positive patients who were admitted to North Khorasan Province Hospital (Bojnurd, Iran), were investigated. Patients having positive SARS-CoV-2 reverse transcriptase real-time polymerase chain reaction (RT-PCR) test results, who had a history of intubation, mechanical ventilation, and were hospitalized for more than 48 hours were included. After microbiological evaluation of pulmonary samples, taken from intubated patients with clinical manifestation of pneumonia, co-infections were found in 11/185 patients (5.94%) with S. epidermidis, Staphylococcus aureus, and Acinetobacter baumani, respectively. Remarkably, seven out of nine S. epidermidis isolates were linezolid resistant. Selected isolates were characterized using antimicrobial resistance patterns and molecular methods, such as Staphylococcal cassette chromosome mec (SCCmec) typing, and gene detection for ica, methicillin resistance (mecA), vancomycin resistance (vanA), and chloramphenicol-florfenicol resistance (cfr) genes. All of the isolates were resistant to methicillin, and seven isolates were resistant to linezolid. Nine out of 11 isolated belonged to the SCCmec I, while two belonged to the SCCmec IV. It should be noted that all patients had the underlying disease, and six patients had already passed away. The increasing linezolid resistance in bacterial strains becomes a real threat to patients, and monitoring such infections, in conjunction with surveillance and infection prevention programs, is very critical for reducing the number of linezolid-resistant Staphylococcal strains. A preprint of this study was published at https://europepmc.org/article/ppr/ppr417742.


Assuntos
COVID-19 , Linezolida , Infecções Estafilocócicas , Staphylococcus epidermidis , Humanos , Linezolida/farmacologia , Linezolida/uso terapêutico , Staphylococcus epidermidis/efeitos dos fármacos , Irã (Geográfico)/epidemiologia , COVID-19/epidemiologia , Masculino , Feminino , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/epidemiologia , Pessoa de Meia-Idade , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Idoso , Coinfecção/epidemiologia , Coinfecção/tratamento farmacológico , Coinfecção/microbiologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Adulto , SARS-CoV-2 , Testes de Sensibilidade Microbiana/métodos
17.
J Hazard Mater ; 473: 134698, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38788587

RESUMO

Zero-valent iron (ZVI) has been extensively studied for its capacity to remove various contaminants in the environments. However, whether ZVI affects bacterial resistance to antibiotics has not been fully explored. Herein, it was unexpected that, compared with microscale ZVI (mZVI), nanoscale ZVI (nZVI) facilitated the susceptibility of Pseudomonas aeruginosa (P. aeruginosa) to chloramphenicol (CAP), with a decrease in the minimal inhibitory concentration (MIC) of about 60 %, demonstrating a nanosize-specific effect. nZVI enhanced CAP accumulation in P. aeruginosa via inhibitory effect on efflux pumps activated by MexT, thus conferring the susceptibility of P. aeruginosa to CAP. Circular dichroism spectroscopy revealed that the structure of MexT was changed during the evolution. More importantly, molecular dynamic simulations uncovered that, once the structure of MexT changed, it would be more likely to interact with nZVI, resulting in more serious changes in its secondary structure, which was consistent with the increasing susceptibility of P. aeruginosa to CAP. Collectively, this study elucidated the size-specific effect and the underlying mechanism of ZVI on the bacterial evolution of susceptibility toward antibiotics, highlighting the potentials of nZVI-based technologies on the prevention of bacterial resistance to antibiotics, one of the most important issue for globally public health.


Assuntos
Antibacterianos , Cloranfenicol , Farmacorresistência Bacteriana , Ferro , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efeitos dos fármacos , Cloranfenicol/farmacologia , Cloranfenicol/química , Antibacterianos/farmacologia , Antibacterianos/química , Ferro/química , Farmacorresistência Bacteriana/efeitos dos fármacos , Nanopartículas Metálicas/química , Simulação de Dinâmica Molecular , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética
18.
Eur J Med Chem ; 273: 116493, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38761790

RESUMO

The emergence of multidrug-resistant bacteria along with a declining pipeline of clinically useful antibiotics has led to the urgent need for the development of more effective antibacterial agents to treat drug-resistant bacteria. We previously discovered compound OB-158 with potent antibacterial activity but exhibited poor oral bioavailability. Herein, a systematic structural optimization of OB-158 to improve pharmacokinetic profiles yielded 26 novel biaryloxazolidinone analogues, and their activities against Gram-positive S. aureus, multidrug resistant S. aureus and Enterococcus faecalis were evaluated. Remarkably, compound 8b was identified with potent antibacterial activity against S. aureus (MIC = 0.06 µg/mL), MSSA (MIC = 0.125 µg/mL), MRSA (MIC = 0.06 µg/mL), LRSA (MIC = 0.125 µg/mL) and LREFa (MIC = 0.5 µg/mL). Compound 8b was demonstrated as a promising candidate through druglikeness evaluation including metabolism in microsomes and plasma, Caco-2 cell permeability, plasma protein binding, cytotoxicity, and inhibition of CYP450 and human monoamine oxidase. Notably, compound 8b displayed excellent PK profile with appropriate T1/2 of 1.49 h, high peak plasma concentration (Cmax = 2320 ng/mL), high plasma exposure (AUC0-t = 8310 h ng/mL), and superior oral bioavailability (F = 68.1 %) in Sprague-Dawley rats. Ultimately, in vivo efficacy of compound 8b in a mouse model of LRSA systemic infection was also demonstrated. Taken together, compound 8b represents a promising drug candidate for the treatment of linezolid-resistant Gram-positive bacterial strains infection.


Assuntos
Antibacterianos , Linezolida , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Humanos , Animais , Linezolida/farmacologia , Relação Estrutura-Atividade , Células CACO-2 , Camundongos , Estrutura Molecular , Relação Dose-Resposta a Droga , Staphylococcus aureus/efeitos dos fármacos , Ratos , Farmacorresistência Bacteriana/efeitos dos fármacos , Masculino , Enterococcus faecalis/efeitos dos fármacos , Oxazolidinonas/farmacologia , Oxazolidinonas/química , Oxazolidinonas/síntese química , Ratos Sprague-Dawley
19.
Microb Pathog ; 191: 106679, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718953

RESUMO

A crucial pathogenic mechanism in many bacterial diseases is the ability to create biofilms. Biofilms are suspected to play a role in over 80 % of microbial illnesses in humans. In light of the critical requirement for efficient management of bacterial infections, researchers have explored alternative techniques for treating bacterial disorders. One of the most promising ways to address this issue is through the development of long-lasting coatings with antibacterial properties. In recent years, antibacterial treatments based on metallic nanoparticles (NPs) have emerged as an effective strategy in the fight over bacterial drug resistance. Zinc oxide nanoparticles (ZnO-NPs) are the basis of a new composite coating material. This article begins with a brief overview of the mechanisms that underlie bacterial resistance to antimicrobial drugs. A detailed examination of the properties of metallic nanoparticles (NPs) and their potential use as antibacterial drugs for curing drug-sensitive and resistant bacteria follows. Furthermore, we assess metal nanoparticles (NPs) as powerful agents to fight against antibiotic-resistant bacteria and the growth of biofilm, and we look into their potential toxicological effects for the development of future medicines.


Assuntos
Antibacterianos , Bactérias , Infecções Bacterianas , Biofilmes , Nanopartículas Metálicas , Óxido de Zinco , Biofilmes/efeitos dos fármacos , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Antibacterianos/farmacologia , Nanopartículas Metálicas/química , Humanos , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Biotecnologia
20.
J Colloid Interface Sci ; 666: 434-446, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608638

RESUMO

Bacterial infections are among the most significant causes of death in humans. Chronic misuse or uncontrolled use of antibiotics promotes the emergence of multidrug-resistant superbugs that threaten public health through the food chain and cause environmental pollution. Based on the above considerations, copper selenide nanosheets (CuSe NSs) with photothermal therapy (PTT)- and photodynamic therapy (PDT)-related properties have been fabricated. These CuSe NSs possess enhanced PDT-related properties and can convert O2 into highly toxic reactive oxygen species (ROS), which can cause significant oxidative stress and damage to bacteria. In addition, CuSe NSs can efficiently consume glutathione (GSH) at bacterial infection sites, thus further enhancing their sterilization efficacy. In vitro antibacterial experiments with near-infrared (NIR) irradiation have shown that CuSe NSs have excellent photothermal bactericidal properties. These experiments also showed that CuSe NSs exerted excellent bactericidal effects on wounds infected with methicillin-resistant Staphylococcus aureus (MRSA) and significantly promoted the healing of infected wounds. Because of their superior biological safety, CuSe NSs are novel copper-based antimicrobial agents that are expected to enter clinical trials, serving as a modern approach to the major problem of treating bacterially infected wounds.


Assuntos
Antibacterianos , Cobre , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Nanoestruturas , Terapia Fototérmica , Cobre/química , Cobre/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Animais , Nanoestruturas/química , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Humanos , Propriedades de Superfície , Tamanho da Partícula , Selênio/química , Selênio/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...