Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 5769, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188182

RESUMO

Transcription factor phosphorylation at specific sites often activates gene expression, but how environmental cues quantitatively control transcription is not well-understood. Activating protein 1 transcription factors are phosphorylated by mitogen-activated protein kinases (MAPK) in their transactivation domains (TAD) at so-called phosphoswitches, which are a hallmark in response to growth factors, cytokines or stress. We show that the ATF2 TAD is controlled by functionally distinct signaling pathways (JNK and p38) through structurally different MAPK binding sites. Moreover, JNK mediated phosphorylation at an evolutionarily more recent site diminishes p38 binding and made the phosphoswitch differently sensitive to JNK and p38 in vertebrates. Structures of MAPK-TAD complexes and mechanistic modeling of ATF2 TAD phosphorylation in cells suggest that kinase binding motifs and phosphorylation sites line up to maximize MAPK based co-regulation. This study shows how the activity of an ancient transcription controlling phosphoswitch became dependent on the relative flux of upstream signals.


Assuntos
Fator 2 Ativador da Transcrição/metabolismo , Regulação da Expressão Gênica , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Transcrição Gênica , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fator 2 Ativador da Transcrição/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Células HEK293 , Humanos , Luciferases/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Fosforilação , Ligação Proteica , Dedos de Zinco
2.
Fish Shellfish Immunol ; 107(Pt A): 26-35, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33011434

RESUMO

Activating transcription factor 2 (ATF2), a member of the bZIP transcription factor family, is involved in multiple physiological and developmental processes, yet its role in the innate immunity remains unclear. In this study, two isoforms (named as MnATF2a and MnATF2b) of ATF2 gene were identified in Macrobrachium nipponense and were produced by exon skipping. The full length of MnATF2a is 2328 bp with an open reading frame of 2079 bp that encode 692 amino acids. MnATF2a has 237 bp nucleotides more than MnATF2b and the extra 237 bp is a complete exon. MnATF2a and MnATF2b proteins contain the same conserved and typical bZIP domain at the C-terminus. MnATF2a has 79 amino acids more than MnATF2b. MnATF2a and MnATF2b are widely distributed in a variety of immune tissues. After Vibrio parahaemolyticus and Staphylococcus aureus infection, the expression levels of MnATF2a and MnATF2b were significant up-regulated in the gills and stomach at 12 h. RNA interference analysis showed that knockdown of the total MnATF2 gene significantly inhibits the transcription of tumor necrosis factor (TNF) and promotes the expression of crustins (including Cru3, Cru4, and Cru7). Further study showed that knockdown of MnTNF evidently increase the expression of Cru3, Cru4, and Cru7. Our research indicates that ATF2 negatively regulate the expression of AMPs by regulating the transcription of TNF in M. nipponense. This study provides valuable information about the function of ATF2 family in the innate immunity in crustacean.


Assuntos
Fator 2 Ativador da Transcrição/genética , Fator 2 Ativador da Transcrição/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Penaeidae/genética , Penaeidae/imunologia , Fator 2 Ativador da Transcrição/química , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Sequência de Bases , Perfilação da Expressão Gênica , Filogenia , Isoformas de Proteínas , Distribuição Aleatória , Alinhamento de Sequência , Staphylococcus aureus/fisiologia , Vibrio parahaemolyticus/fisiologia
3.
J Biol Chem ; 290(44): 26661-74, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26370088

RESUMO

MAPKs bind to many of their upstream regulators and downstream substrates via a short docking motif (the D-site) on their binding partner. MAPKs that are in different families (e.g. ERK, JNK, and p38) can bind selectively to D-sites in their authentic substrates and regulators while discriminating against D-sites in other pathways. Here we demonstrate that the short hydrophobic region at the distal end of the D-site plays a critical role in determining the high selectivity of JNK MAPKs for docking sites in their cognate MAPK kinases. Changing just 1 or 2 key hydrophobic residues in this submotif is sufficient to turn a weak JNK-binding D-site into a strong one, or vice versa. These specificity-determining differences are also found in the D-sites of the ETS family transcription factors Elk-1 and Net. Moreover, swapping two hydrophobic residues between these D-sites switches the relative efficiency of Elk-1 and Net as substrates for ERK versus JNK, as predicted. These results provide new insights into docking specificity and suggest that this specificity can evolve rapidly by changes to just 1 or 2 amino acids.


Assuntos
Fator 2 Ativador da Transcrição/química , Proteínas Quinases JNK Ativadas por Mitógeno/química , MAP Quinase Quinase 4/química , MAP Quinase Quinase 6/química , Proteína Quinase 1 Ativada por Mitógeno/química , Fator 2 Ativador da Transcrição/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Regulação da Expressão Gênica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Isoenzimas/química , Isoenzimas/genética , Proteínas Quinases JNK Ativadas por Mitógeno/genética , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 6/genética , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/genética , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Ligação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Alinhamento de Sequência , Transdução de Sinais
4.
J Cell Biochem ; 116(9): 1908-18, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25716417

RESUMO

Candida albicans is the most common fungal pathogen of mucosal infections and invasive diseases in immuno-compromised humans. The abilities of yeast-hyphal growth and white-opaque switching affect C. albicans physiology and virulence. Here, we showed that C. albicans Aft2 regulator was required for embedded filamentous growth and opaque cell-type formation. Under low-temperature matrix embedded conditions, Aft2 functioned downstream of Czf1-mediated pathway and was required for invasive filamentation. Moreover, deletion of AFT2 significantly reduced opaque cell-type formation under N-acetylglucosamine (GlcNAc) inducing conditions. Ectopic expression of CZF1 slightly increased the white-opaque switching frequency in the aft2Δ/Δ mutant, but did not completely restore to wild-type levels, suggesting that Czf1 at least partially bypassed the essential requirement for Aft2 in response to opaque-inducing cues. In addition, multiple environmental cues altered AFT2 mRNA and protein levels, such as low temperature, physical environment and GlcNAc. Although the absence of Czf1 or Efg1 also increased the expression level of AFT2 gene, deletion of CZF1 remarkably reduced the stability of Aft2 protein. Furthermore, C. albicans Aft2 physically interacted with Czf1 under all tested conditions, whereas the interaction between Aft2 and Efg1 was barely detectable under embedded conditions, supporting the hypothesis that Aft2, together with Czf1, contributed to activate filamentous growth by antagonizing Efg1-mediated repression under matrix-embedded conditions.


Assuntos
Fator 2 Ativador da Transcrição/genética , Fator 2 Ativador da Transcrição/metabolismo , Candida albicans/crescimento & desenvolvimento , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/metabolismo , Acetilglucosamina/farmacologia , Fator 2 Ativador da Transcrição/química , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Humanos , Estabilidade Proteica , Transdução de Sinais , Temperatura , Fatores de Transcrição/genética
5.
PLoS One ; 9(12): e116048, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25545367

RESUMO

Activating transcription factor 2 (ATF2) and its homolog ATF7 are phosphorylated at Thr-69/Thr-71 and at Thr-51/Thr-53, respectively, by stress-activated MAPKs regulating their transcriptional functions in G1 and S phases. However, little is known about the role of ATF2 and ATF7 in G2/M phase. Here, we show that Cdk1-cyclin B1 phosphorylates ATF2 at Thr-69/Thr-71 and ATF7 at Thr-51/Thr-53 from early prophase to anaphase in the absence of any stress stimulation. Knockdown of ATF2 or ATF7 decreases the rate of cell proliferation and the number of cells in M-phase. In particular, the knockdown of ATF7 severely inhibits cell proliferation and G2/M progression. The inducible expression of a mitotically nonphosphorylatable version of ATF7 inhibits G2/M progression despite the presence of endogenous ATF7. We also show that mitotic phosphorylation of ATF7 promotes the activation of Aurora kinases, which are key enzymes for early mitotic events. These results suggest that the Cdk1-mediated phosphorylation of ATF7 facilitates G2/M progression, at least in part, by enabling Aurora signaling.


Assuntos
Fatores Ativadores da Transcrição/metabolismo , Proteína Quinase CDC2/metabolismo , Divisão Celular , Fosfotreonina/metabolismo , Fator 2 Ativador da Transcrição/química , Fator 2 Ativador da Transcrição/metabolismo , Fatores Ativadores da Transcrição/química , Sequência de Aminoácidos , Anáfase , Aurora Quinases/metabolismo , Fase G2 , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Fosforilação , Prófase
6.
Cell Rep ; 9(4): 1361-74, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25456131

RESUMO

JNK and p38 phosphorylate a diverse set of substrates and, consequently, can act in a context-dependent manner to either promote or inhibit tumor growth. Elucidating the functions of specific substrates of JNK and p38 is therefore critical for our understanding of these kinases in cancer. ATF2 is a phosphorylation-dependent transcription factor and substrate of both JNK and p38. Here, we show ATF2 suppresses tumor formation in an orthotopic model of liver cancer and cellular transformation in vitro. Furthermore, we find that suppression of tumorigenesis by JNK requires ATF2. We identify a transcriptional program activated by JNK via ATF2 and provide examples of JNK- and ATF2-dependent genes that block cellular transformation. Significantly, we also show that ATF2-dependent gene expression is frequently downregulated in human cancers, indicating that amelioration of JNK-ATF2-mediated suppression may be a common event during tumor development.


Assuntos
Fator 2 Ativador da Transcrição/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fator 2 Ativador da Transcrição/química , Fator 2 Ativador da Transcrição/genética , Animais , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Humanos , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Fosforilação , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas ras/metabolismo
7.
PLoS One ; 9(3): e90698, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24598729

RESUMO

Epstein-Barr virus (EBV) expresses two transcription factors, Rta and Zta, which are involved in the transcriptional activation of EBV lytic genes. This study sought to elucidate the mechanism by which Rta activates transcription of the Zta-encoding gene, BZLF1, through the ZII element in the gene promoter. In a DNA affinity precipitation assay, ATF2 was found to associate with an Rta-interacting protein, MCAF1, at the ZII element. The interaction between Rta, MCAF1, and ATF2 at the same site in the ZII region was further verified in vivo by chromatin immunoprecipitation assay. The complex appears to be crucial for the activation of BZLF1 transcription, as the overexpression of two ATF2-dominant negative mutants, or the introduction of MCAF1 siRNA into 293T cells, were both found to substantially reduce Rta-mediated transcription levels of BZLF1. Moreover, this study also found that the Rta-MCAF1-ATF2 complex binds to a typical AP-1 binding sequence on the promoter of BMRF2, a key viral gene for EBV infection. Mutation of this sequence decreased Rta-mediated promoter activity significantly. Taken together, these results indicate a critical role for MCAF1 in AP-1-dependent Rta activation of BZLF1 transcription.


Assuntos
Herpesvirus Humano 4/genética , Transativadores/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fator 2 Ativador da Transcrição/química , Fator 2 Ativador da Transcrição/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Humanos , Imunoprecipitação , Glicoproteínas de Membrana/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Proteínas Repressoras , Fator de Transcrição AP-1/metabolismo , Fatores de Transcrição/química , Ativação Transcricional/genética , Proteínas Virais/genética
8.
J Proteome Res ; 12(12): 5535-47, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24106799

RESUMO

Conductometric monitoring of protein-protein and protein-sterol interactions is here proved feasible by coupling quartz crystal microbalance with dissipation monitoring (QCM_D) to nucleic acid programmable protein arrays (NAPPA). The conductance curves measured in NAPPA microarrays printed on quartz surface allowed the identification of binding events between the immobilized proteins and the query. NAPPA allows the immobilization on the quartz surface of a wide range of proteins and can be easily adapted to generate innumerous types of biosensors. Indeed multiple proteins on the same quartz crystal have been tested and envisaged proving the possibility of analyzing the same array for several distinct interactions. Two examples of NAPPA-based conductometer applications with clinical relevance are presented herein, the interaction between the transcription factors Jun and ATF2 and the interaction between Cytochrome P540scc and cholesterol.


Assuntos
Fator 2 Ativador da Transcrição/química , Técnicas Biossensoriais , Enzima de Clivagem da Cadeia Lateral do Colesterol/química , Proteínas Proto-Oncogênicas c-jun/química , Fator 2 Ativador da Transcrição/genética , Fator 2 Ativador da Transcrição/metabolismo , Anticorpos/química , Anticorpos/metabolismo , Colesterol/química , Colesterol/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Condutometria , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteínas Imobilizadas/química , Proteínas Imobilizadas/genética , Proteínas Imobilizadas/metabolismo , Análise Serial de Proteínas , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Técnicas de Microbalança de Cristal de Quartzo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Propriedades de Superfície
9.
J Biol Chem ; 288(32): 23322-30, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23744074

RESUMO

The MAP kinase cascades, composed of a MAP3K, a MAP2K, and a MAPK, control switch responses to extracellular stimuli and stress in eukaryotes. The most important feature of these modules is thought to be the two double phosphorylation reactions catalyzed by MAP3Ks and MAP2Ks. We addressed whether the reactions are sequential or random in the p38 MAP kinase module. Mass spectrometry was used to track the phosphorylation of the MAP2K MEK6 by two MAP3Ks, TAO2 and ASK1, and the subsequent phosphorylation of p38α by MEK6/S*T* (where S (Ser) and T (Thr) are the two phosphorylation sites and * denotes phosphorylation). Both double phosphorylation reactions are precisely ordered. MEK6 is phosphorylated first on Thr-211 and then on Ser-207 by both MAP3Ks. This is the first demonstration of a precise reaction order for a MAP2K. p38α is phosphorylated first on Tyr-182 and then on Thr-180, the same reaction order observed previously in ERK2. Thus, intermediates were MEK6/ST* and p38α/TY*. Similarly, the phosphorylation of the p38α transcription factor substrate ATF2 occurs in a precise sequence. Progress curves for the appearance of intermediates were fit to kinetic models. The models confirmed the reaction order, revealed processivity in the phosphorylation of MEK6 by ASK1, and suggested that the order of phosphorylation is dictated by both binding and catalysis rates.


Assuntos
MAP Quinase Quinase 6/química , MAP Quinase Quinase Quinase 5/química , MAP Quinase Quinase Quinases/química , Proteína Quinase 14 Ativada por Mitógeno/química , Modelos Químicos , Proteínas Quinases/química , Fator 2 Ativador da Transcrição/química , Fator 2 Ativador da Transcrição/genética , Fator 2 Ativador da Transcrição/metabolismo , Animais , Humanos , MAP Quinase Quinase 6/genética , MAP Quinase Quinase 6/metabolismo , MAP Quinase Quinase Quinase 5/genética , MAP Quinase Quinase Quinase 5/metabolismo , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Quinase 14 Ativada por Mitógeno/genética , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Modelos Biológicos , Fosforilação/fisiologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Ratos
10.
Protein Expr Purif ; 87(2): 87-99, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23147205

RESUMO

The c-Jun N-terminal kinase (JNK) pathway forms part of the mitogen-activated protein kinase (MAPK) signaling pathways comprising a sequential three-tiered kinase cascade. Here, an upstream MAP3K (MEKK1) phosphorylates and activates a MAP2K (MKK4 and MKK7), which in turn phosphorylates and activates the MAPK, JNK. The C-terminal kinase domain of MEKK1 (MEKK-C) is constitutively active, while MKK4/7 and JNK are both activated by dual phosphorylation of S/Y, and T/Y residues within their activation loops, respectively. While improvements in the purification of large quantities of active JNKs have recently been made, inadequacies in their yield, purity, and the efficiency of their phosphorylation still exist. We describe a novel and robust method that further improves upon the purification of large yields of highly pure, phosphorylated JNK1ß1, which is most suitable for biochemical and biophysical characterization. Codon harmonization of the JNK1ß1 gene was used as a precautionary measure toward increasing the soluble overexpression of the kinase. While JNK1ß1 and its substrate ATF2 were both purified to >99% purity as GST fusion proteins using GSH-agarose affinity chromatography and each cleaved from GST using thrombin, constitutively-active MEKK-C and inactive MKK4 were separately expressed in E. coli as thioredoxin-His(6)-tagged proteins and purified using urea refolding and Ni(2+)-IMAC, respectively. Activation of JNK1ß1 was then achieved by successfully reconstituting the JNK MAPK activation cascade in vitro; MEKK-C was used to activate MKK4, which in turn was used to efficiently phosphorylate and activate large quantities of JNK1ß1. Activated JNK1ß1 was thereafter able to phosphorylate ATF2 with high catalytic efficiency.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/isolamento & purificação , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase Quinase 1/metabolismo , MAP Quinase Quinase Quinase 4/metabolismo , Sistema de Sinalização das MAP Quinases , Fator 2 Ativador da Transcrição/química , Fator 2 Ativador da Transcrição/genética , Fator 2 Ativador da Transcrição/metabolismo , Cromatografia de Afinidade , Códon , Escherichia coli/genética , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/química , Proteínas Quinases JNK Ativadas por Mitógeno/genética , MAP Quinase Quinase Quinase 1/química , MAP Quinase Quinase Quinase 1/genética , MAP Quinase Quinase Quinase 4/química , MAP Quinase Quinase Quinase 4/genética , Modelos Moleculares , Fosforilação
11.
Structure ; 20(12): 2174-84, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23142346

RESUMO

c-Jun N-terminal (JNK) family kinases have a common peptide-docking site used by upstream activating kinases, substrates, scaffold proteins, and phosphatases, where the ensemble of bound proteins determines signaling output. Although there are many JNK structures, little is known about mechanisms of allosteric regulation between the catalytic and peptide-binding sites, and the activation loop, whose phosphorylation is required for catalytic activity. Here, we compare three structures of unliganded JNK3 bound to different peptides. These were compared as a class to structures that differ in binding of peptide, small molecule ligand, or conformation of the kinase activation loop. Peptide binding induced an inhibitory interlobe conformer that was reversed by alterations in the activation loop. Structure class analysis revealed the subtle structural mechanisms for allosteric signaling between the peptide-binding site and activation loop. Biochemical data from isothermal calorimetry, fluorescence energy transfer, and enzyme inhibition demonstrated affinity differences among the three peptides that were consistent with structural observations.


Assuntos
Proteína Quinase 10 Ativada por Mitógeno/química , Fator 2 Ativador da Transcrição/química , Proteínas Adaptadoras de Transdução de Sinal/química , Regulação Alostérica , Motivos de Aminoácidos , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Humanos , Proteína Quinase 10 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 8 Ativada por Mitógeno/química , Modelos Moleculares , Oligopeptídeos/química , Ligação Proteica , Inibidores de Proteínas Quinases/química , Estrutura Secundária de Proteína , Especificidade por Substrato
12.
J Biol Chem ; 287(38): 31833-44, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22843696

RESUMO

ATF2-Jun, IRF3, and HMGI recognize a composite regulatory element within the interferon-ß enhancer (IFNb). Cooperative ATF2-Jun-IRF3 complex formation at IFNb has been proposed to require a fixed orientation of ATF2-Jun binding. Our results show that ATF2-Jun heterodimers bound IFNb in both orientations alone and in association with IRF3 and HMGI. Two sets of symmetrically located amino acid residues in ATF2 and Jun facilitated the interactions between heterodimers bound in opposite orientations and IRF3 at IFNb. IRF3 and HMGI bound IFNb in association with both orientations of ATF2-Jun heterodimers with the same cooperativity. ATF2-Jun heterodimers that bound IFNb in opposite orientations in vitro had different effects on interferon-ß gene transcription when they were co-expressed with IRF3 in cultured cells. These heterodimers had different transcriptional activities at different endogenous genes. Different regions of ATF2 and Jun mediated their orientation-dependent transcriptional activities at different genes. These studies revealed that cooperative DNA binding does not require a unique nucleoprotein complex configuration, and that transcription factor complexes that bind the same enhancer in different configurations can have different transcriptional activities.


Assuntos
DNA/química , Interferon beta/química , Fatores de Transcrição/química , Transcrição Gênica , Fator 2 Ativador da Transcrição/química , Dimerização , Transferência Ressonante de Energia de Fluorescência , Regulação da Expressão Gênica , Proteína HMGA1a/química , Humanos , Fator Regulador 3 de Interferon/química , Proteínas Quinases JNK Ativadas por Mitógeno/química , Nucleoproteínas/química , Oligonucleotídeos/química , Ligação Proteica , Conformação Proteica
13.
J Cell Sci ; 125(Pt 12): 2815-24, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22685333

RESUMO

An increasing number of transcription factors have been shown to elicit oncogenic and tumor suppressor activities, depending on the tissue and cell context. Activating transcription factor 2 (ATF2; also known as cAMP-dependent transcription factor ATF-2) has oncogenic activities in melanoma and tumor suppressor activities in non-malignant skin tumors and breast cancer. Recent work has shown that the opposing functions of ATF2 are associated with its subcellular localization. In the nucleus, ATF2 contributes to global transcription and the DNA damage response, in addition to specific transcriptional activities that are related to cell development, proliferation and death. ATF2 can also translocate to the cytosol, primarily following exposure to severe genotoxic stress, where it impairs mitochondrial membrane potential and promotes mitochondrial-based cell death. Notably, phosphorylation of ATF2 by the epsilon isoform of protein kinase C (PKCε) is the master switch that controls its subcellular localization and function. Here, we summarize our current understanding of the regulation and function of ATF2 in both subcellular compartments. This mechanism of control of a non-genetically modified transcription factor represents a novel paradigm for 'oncogene addiction'.


Assuntos
Fator 2 Ativador da Transcrição/metabolismo , Núcleo Celular/metabolismo , Citosol/metabolismo , Fator 2 Ativador da Transcrição/química , Fator 2 Ativador da Transcrição/genética , Motivos de Aminoácidos , Animais , Núcleo Celular/genética , Dano ao DNA , Humanos , Fosforilação , Proteína Quinase C-épsilon/genética , Proteína Quinase C-épsilon/metabolismo , Transporte Proteico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Transcrição Gênica
14.
Biophys Chem ; 151(3): 149-54, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20619956

RESUMO

The varied selectivity of bZIP transcription factors stems from the fact that they are dimers consisting of two not necessarily identical subunits held together by a leucine zipper dimerization domain. Determining their stability is therefore important for understanding the mechanism of formation of these transcription factors. The most widely used approach for this problem consists of observing temperature-induced dissociation of the bZIPs by any means sensitive to their structural changes, particularly optical methods. In calculating thermodynamic characteristics of this process from such data it is usually assumed that it represents a two-state transition. However, scanning micro-calorimetric study of the temperature-induced unfolding/dissociation of the three bZIPs formed by the ATF-2 and c-Jun proteins, i.e. the two homodimers (ATF-2/ATF-2) and (c-Jun/c-Jun) and the heterodimer (ATF-2/c-Jun), showed that this process does not represent a two-state transition, as found previously with the GCN4 homodimeric bZIP protein. This raises doubt about all indirect estimates of bZIP thermodynamic characteristics based on analysis of their optically-observed temperature-induced changes.


Assuntos
Fator 2 Ativador da Transcrição/química , Fator 2 Ativador da Transcrição/metabolismo , Multimerização Proteica , Desdobramento de Proteína , Proteínas Proto-Oncogênicas c-jun/química , Proteínas Proto-Oncogênicas c-jun/metabolismo , Sequência de Aminoácidos , Calorimetria , Polarização de Fluorescência , Humanos , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Temperatura
15.
J Biol Chem ; 285(30): 23096-104, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20507983

RESUMO

Growth factor stimulation induces c-Jun-dependent survival of primary endothelial cells. However, the mechanism of c-Jun anti-apoptotic activity has not been identified. We here demonstrate that in response to growth factor treatment, primary human endothelial cells as well as mouse fibroblasts respond with an increased expression of c-Jun that forms a complex with ATF2. This complex activates the expression of the anti-apoptotic protein Bcl-X(L). By site-directed mutagenesis experiments, we identified two AP-1-binding sites located within the proximal promoter of the Bcl-X gene. Site-directed mutagenesis demonstrated that these AP-1 sites are required for the transcriptional activation of the promoter. Chromatin immunoprecipitation experiments show that in response to growth factor treatment, the heterodimer c-Jun.ATF2 binds to these functional AP-1 sites. Silencing of either c-Jun or ATF2 demonstrated that both nuclear factors are required for the activation of the proximal Bcl-X promoter. Taken together, our experiments provide evidence that growth factor-independent signaling pathways converge in the formation of an active c-Jun.AFT2 dimer, which induces the expression of the anti-apoptotic factor Bcl-X(L) that mediates a pro-survival response.


Assuntos
Fator 2 Ativador da Transcrição/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteína bcl-X/metabolismo , Fator 2 Ativador da Transcrição/química , Fator 2 Ativador da Transcrição/deficiência , Fator 2 Ativador da Transcrição/genética , Animais , Apoptose/efeitos dos fármacos , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/química , Proteínas Quinases JNK Ativadas por Mitógeno/deficiência , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Camundongos , Multimerização Proteica , Estrutura Quaternária de Proteína , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição AP-1/metabolismo , Transcrição Gênica , Proteína bcl-X/genética
16.
BMC Syst Biol ; 4: 23, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20230629

RESUMO

BACKGROUND: The success of anti-TNF biologics for the treatment of rheumatoid arthritis has highlighted the importance of understanding the intracellular pathways that regulate TNF production in the quest for an orally-available small molecule inhibitor. p38 is known to strongly regulate TNF production via MK2. The failure of several p38 inhibitors in the clinic suggests the importance of other downstream pathways in normal cell function. Recent work has described a 'substrate-selective' p38 inhibitor that is able to preferentially block the activity of p38 against one substrate (MK2) versus another (ATF2). Using a combined experimental and computational approach, we have examined this mechanism in greater detail for two p38 substrates, MK2 and ATF2. RESULTS: We found that in a dual (MK2 and ATF2) substrate assay, MK2-p38 interaction reduced the activity of p38 against ATF2. We further constructed a detailed kinetic mechanistic model of p38 phosphorylation in the presence of multiple substrates and successfully predicted the performance of classical and so-called 'substrate-selective' p38 inhibitors in the dual substrate assay. Importantly, it was found that excess MK2 results in a stoichiometric effect in which the formation of p38-MK2-inhibitor complex prevents the phosphorylation of ATF2, despite the preference of the compound for the p38-MK2 complex over the p38-ATF2 complex. MK2 and p38 protein expression levels were quantified in U937, Thp-1 and PBMCs and found that [MK2] > [p38]. CONCLUSION: Our integrated mechanistic modeling and experimental validation provides an example of how systems biology approaches can be applied to drug discovery and provide a basis for decision-making with limited chemical matter. We find that, given our current understanding, it is unlikely that 'substrate-selective' inhibitors of p38 will work as originally intended when placed in the context of more complex cellular environments, largely due to a stoichiometric excess of MK2 relative to p38.


Assuntos
Fator 2 Ativador da Transcrição/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Biológicos , Modelos Químicos , Inibidores de Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fator 2 Ativador da Transcrição/química , Simulação por Computador , Peptídeos e Proteínas de Sinalização Intracelular/química , Cinética , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/química , Especificidade por Substrato
17.
J Mol Biol ; 396(2): 431-40, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-19944700

RESUMO

The dimer formed by the ATF-2 and c-Jun transcription factors is one of the main components of the human interferon-beta enhanceosome. Although these two transcription factors are able to form two homodimers and one heterodimer, it is mainly the heterodimer that participates in the formation of this enhanceosome, binding specifically to the positive regulatory domain IV (PRDIV) site of the enhancer DNA. To understand this surprising advantage of the heterodimer, we investigated the association of these transcription factors using fragments containing the basic DNA-recognition segment and the basic leucine zipper domain (bZIP). It was found that the probability of forming the hetero-bZIP significantly exceeds the probability of forming homo-bZIPs, and that the hetero-bZIP interacts more strongly with the PRDIV site of the interferon-beta enhancer, especially in the orientation that places the folded ATF-2 basic segment in the upstream half of this asymmetric site. The effect of salt on the formation of the ATF-2/c-Jun dimer and on its ability to bind the target PRDIV site showed that electrostatic interactions between the charged groups of these proteins and with DNA play an essential role in the formation of the asymmetric ATF-2/c-Jun/PRDIV complex.


Assuntos
Fator 2 Ativador da Transcrição/química , Fator 2 Ativador da Transcrição/metabolismo , DNA/metabolismo , Proteínas Proto-Oncogênicas c-jun/química , Proteínas Proto-Oncogênicas c-jun/metabolismo , Sequência de Aminoácidos , Fatores de Transcrição de Zíper de Leucina Básica/química , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Multimerização Proteica/fisiologia , Estabilidade Proteica , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
18.
Mol Cell Biol ; 29(9): 2431-42, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19255142

RESUMO

The activator protein 1 (AP-1) transcription factor c-Jun is crucial for neuronal apoptosis. However, c-Jun dimerization partners and the regulation of these proteins in neuronal apoptosis remain unknown. Here we report that c-Jun-mediated neuronal apoptosis requires the concomitant activation of activating transcription factor-2 (ATF2) and downregulation of c-Fos. Furthermore, we have observed that c-Jun predominantly heterodimerizes with ATF2 and that the c-Jun/ATF2 complex promotes apoptosis by triggering ATF activity. Inhibition of c-Jun/ATF2 heterodimerization using dominant negative mutants, small hairpin RNAs, or decoy oligonucleotides was able to rescue neurons from apoptosis, whereas constitutively active ATF2 and c-Jun mutants were found to synergistically stimulate apoptosis. Bimolecular fluorescence complementation analysis confirmed that, in living neurons, c-Fos downregulation facilitates c-Jun/ATF2 heterodimerization. A chromatin immunoprecipitation assay also revealed that c-Fos expression prevents the binding of c-Jun/ATF2 heterodimers to conserved ATF sites. Moreover, the presence of c-Fos is able to suppress the expression of c-Jun/ATF2-mediated target genes and, therefore, apoptosis. Taken together, our findings provide evidence that potassium deprivation-induced neuronal apoptosis is mediated by concurrent upregulation of c-Jun/ATF2 heterodimerization and downregulation of c-Fos expression. This paradigm demonstrates opposing roles for ATF2 and c-Fos in c-Jun-mediated neuronal apoptosis.


Assuntos
Fator 2 Ativador da Transcrição/metabolismo , Apoptose/fisiologia , Neurônios/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fator 2 Ativador da Transcrição/química , Fator 2 Ativador da Transcrição/genética , Animais , Células Cultivadas , Dimerização , Neurônios/citologia , Potássio/metabolismo , Estrutura Quaternária de Proteína , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-jun/química , Proteínas Proto-Oncogênicas c-jun/genética , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
20.
Arch Biochem Biophys ; 477(2): 324-9, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18559253

RESUMO

c-jun-N-terminal kinase 1alpha1 (JNK1alpha1) is a serine/threonine kinase of the mitogen-activated protein (MAP) kinase family that phosphorylates protein transcription factors after activation by a variety of environmental stressors. In this study, the kinetic mechanism for JNK1alpha1 phosphorylation of activating transcription factor 2 (ATF2) was determined utilizing steady-state kinetics in the presence and absence of both ATF2 and ATP competitive inhibitors. Data from initial velocity studies were consistent with a sequential mechanism for JNK1alpha1. AMP-PCP exhibited competitive inhibition versus ATP and pure noncompetitive inhibition versus ATF2. JIP-1 peptide (RPKRPTTLNLF) was competitive versus ATF2 and mixed noncompetitive versus ATP. These data suggest that JNK1alpha1 proceeded via a random sequential kinetic mechanism with non-interacting ATF2 and ATP substrate sites.


Assuntos
Fator 2 Ativador da Transcrição/química , Proteínas Adaptadoras de Transdução de Sinal/química , Trifosfato de Adenosina/química , Proteína Quinase 8 Ativada por Mitógeno/química , Modelos Químicos , Fragmentos de Peptídeos/química , Simulação por Computador , Ativação Enzimática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...