RESUMO
Colorectal cancer (CRC) is one type of cancer with high morbidity and mortality worldwide. Photodynamic therapy (PDT), a promising new therapeutic approach for cancer, induces tumor damage through photosensitizer-mediated oxidative cytotoxicity. Hypericin is a powerful photosensitizer with pronounced tumor-localizing properties. In this study, we investigated the phototoxic effects of hypericin-mediated PDT (HYP-PDT) in HCT116 and SW620 cells. We validated that HYP-PDT inhibited cell proliferation, triggered intracellular reactive oxygen species generation, induced S phase cell cycle arrest and apoptosis of HCT116 and SW620 cells. Mechanistically, the results of western blot showed that HYP-PDT downregulated CDK2 expression through decreasing the CDC25A protein, which resulted in the decrease of CDK2/Cyclin A complex. Additionally, HYP-PDT induced DNA damage as evidenced by ATM activation and upregulation of p-H2AX. Further investigation showed that HYP-PDT significantly increased Bax expression and decreased Bcl-2 expression, and then, upregulated the expression of cleaved caspase-9, cleaved caspase-3 and cleaved PARP, thereby inducing apoptosis in HCT116 and SW620 cells. In conclusion, our results indicated that the CDC25A/CDK2/Cyclin A pathway and the mitochondrial apoptosis pathway were involved in HYP-PDT induced S phase cell cycle arrest and apoptosis in colorectal cancer cells, which shows HYP could be a probable candidate used for treating colorectal cancer.
Assuntos
Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Neoplasias Colorretais/terapia , Perileno/análogos & derivados , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Fase S/efeitos dos fármacos , Antracenos , Proteínas de Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Regulação para Baixo/efeitos dos fármacos , Humanos , Perileno/farmacologia , Perileno/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Espécies Reativas de Oxigênio/metabolismoRESUMO
OBJECTIVE: This study proposed to use the nanotechnology to deliver glycoalkaloidic extract (AE) to bladder cancer cells, evaluating their activity in 2D and 3D models and the biological mechanism of cell death. METHODS: NPs were prepared by nanoprecipitation method using polylactic acid (PLA) and characterized considering their size, charge, particle concentration and stability. The cytotoxicity was evaluated in 2D and 3D model, and the apoptosis and cell cycle were investigated using flow cytometry. KEY FINDINGS: NPs loading AE (NP-AE) had diameter around 125 ± 6 nm (PdI <0.1) and negative charge. The encapsulation efficiency of SM and SS was higher than 85% for both compounds. The obtained formulation showed a significant in-vitro cytotoxic effect against RT4 cells in a dose-dependent manner with IC50 two fold lower than the free AE. The cytotoxic effect of NP-AE was mediated by apoptosis and cell cycle arrested in the S phase. RT4 cells cultured under 3D conditions exhibited a higher resistance to the treatments (IC50 ~ three fold higher than in 2D cell culture). CONCLUSION: The NP-AE might be a promising nanocarrier to load and deliver glycoalkaloids against bladder cancer.
Assuntos
Alcaloides/química , Alcaloides/farmacologia , Nanopartículas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Portadores de Fármacos/química , Humanos , Nanotecnologia/métodos , Tamanho da Partícula , Poliésteres/química , Fase S/efeitos dos fármacos , Bexiga Urinária/efeitos dos fármacosRESUMO
Gallbladder cancer (GBC) is the most common malignancy in the biliary tract. Without effective treatment, its prognosis is notoriously poor. Tea polyphenols (TPs) have many pharmacological and health benefits, including antioxidant, anti-inflammatory, anti-tumor, anti-thrombotic, antibacterial, and vasodilatory properties. However, the anti-cancer effect of TPs in human gallbladder cancer has not yet been determined. Cell viability and colony formation assay were used to investigate the cell growth. Cell cycle and apoptosis were evaluated by flow cytometry analysis. Western blot assay was used to detect the expression of proteins related to cell cycle and apoptosis. Human tumor xenografts were used to examine the effect of TPs on gallbladder cancer cells in vivo. TPs significantly inhibited cell growth of gallbladder cancer cell lines in a dose- and time-dependent manner. Cell cycle progression in GBC cells was blocked at the S phase by TPs. TPs also induced mitochondrial-related apoptosis in GBC cells by upregulating Bax, cleaved caspase-3, and cleaved PARP expressions and downregulating Bcl-2, cyclin A, and Cdk2 expressions. The effects of TPs on GBC were further proven in vivo in a mouse xenograft model. Our study is the first to report that TPs inhibit GBC cell growth and these compounds may have potential as novel therapeutic agents for treating gallbladder cancer.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Camellia sinensis/química , Neoplasias da Vesícula Biliar/patologia , Polifenóis/farmacologia , Fase S/efeitos dos fármacos , Chá/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias da Vesícula Biliar/tratamento farmacológico , Xenoenxertos , Humanos , Polifenóis/isolamento & purificaçãoRESUMO
Ruthenium-based compounds have gained great interest due to their potent cytotoxicity in cancer cells; however, much of their potential applications remain unexplored. In this paper, we report the synthesis of a novel ruthenium complex with xanthoxylin (RCX) and the investigation of its cellular and molecular action in human hepatocellular carcinoma HepG2 cells. We found that RCX exhibited a potent cytotoxic effect in a panel of cancer cell lines in monolayer cultures and in a 3D model of multicellular cancer spheroids formed from HepG2 cells. This compound is detected at a high concentration in the cell nuclei, induces DNA intercalation and inhibits DNA synthesis, arresting the cell cycle in the S-phase, which is followed by the activation of the caspase-mediated apoptosis pathway in HepG2 cells. Gene expression analysis revealed changes in the expression of genes related to cell cycle control, apoptosis and the MAPK pathway. In addition, RCX induced the phosphorylation of ERK1/2, and pretreatment with U-0126, an MEK inhibitor known to inhibit the activation of ERK1/2, prevented RCX-induced apoptosis. In contrast, pretreatment with a p53 inhibitor (cyclic pifithrin-α) did not prevent RCX-induced apoptosis, indicating the activation of a p53-independent apoptosis pathway. RCX also presented a potent in vivo antitumor effect in C.B-17 SCID mice engrafted with HepG2 cells. Altogether, these results indicate that RCX is a novel anticancer drug candidate.
Assuntos
Acetofenonas/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Rutênio/farmacologia , Fase S/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Acetofenonas/síntese química , Acetofenonas/química , Animais , Antineoplásicos/farmacologia , Inibidores de Caspase/farmacologia , Caspases/metabolismo , DNA/biossíntese , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Substâncias Intercalantes/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos SCID , Modelos Biológicos , Inibidores de Proteínas Quinases/farmacologia , Espectroscopia de Prótons por Ressonância Magnética , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Gallbladder cancer (GBC) is the most common malignancy in the biliary tract. Without effective treatment, its prognosis is notoriously poor. Tea polyphenols (TPs) have many pharmacological and health benefits, including antioxidant, anti-inflammatory, anti-tumor, anti-thrombotic, antibacterial, and vasodilatory properties. However, the anti-cancer effect of TPs in human gallbladder cancer has not yet been determined. Cell viability and colony formation assay were used to investigate the cell growth. Cell cycle and apoptosis were evaluated by flow cytometry analysis. Western blot assay was used to detect the expression of proteins related to cell cycle and apoptosis. Human tumor xenografts were used to examine the effect of TPs on gallbladder cancer cells in vivo. TPs significantly inhibited cell growth of gallbladder cancer cell lines in a dose- and time-dependent manner. Cell cycle progression in GBC cells was blocked at the S phase by TPs. TPs also induced mitochondrial-related apoptosis in GBC cells by upregulating Bax, cleaved caspase-3, and cleaved PARP expressions and downregulating Bcl-2, cyclin A, and Cdk2 expressions. The effects of TPs on GBC were further proven in vivo in a mouse xenograft model. Our study is the first to report that TPs inhibit GBC cell growth and these compounds may have potential as novel therapeutic agents for treating gallbladder cancer.
Assuntos
Humanos , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Camellia sinensis/química , Neoplasias da Vesícula Biliar/patologia , Polifenóis/farmacologia , Fase S/efeitos dos fármacos , Chá/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias da Vesícula Biliar/tratamento farmacológico , Xenoenxertos , Polifenóis/isolamento & purificaçãoRESUMO
Growth reduction caused by copper excess during plant photoautotrophic metabolism has been widely investigated, but information regarding early responses of root apical meristem (RAM) to toxic concentrations of this metal at the initial heterotrophic stage is certainly scarce. We analysed some determinants of seminal root growth in developing wheat seedlings germinated in the presence of 1, 5 and 10 µM CuCl2, focussing on oxidative damage to cell membrane and to proteins, and investigated the expression patterns of some genes relevant to cell cycle progression and cell expansion. The proliferation zone of the RAM was shorter under 5 and 10 µM CuCl2. Cyclin D and CDKA levels remained unchanged in the root apexes of wheat seedlings grown under these Cu(2+) concentrations, but more carbonylated levels of both proteins and less ubiquitinated-cyclin D was detected under 10 µM CuCl2. Increased levels of ROS were revealed by fluorescent probes at this Cu(2+) dose, and severe cell membrane damage took place at 5 and 10 µM CuCl2. Several genes related to retinoblastome phosphorylation and therefore involved in the transition from G1 to S cell cycle stage were found to be downregulated at 10 µM CuCl2, while most expansin genes here analysed were upregulated, even at a non-toxic concentration of 1 µM. These results together with previous findings suggest that a "common" signal which involves oxidative posttranslational modifications of specific cell cycle proteins may be necessary to induce root growth arrest under Cd(2+) and Cu(2+) stress.
Assuntos
Membrana Celular/metabolismo , Cobre/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Coifa/metabolismo , Triticum/metabolismo , Ciclina D/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Fase G1/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Fase S/efeitos dos fármacosRESUMO
The aim of this study was to investigate the renal protective effect of icariin in 5/6 nephrectomized rats and the molecular mechanisms involved. Forty male Sprague-Dawley rats were randomly divided into 5 groups: sham-operated group, 5/6 nephrectomy model group, icariin groups (20 and 40 mg/kg), and benazepril group. After 12-weeks treatment, 24-h urine and serum were collected, and urine protein, serum creatinine, and blood urea nitrogen were determined. The rats were then sacrificed and fresh kidney tissues were prepared to obtain single cell suspensions. Cell cycle distribution and cell apoptosis were determined by annexin V-FITC/propidium iodide (PI) double staining using a flow cytometer. mRNA expression of Bcl-2 and Bax was examined using quantitative real-time PCR. After 12-weeks treatment, urinary protein, serum creatinine, and blood urea nitrogen in the icariin-treated group were much lower than in the untreated group compared with 5/6 nephrectomy model. Icariin reduced the percentage of S phase cells, increased the percentage of G0/M phase cells, and inhibited apoptosis in the renal cells. mRNA expression of Bcl-2 and Bax was decreased. In conclusion, icariin has a renal protective effect in 5/6 nephrectomized rats, which may be related mainly to alterations in cell cycle distribution and expression of apoptotic genes.
Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Flavonoides/farmacologia , Expressão Gênica/efeitos dos fármacos , Rim/efeitos dos fármacos , Nefrectomia , Substâncias Protetoras/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Benzazepinas/farmacologia , Nitrogênio da Ureia Sanguínea , Creatinina/sangue , Creatinina/urina , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Rim/citologia , Rim/metabolismo , Rim/cirurgia , Masculino , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Fase S/efeitos dos fármacos , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismoRESUMO
In this paper, we sought to identify the CD4(+) T-cell dynamics in the course of HIV infection in response to continuous and intermittent intravenous courses of interleukin-2 (IL-2), the principal cytokine responsible for progression of CD4(+) T-lymphocytes from the G1 to the S phase of the cell cycle. Based on multivariate regression models, previous literature has concluded that the increase in survival of CD4(+) T-cell appears to be the critical mechanism leading to sustained CD4(+) T-cell levels in HIV-infected patients receiving intermittent IL-2 therapy. Underscored by comprehensive mathematical modeling, a major finding of the present work is related to the fact that, rather than due to any increase in survival of CD4(+) T-cells, the expressive, selective and sustained CD4(+) T-cell expansions following IL-2 administration may be related to the role of IL-2 in modulating the dynamics of Fas-dependent apoptotic pathways, such as activation-induced cell death (AICD) or HIV-specific apoptotic routes triggered by viral proteins.
Assuntos
Síndrome da Imunodeficiência Adquirida/imunologia , Síndrome da Imunodeficiência Adquirida/terapia , Linfócitos T CD4-Positivos/imunologia , HIV-1/imunologia , Imunoterapia , Interleucina-2 , Síndrome da Imunodeficiência Adquirida/patologia , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Linfócitos T CD4-Positivos/patologia , Feminino , Fase G1/efeitos dos fármacos , Fase G1/imunologia , Humanos , Interleucina-2/imunologia , Interleucina-2/uso terapêutico , Masculino , Fase S/efeitos dos fármacos , Fase S/imunologia , Proteínas Virais/imunologia , Receptor fas/imunologiaRESUMO
The development of novel therapeutic strategies to treat gliomas remains critical as a result of the poor prognoses, inef-. ficient therapies and recurrence associated with these tumors. In this context, biodegradable nanoparticles are emerging as efficient drug delivery systems for the treatment of difficult-to-treat diseases such as brain tumors. In the current study, we evaluated the antiglioma effect of trans-resveratrol-loaded lipid-core nanocapsules (RSV-LNC) based on in vitro (C6 glioma cell line) and in vivo (brain-implanted C6 cells) models of the disease. In vitro, RSV-LNC decreased the viability of C6 glioma cells to a higher extent than resveratrol in solution. Interestingly, RSV-LNC treatment was not cytotoxic to hippocampal organotypic cultures, a model of healthy neural cells, suggesting selectivity for cancer cells. RSV-LNC induced losses in glioma cell viability through induction of apoptotic cell death, as assessed by Annexin-FITC/PI assay, which was preceded by an early arrest in the S and G1 phases of the cell cycle. In brain-implanted C6 tumors, treatment with RSV-LNC (5 mg/kg/day, i.p.) for 10 days promoted a marked decrease in tumor size and also reduced the incidence of some malignant tumor-associated characteristics, such as intratumoral hemorrhaging, intratumoral edema and pseudopalisading, compared to resveratrol in solution. Taken together, the results presented herein suggest that nanoencapsulation of resveratrol improves its antiglioma activity, thus providing a provocative foundation for testing the clinical usefulness of nanoformulations of this natural compound as a new chemotherapeutic strategy for the treatment of gliomas.
Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Glioma/tratamento farmacológico , Glioma/patologia , Lipídeos/química , Nanocápsulas/química , Estilbenos/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Químicos , Química Farmacêutica , Modelos Animais de Doenças , Fase G1/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Humanos , Masculino , Transplante de Neoplasias , Ratos , Ratos Wistar , Resveratrol , Fase S/efeitos dos fármacos , Soluções , Estilbenos/farmacologia , Carga Tumoral/efeitos dos fármacosRESUMO
It is now recognized that in addition to its activity upon erythroid progenitor cells, erythropoietin (Epo) is capable of stimulating survival of different non-erythroid cells. Since stimulation of erythropoiesis is unwanted for neuroprotection, Epo-like compounds with a more selective action are under investigation. Although the carbamylated derivative of erythropoietin (cEpo) has demonstrated non-hematopoietic tissue protection without erythropoietic effect, little is known about differential mechanisms between Epo and cEpo. Therefore, we investigated signaling pathways which play a key role in Epo-induced proliferation. Here we show that cEpo blocked FOXO3a phosphorylation, allowing expression of downstream target p27(kip1) in UT-7 and TF-1 cells capable of erythroid differentiation. This is consistent with the involvement of cEpo in slowing down G1-to-S-phase progression compared with the effect of Epo upon cell cycle. In contrast, similar antiapoptotic actions of cEpo and Epo were observed in neuronal SH-SY5Y cells. Inhibition and competition assays suggest that Epo may act through both, the homodimeric (EpoR/EpoR) and the heterodimeric (EpoR/ßcR) receptors in neuronal SH-SY5Y cells and probably in the TF-1 cell type as well. Results also indicate that cEpo needs both the EpoR and ßcR subunits to prevent apoptosis of neuronal cells. Based on evidence suggesting that cell proliferation pathways were involved in the differential effect of Epo and cEpo, we went forward to studying downstream signals. Here we provide the first evidence that unlike Epo, cEpo failed to induce FOXO3a inactivation and subsequent p27(kip1) downregulation, which is clearly shown in the incapacity of cEpo to induce erythroid cell growth.
Assuntos
Eritropoetina/análogos & derivados , Eritropoetina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Apoptose/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Processos de Crescimento Celular/efeitos dos fármacos , Processos de Crescimento Celular/genética , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Células Eritroides/efeitos dos fármacos , Células Eritroides/metabolismo , Eritropoese/efeitos dos fármacos , Eritropoese/genética , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Fase G1/efeitos dos fármacos , Fase G1/genética , Humanos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação , Receptores da Eritropoetina/genética , Receptores da Eritropoetina/metabolismo , Fase S/efeitos dos fármacos , Fase S/genética , Transdução de Sinais/genéticaRESUMO
Sulfated fucans comprise families of polydisperse natural polysaccharides based on sulfated L-fucose. Our aim was to investigate whether fucan nanogel induces cell-specific responses. To that end, a non toxic fucan extracted from Spatoglossum schröederi was chemically modified by grafting hexadecylamine to the polymer hydrophilic backbone. The resulting modified material (SNFuc) formed nanosized particles. The degree of substitution with hydrophobic chains was close to 100%, as estimated by elemental analysis. SNFfuc in aqueous media had a mean diameter of 123 nm and zeta potential of -38.3 ± 0.74 mV, as measured by dynamic light scattering. Nanoparticles conserved their size for up to 70 days. SNFuc cytotoxicity was determined using the MTT assay after culturing different cell lines for 24 h. Tumor-cell (HepG2, 786, H-S5) proliferation was inhibited by 2.0%-43.7% at nanogel concentrations of 0.05-0.5 mg/mL and rabbit aorta endothelial cells (RAEC) non-tumor cell line proliferation displayed inhibition of 8.0%-22.0%. On the other hand, nanogel improved Chinese hamster ovary (CHO) and monocyte macrophage cell (RAW) non-tumor cell line proliferation in the same concentration range. The antiproliferative effect against tumor cells was also confirmed using the BrdU test. Flow cytometric analysis revealed that the fucan nanogel inhibited 786 cell proliferation through caspase and caspase-independent mechanisms. In addition, SNFuc blocks 786 cell passages in the S and G2-M phases of the cell cycle.
Assuntos
Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Polietilenoimina/química , Polietilenoimina/farmacologia , Polissacarídeos/química , Polissacarídeos/farmacologia , Aminas/química , Animais , Aorta/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Células Hep G2 , Humanos , Hidrocarbonetos/química , Nanogéis , Nanopartículas/química , Tamanho da Partícula , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polímeros/química , Coelhos , Fase S/efeitos dos fármacos , Alga Marinha/químicaRESUMO
Cancer represents a set of more than 100 diseases, including malignant tumors from different locations. Strategies inducing differentiation have had limited success in the treatment of established cancers. Marine sponges are a biological reservoir of bioactive molecules, especially lectins. Several animal and plant lectins were purified with antitumor activity, mitogenic, anti-inflammatory and antiviral, but there are few reports in the literature describing the mechanism of action of lectins purified from marine sponges to induce apoptosis in human tumor cells. In this work, a lectin purified from the marine sponge Cinachyrella apion (CaL) was evaluated with respect to its hemolytic, cytotoxic and antiproliferative properties, besides the ability to induce cell death in tumor cells. The antiproliferative activity of CaL was tested against HeLa, PC3 and 3T3 cell lines, with highest growth inhibition for HeLa, reducing cell growth at a dose dependent manner (0.5-10 µg/mL). Hemolytic activity and toxicity against peripheral blood cells were tested using the concentration of IC(50) (10 µg/mL) for both trials and twice the IC(50) for analysis in flow cytometry, indicating that CaL is not toxic to these cells. To assess the mechanism of cell death caused by CaL in HeLa cells, we performed flow cytometry and western blotting. Results showed that lectin probably induces cell death by apoptosis activation by pro-apoptotic protein Bax, promoting mitochondrial membrane permeabilization, cell cycle arrest in S phase and acting as both dependent and/or independent of caspases pathway. These results indicate the potential of CaL in studies of medicine for treating cancer.
Assuntos
Adenocarcinoma/tratamento farmacológico , Morte Celular/efeitos dos fármacos , Lactose/metabolismo , Lectinas/farmacologia , Poríferos/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Células 3T3 , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Células HeLa , Hemolíticos/isolamento & purificação , Hemolíticos/farmacologia , Humanos , Lectinas/isolamento & purificação , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Necrose/tratamento farmacológico , Necrose/metabolismo , Fase S/efeitos dos fármacos , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Proteína X Associada a bcl-2/metabolismoRESUMO
Low molecular mass dermatan sulfate, obtained by depolymerization, induced the entrance in S phase of mitosis, enhanced the activity of matrix metalloproteinase-2, and could modulate cell migration of endothelial cells, through mechanisms independent of TNF-α autocrine regulation. LMMDS located at the injured sites could influence early stages of angiogenesis.
Assuntos
Dermatan Sulfato/farmacologia , Células Endoteliais/efeitos dos fármacos , Metaloproteinase 2 da Matriz/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Metaloproteinase 2 da Matriz/genética , Camundongos , Peso Molecular , Miocárdio/citologia , Fase S/efeitos dos fármacos , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/metabolismo , Regulação para CimaRESUMO
Lung cancer is one of the leading causes of death in the world, and non-small cell lung carcinoma (NSCLC) accounts for approximately 75-85% of all lung cancers. In the present work, we studied the cytotoxic activity, cell cycle arrest and induction apoptosis of the compound cis-(dichloro)tetramineruthenium(III) chloride {cis-[RuCl(2)(NH(3))(4)]Cl} in human lung carcinoma tumor cell line A549. The results of MTT and trypan blue assays showed that cis-[RuCl(2)(NH(3))(4)]Cl causes reduction in the viability of A549 cells when treating with 95 and 383 µM of the compound for 48 and 72 h. Lower concentrations of the compound (19, 3.8 and 0.38 µM), however, only slightly affected cell viability. The IC(50) value for the compound was about 383 µM. Survival analysis of the A549 cells after treatment with ruthenium(III) compound using long term clonogenic assay showed that it reduced colony formation ability at concentrations of 0.38 and 3.8 µM, and at concentrations of 95 and 383 µM no colonies were observed. Cell cycle analysis showed that compound ruthenium led to an accumulation of A549 cells in S phase and increased in the sub-G1 peak. In addition, cis-(dichloro)tetramineruthenium(III) chloride treatment induced apoptosis, as observed by the increased numbers of annexin V-positive cells and increased messenger RNA expression of caspase-3.
Assuntos
Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Compostos de Rutênio/farmacologia , Caspase 3/genética , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Citometria de Fluxo , Fase G1/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Estrutura Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Compostos de Rutênio/química , Fase S/efeitos dos fármacosRESUMO
Regeneration and growth that occur in the adult teleost retina have been helpful in identifying molecular and cellular mechanisms underlying cell proliferation and differentiation. Here, it is reported that S-phase cell number, in the ciliary marginal zone (CMZ) of the adult zebrafish retina, exhibits day-night variations with a mid-light phase peak. Oscillations persist for 24 h in constant darkness (DD), suggesting control by a circadian component. However, variations in the S-phase nuclei number were rapidly dampened and not present during and after a second day in DD. An ADPßS treatment significantly enhanced S-phase activity at night to mid-light levels, as assessed by in vivo BrdU incorporation in a 2-h interval. Moreover, daylight increase in S-phase cell number was completely abolished when extracellular nucleotide levels or their extracellular hydrolysis by ectonucleoside triphosphate diphosphohydrolases (NTPDases) were significantly disrupted or when a selective antagonist of purinergic P2Y1 receptors was intraocularly injected before BrdU exposure. Extracellular nucleotides and NTPDase action were also important for maintaining nocturnal low levels of S-phase activity in the CMZ. Finally, we showed that mRNAs of NTPDases 1, 2 (3 isoforms), and 3 as well as of P2Y1 receptor are present in the neural retina of zebrafish. NTPDase mRNA expression exhibited a 2-fold increment in light versus dark conditions as assessed by quantitative RT-PCR, whereas P2Y1 receptor mRNA levels did not show significant day-night variations. This study demonstrates a key role for nucleotides, principally ADP as a paracrine signal, as well as for NTPDases, the plasma membrane-bound enzymes that control extracellular nucleotide concentration, for inducing S-phase cell entry in the CMZ-normally associated with retinal growth-throughout the light-dark cycle.
Assuntos
Receptores Purinérgicos P2Y1/metabolismo , Retina/metabolismo , Fase S/fisiologia , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Apirase/farmacologia , Diferenciação Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Relógios Circadianos/fisiologia , Inibidores Enzimáticos/farmacologia , Espaço Extracelular/metabolismo , Hexoquinase/farmacologia , Fotoperíodo , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Pirofosfatases/genética , Pirofosfatases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Purinérgicos P2Y1/genética , Retina/citologia , Retina/enzimologia , Fase S/efeitos dos fármacos , Transdução de Sinais , Tionucleotídeos/farmacologia , Peixe-ZebraRESUMO
The aim of the present study was to evaluate cell cycle regulation by scavenging H(2)O(2) in tumor cells. A significant arrest in the G1 phase of the cell cycle was demonstrated in CH72-T4 carcinoma cells exposed to catalase, associated with a decrease in cyclin D1 and an increase in the CDK inhibitory protein p27(KIP1). Moreover, we found a differential intracellular distribution of p27(KIP1), which remained in the nucleus after catalase treatment. In vivo experiments showed an increase in nuclear levels of p27(KIP1) associated with the inhibition of tumor growth by H(2)O(2) scavenging, confirming in vitro results. To conclude, H(2)O(2) scavenging may induce cell cycle arrest through the modulation of cyclin D1 and p27(KIP1) levels and nuclear localization of p27(KIP1). To our knowledge, this is the first report that demonstrates that the modulation of ROS alters the intracellular localization of a key regulatory protein of G1/S transition.
Assuntos
Catalase/farmacologia , Núcleo Celular/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Sequestradores de Radicais Livres/farmacologia , Fase G1/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Fase S/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Western Blotting , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Ciclina D1/metabolismo , Feminino , Imunofluorescência , Camundongos , Camundongos Endogâmicos SENCAR , Camundongos Nus , Espécies Reativas de OxigênioRESUMO
Fludarabine (FLU), an analogue of adenosine, interferes with DNA synthesis and inhibits the chain elongation leading to replication arrest and DNA double strand break (DSB) formation. Mammalian cells use two main pathways of DSB repair to maintain genomic stability: homologous recombination (HR) and non-homologous end joining (NHEJ). The aim of the present work was to evaluate the repair pathways employed in the restoration of DSB formed following replication arrest induced by FLU in mammalian cells. Replication inhibition was induced in human lymphocytes and fibroblasts by FLU. DSB occurred in a dose-dependent manner on early/middle S-phase cells, as detected by gammaH2AX foci formation. To test whether conservative HR participates in FLU-induced DSB repair, we measured the kinetics of Rad51 nuclear foci formation in human fibroblasts. There was no significant induction of Rad51 foci after FLU treatment. To further confirm these results, we analyzed the frequency of sister chromatid exchanges (SCE) in both human cells. We did not find increased frequencies of SCE after FLU treatment. To assess the participation of NHEJ pathway in the repair of FLU-induced damage, we used two chemical inhibitors of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), vanillin and wortmannin. Human fibroblasts pretreated with DNA-PKcs inhibitors showed increased levels of chromosome breakages and became more sensitive to cell death. An active role of NHEJ pathway was also suggested from the analysis of Chinese hamster cell lines. XR-C1 (DNA-PKcs-deficient) and XR-V15B (Ku80-deficient) cells showed hypersensitivity to FLU as evidenced by the increased frequency of chromosome aberrations, decreased mitotic index and impaired survival rates. In contrast, CL-V4B (Rad51C-deficient) and V-C8 (Brca2-deficient) cell lines displayed a FLU-resistant phenotype. Together, our results suggest a major role for NHEJ repair in the preservation of genome integrity against FLU-induced DSB in mammalian cells.
Assuntos
DNA Ligases/metabolismo , Reparo do DNA , Proteína Quinase Ativada por DNA/metabolismo , DNA/metabolismo , Adulto , Androstadienos/farmacologia , Animais , Benzaldeídos/farmacologia , Células CHO , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Aberrações Cromossômicas/efeitos dos fármacos , Cricetinae , Cricetulus , DNA/genética , Quebras de DNA de Cadeia Dupla , DNA Ligases/genética , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Proteína Quinase Ativada por DNA/genética , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/toxicidade , Feminino , Fibroblastos/metabolismo , Prepúcio do Pênis/citologia , Humanos , Linfócitos/metabolismo , Masculino , Índice Mitótico , Fase S/efeitos dos fármacos , Vidarabina/análogos & derivados , Vidarabina/toxicidade , WortmaninaRESUMO
Resveratrol (RSV) exerts anti-proliferative and pro-apoptotic actions in different cell lines. Hepatic stellate cells (HSCs) are major fibrogenic cell types that contribute to collagen accumulation during chronic liver disease. In the present study, the inhibitory effects of RSV on cell proliferation, cell cycle, and apoptosis were evaluated in the mouse hepatic stellate cell line GRX. Cells treated with 1 nM-1 muM of RSV demonstrated a decrease in cell growth of about 35% after 5 days. GRX cells, treated with RSV (100 nM or 1 muM), were analyzed by flow cytometry; RSV induced an increase in the number of GRX cells in the S- and sub-G1 phases. The increase in sub-G1 phase cells and the nuclear condensation and fragmentation shown by DAPI staining identified a possible pro-apoptotic effect of RSV on GRX cells. Furthermore, the RSV anti-proliferative effects could be explained by an S-phase accumulation caused by a decrease in the progression through the cell cycle or an inhibition of S or G2 phase transition. It is notable that these RSV actions are mediated at nanomolar levels, compatible with the concentrations of free RSV in biological fluids after ingestion of polyphenol-rich foods, suggesting a possible effect of these foods as an adjuvant treatment in chronic liver diseases.
Assuntos
Ciclo Celular/efeitos dos fármacos , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Estilbenos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Resveratrol , Fase S/efeitos dos fármacosRESUMO
Iron (Fe) is a common chemical element that is essential for organisms as a co-factor in oxygen transport, but that in high amounts presents a significant risk of neurodegenerative disorders. The objective of this study was to evaluate the mutagenic potential of iron sulfate. The comet assay and chromosome aberration (CA) analysis were applied to determine the DNA-damaging and clastogenic effects of iron sulfate. Human lymphocytes were treated in the quiescent phase for the comet assay and proliferative phase during the G1, G1/S, S (pulses of 1 and 6 h), and G2 phases of the cell cycle for CA analysis, with 1.25, 2.5 and 5 microg/mL concentrations of FeSO(4).7H2O. All tested concentrations were cytotoxic and reduced significantly the mitotic index (MI) in all phases of the cell cycle. They also induced CA in G1, G1/S and S (pulses of 1 and 6 h) phases. Iron sulfate also induced polyploidy in cells treated during G1. In the comet assay, this metal did not induce significant DNA damage. Our results show that Fe causes alteration and inhibition of DNA synthesis only in proliferative cells, which explain the concomitant occurrence of mutagenicity and cytotoxicity, respectively, in the lymphocytes studied.
Assuntos
Ciclo Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Compostos Férricos/toxicidade , Linfócitos/efeitos dos fármacos , Mutagênicos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Aberrações Cromossômicas/efeitos dos fármacos , Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Fase G1/efeitos dos fármacos , Humanos , Índice Mitótico , Fase S/efeitos dos fármacosRESUMO
In vitro and in vivo studies have suggested that the expression of the early response genes for Jun and Fos proteins plays an important role in adrenal cell proliferation. In order to study the expression pattern of the activating protein-1 (AP-1) family of oncogenes in the adrenal gland, we have used immunohistochemistry to localize Jun and Fos protein expression in rat adrenal cortex infused in situ with adrenocorticotropic hormone (ACTH), fibroblast growth factor 2 (FGF2), or both. The expression of AP-1 factors has been found to be correlated with in vivo ACTH and FGF2 proliferation in rats treated with dexamethasone and bromodeoxyuridine (BrdU). Induction of c-Jun and c-Fos in the zona fasciculata and of FosB in the zona reticularis suggests that, after ACTH stimulation, these proteins are the main AP-1 components in these zones. In vivo, ACTH increases BrdU-positive cells in the zona fasciculata and zona reticularis suggesting that the composition of AP-1 complexes in these zones is correlated with proliferation. Patterns of Fos and Jun induction by FGF2 do not resemble those after ACTH induction. However, in isolation, neither affects the zona glomerulosa. In the zona fasciculata, and more so in the zona reticularis, FGF2 modulates responses to ACTH, reducing the numbers of Jun-positive cells, Fos-positive cells, and DNA synthesis. This indicates that FGF2 antagonizes ACTH, and that ACTH thus controls the trophic effect independently of exogenous FGF2. Our results implicate the AP-1 family of transcription factors in the regulation of cell progression and the control of ACTH-induced proliferation in the zona fasciculata and zona reticularis.