Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Biotechnol ; 18(1): 51, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30157831

RESUMO

BACKGROUND: Fibroblast growth factor 9 (FGF9) is a heparin-binding growth factor, secreted by both mesothelial and epithelial cells, which participates in hair follicle regeneration, wound healing, and bone development. A suitable source of recombinant human FGF9 (rhFGF9) is needed for research into potential clinical applications. We present that expression of oleosin-rhFGF9 fusion protein in safflower (Carthamus tinctorius L.) seeds stimulates hair growth and wound healing. RESULTS: The oleosin-rhFGF9 expressed in safflower seeds, in which it localizes to the surface of oil bodies. The expression of oleosin-rhFGF9 was confirmed by polyacrylamide gel electrophoresis and western blotting. According to BCA and Enzyme-linked immunosorbent assay (ELISA) assay, the results show that the expression level of oleosin-rhFGF9 was 0.14% of oil body protein. The oil body bound oleosin-rhFGF9 showed mitogenic activity towards NIH3T3 cells in a methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. The efficacy of oil body bound oleosin-rhFGF9 in promoting hair growth and wound healing was investigated in C57BL/6 mice. In a hair regeneration experiment, 50 µg/µl oil body bound oleosin-rhFGF9 was applied to the dorsal skin of mice in the resting phase of the hair growth cycle. After 15 days, thicker hair and increased number of new hairs were seen compared with controls. Furthermore, the number of new hairs was greater compared with rhFGF9-treated mice. The hair follicles of mice treated with oil body bound oleosin-rhFGF9 expressed ß-catenin more abundantly. In a wound healing experiment, dorsal skin wounds were topically treated with 50 µg/µl oil body bound oleosin-rhFGF9. Wound healing was quicker compared with mice treated with rhFGF9 and controls, especially in the earlier stages of healing. CONCLUSIONS: The oil body bound oleosin-rhFGF9 promotes both hair growth and wound healing. It appears to promote hair growth, at least in part, by up-regulating ß-catenin expression. The potential of oil body bound oleosin-rhFGF9 as an external drug can treat the alopecia and wounds or use in further clinical application.


Assuntos
Carthamus tinctorius/genética , Fator 9 de Crescimento de Fibroblastos/administração & dosagem , Fator 9 de Crescimento de Fibroblastos/genética , Cabelo/crescimento & desenvolvimento , Gotículas Lipídicas/metabolismo , Proteínas de Plantas/administração & dosagem , Proteínas de Plantas/genética , Ferimentos e Lesões/tratamento farmacológico , Animais , Carthamus tinctorius/metabolismo , Fator 9 de Crescimento de Fibroblastos/metabolismo , Expressão Gênica , Cabelo/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Proteínas de Plantas/metabolismo , Transporte Proteico , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Cicatrização , Ferimentos e Lesões/genética , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/fisiopatologia , beta Catenina/genética , beta Catenina/metabolismo
2.
Tissue Eng Part A ; 22(7-8): 584-96, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26955972

RESUMO

Therapeutic angiogenesis has emerged as a potential strategy to treat ischemic vascular diseases. However, systemic or local administration of growth factors is usually inefficient for maintaining the effective concentration at the site of interest due to their rapid clearance or degradation. In this study, we report a differential and sustained release of an angiogenic factor, fibroblast growth factor-2 (FGF2), and an arteriogenic factor, fibroblast growth factor-9 (FGF9), from α-amino acid-derived biodegradable poly(ester amide) (PEA) fibers toward targeting neovessel formation and maturation. FGF2 and FGF9 were dual loaded using a mixed blend and emulsion electrospinning technique and exhibited differential and sustained release from PEA fibers over 28 days with preserved bioactivity. In vitro angiogenesis assays showed enhanced endothelial cell (EC) tube formation and directed migration of smooth muscle cells (SMCs) to platelet-derived growth factor (PDGF)-BB and stabilized EC/SMC tube formation. FGF2/FGF9-loaded PEA fibers did not induce inflammatory responses in vitro using human monocytes or in vivo after their subcutaneous implantation into mice. Histological examination showed that FGF2/FGF9-loaded fibers induced cell niche recruitment around the site of implantation. Furthermore, controlled in vivo delivery of FGF9 to mouse tibialis anterior (TA) muscle resulted in a dose-dependent expansion of mesenchymal progenitor-like cell layers and extracellular matrix deposition. Our data suggest that the release of FGF2 and FGF9 from PEA fibers offers an efficient differential and sustained growth factor delivery strategy with relevance to therapeutic angiogenesis.


Assuntos
Amidas/química , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 9 de Crescimento de Fibroblastos/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Poliésteres/química , Engenharia Tecidual/métodos , Animais , Movimento Celular/efeitos dos fármacos , Preparações de Ação Retardada , Emulsões , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/administração & dosagem , Fator 9 de Crescimento de Fibroblastos/administração & dosagem , Humanos , Inflamação/patologia , Masculino , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Implantação de Prótese , Tela Subcutânea/efeitos dos fármacos , Tela Subcutânea/patologia
3.
Proc Natl Acad Sci U S A ; 112(38): 11953-8, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26351673

RESUMO

Both gene expression profiling in postmortem human brain and studies using animal models have implicated the fibroblast growth factor (FGF) family in affect regulation and suggest a potential role in the pathophysiology of major depressive disorder (MDD). FGF2, the most widely characterized family member, is down-regulated in the depressed brain and plays a protective role in rodent models of affective disorders. By contrast, using three microarray analyses followed by quantitative RT-PCR confirmation, we show that FGF9 expression is up-regulated in the hippocampus of individuals with MDD, and that FGF9 expression is inversely related to the expression of FGF2. Because little is known about FGF9's function in emotion regulation, we used animal models to shed light on its potential role in affective function. We found that chronic social defeat stress, an animal model recapitulating some aspects of MDD, leads to a significant increase in hippocampal FGF9 expression, paralleling the elevations seen in postmortem human brain tissue. Chronic intracerebroventricular administration of FGF9 increased both anxiety- and depression-like behaviors. In contrast, knocking down FGF9 expression in the dentate gyrus of the hippocampus using a lentiviral vector produced a decrease in FGF9 expression and ameliorated anxiety-like behavior. Collectively, these results suggest that high levels of hippocampal FGF9 play an important role in the development or expression of mood and anxiety disorders. We propose that the relative levels of FGF9 in relation to other members of the FGF family may prove key to understanding vulnerability or resilience in affective disorders.


Assuntos
Afeto , Fator 9 de Crescimento de Fibroblastos/metabolismo , Adulto , Afeto/efeitos dos fármacos , Idoso , Idoso de 80 Anos ou mais , Animais , Ansiedade/complicações , Ansiedade/metabolismo , Aprendizagem da Esquiva/efeitos dos fármacos , Estudos de Casos e Controles , Demografia , Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Transtorno Depressivo Maior/complicações , Transtorno Depressivo Maior/metabolismo , Feminino , Fator 9 de Crescimento de Fibroblastos/administração & dosagem , Fator 9 de Crescimento de Fibroblastos/genética , Fator 9 de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Lentivirus/metabolismo , Masculino , Microinjeções , Pessoa de Meia-Idade , Mudanças Depois da Morte , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Estresse Psicológico/complicações , Estresse Psicológico/genética , Adulto Jovem
4.
BMC Cancer ; 15: 333, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25925261

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs), which reside around tumor cells, are suggested to play a pivotal role in tumor progression. Here we performed microarray analyses to compare gene expression profiles between CAFs and non-cancerous gastric fibroblasts (NGFs) from a patient with gastric cancer and found that fibroblast growth factor 9 (FGF9) was a novel growth factor overexpressed in CAFs. We then examined the biological effects of FGF9 during progression of gastric cancer. METHODS: Expression of FGF9 in CAFs and NGFs, and their secreted products, were examined by Western blotting. The effects of FGF9 on AGS and MKN28 gastric cancer cells in terms of proliferation, invasion and anti-apoptosis were assessed by WST-1 assay, invasion chamber assay and FACS, respectively. Furthermore, the intracellular signaling by which FGF9 exerts its biological roles was examined in vitro. RESULTS: FGF9 was strongly expressed in CAFs in comparison with NGFs, being compatible with microarray data indicating that FGF9 was a novel growth factor overexpressed in CAFs. Treatment with FGF9 promoted invasion and anti-apoptosis through activation of the ERK and Akt signaling pathways in AGS and MKN28 cells, whereas these effects were attenuated by treatment with anti-FGF9 neutralizing antibody. In addition, FGF9 treatment significantly enhanced the expression of matrix metalloproteinase 7 (MMP7) in both cell lines. CONCLUSIONS: FGF9 is a possible mediator secreted by CAFs that promotes the anti-apoptosis and invasive capability of gastric cancer cells.


Assuntos
Apoptose/genética , Fator 9 de Crescimento de Fibroblastos/biossíntese , Metaloproteinase 7 da Matriz/biossíntese , Neoplasias Gástricas/genética , Anticorpos Neutralizantes/administração & dosagem , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Fator 9 de Crescimento de Fibroblastos/administração & dosagem , Fator 9 de Crescimento de Fibroblastos/genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metaloproteinase 7 da Matriz/genética , Invasividade Neoplásica/genética , Transdução de Sinais/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia
5.
Pharm Res ; 31(12): 3335-47, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24852896

RESUMO

PURPOSE: For building functional vasculature, controlled delivery of fibroblast growth factor-9 (FGF9) from electrospun fibers is an appealing strategy to overcome challenges associated with its short half-life. FGF9 sustained delivery could potentially drive muscularization of angiogenic sprouts and help regenerate stable functional neovasculature in ischemic vascular disease patients. METHODS: Electrospinning parameters of FGF9-loaded poly(ester amide) (PEA) fibers have been optimized, using blend and emulsion electrospinning techniques. In vitro PEA matrix degradation, biocompatibility, FGF9 release kinetics, and bioactivity of the released FGF9 were evaluated. qPCR was employed to evaluate platelet-derived growth factor receptor-ß (PDGFRß) gene expression in NIH-3T3 fibroblasts, 10T1/2 cells, and human coronary artery smooth muscle cells cultured on PEA fibers at different FGF9 concentrations. RESULTS: Loaded PEA fibers exhibited controlled release of FGF9 over 28 days with limited burst effect while preserving FGF9 bioactivity. FGF9-loaded and unloaded electrospun fibers were found to support the proliferation of fibroblasts for five days even in serum-depleted conditions. Cells cultured on FGF9-supplemented PEA mats resulted in upregulation of PDGFRß in concentration and cell type-dependent manner. CONCLUSION: This study supports the premise of controlled delivery of FGF9 from PEA electrospun fibers for potential therapeutic angiogenesis applications.


Assuntos
Fator 9 de Crescimento de Fibroblastos/administração & dosagem , Fator 9 de Crescimento de Fibroblastos/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Amidas , Animais , Sobrevivência Celular/efeitos dos fármacos , Vasos Coronários/citologia , Vasos Coronários/efeitos dos fármacos , Preparações de Ação Retardada , Camundongos , Microscopia Confocal , Músculo Liso Vascular/efeitos dos fármacos , Células NIH 3T3 , Poliésteres
6.
Circulation ; 123(5): 504-14, 2011 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-21262993

RESUMO

BACKGROUND: Fibroblast growth factor 9 (FGF9) is secreted from bone marrow cells, which have been shown to improve systolic function after myocardial infarction (MI) in a clinical trial. FGF9 promotes cardiac vascularization during embryonic development but is only weakly expressed in the adult heart. METHODS AND RESULTS: We used a tetracycline-responsive binary transgene system based on the α-myosin heavy chain promoter to test whether conditional expression of FGF9 in the adult myocardium supports adaptation after MI. In sham-operated mice, transgenic FGF9 stimulated left ventricular hypertrophy with microvessel expansion and preserved systolic and diastolic function. After coronary artery ligation, transgenic FGF9 enhanced hypertrophy of the noninfarcted left ventricular myocardium with increased microvessel density, reduced interstitial fibrosis, attenuated fetal gene expression, and improved systolic function. Heart failure mortality after MI was markedly reduced by transgenic FGF9, whereas rupture rates were not affected. Adenoviral FGF9 gene transfer after MI similarly promoted left ventricular hypertrophy with improved systolic function and reduced heart failure mortality. Mechanistically, FGF9 stimulated proliferation and network formation of endothelial cells but induced no direct hypertrophic effects in neonatal or adult rat cardiomyocytes in vitro. FGF9-stimulated endothelial cell supernatants, however, induced cardiomyocyte hypertrophy via paracrine release of bone morphogenetic protein 6. In accord with this observation, expression of bone morphogenetic protein 6 and phosphorylation of its downstream targets SMAD1/5 were increased in the myocardium of FGF9 transgenic mice. CONCLUSIONS: Conditional expression of FGF9 promotes myocardial vascularization and hypertrophy with enhanced systolic function and reduced heart failure mortality after MI. These observations suggest a previously unrecognized therapeutic potential for FGF9 after MI.


Assuntos
Fator 9 de Crescimento de Fibroblastos/farmacologia , Insuficiência Cardíaca/prevenção & controle , Infarto do Miocárdio/complicações , Animais , Proteína Morfogenética Óssea 6/genética , Proteína Morfogenética Óssea 6/metabolismo , Fator 9 de Crescimento de Fibroblastos/administração & dosagem , Fator 9 de Crescimento de Fibroblastos/genética , Expressão Gênica/efeitos dos fármacos , Coração , Insuficiência Cardíaca/mortalidade , Hipertrofia Ventricular Esquerda/induzido quimicamente , Camundongos , Camundongos Transgênicos , Neovascularização Patológica/induzido quimicamente , Fosforilação , Ratos , Tetraciclina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...