Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 5096, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037221

RESUMO

Folding of individual domains in large proteins during translation helps to avoid otherwise prevalent inter-domain misfolding. How folding intermediates observed in vitro for the majority of proteins relate to co-translational folding remains unclear. Combining in vivo and single-molecule experiments, we followed the co-translational folding of the G-domain, encompassing the first 293 amino acids of elongation factor G. Surprisingly, the domain remains unfolded until it is fully synthesized, without collapsing into molten globule-like states or forming stable intermediates. Upon fully emerging from the ribosome, the G-domain transitions to its stable native structure via folding intermediates. Our results suggest a strictly sequential folding pathway initiating from the C-terminus. Folding and synthesis thus proceed in opposite directions. The folding mechanism is likely imposed by the final structure and might have evolved to ensure efficient, timely folding of a highly abundant and essential protein.


Assuntos
Fator G para Elongação de Peptídeos/biossíntese , Fator G para Elongação de Peptídeos/química , Dobramento de Proteína , Luminescência , Fator G para Elongação de Peptídeos/genética , Biossíntese de Proteínas , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Imagem Individual de Molécula
2.
Biol Chem ; 401(1): 131-142, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31600135

RESUMO

Elongation factor G (EF-G) is a translational GTPase that acts at several stages of protein synthesis. Its canonical function is to catalyze tRNA movement during translation elongation, but it also acts at the last step of translation to promote ribosome recycling. Moreover, EF-G has additional functions, such as helping the ribosome to maintain the mRNA reading frame or to slide over non-coding stretches of the mRNA. EF-G has an unconventional GTPase cycle that couples the energy of GTP hydrolysis to movement. EF-G facilitates movement in the GDP-Pi form. To convert the energy of hydrolysis to movement, it requires various ligands in the A site, such as a tRNA in translocation, an mRNA secondary structure element in ribosome sliding, or ribosome recycling factor in post-termination complex disassembly. The ligand defines the direction and timing of EF-G-facilitated motion. In this review, we summarize recent advances in understanding the mechanism of EF-G action as a remarkable force-generating GTPase.


Assuntos
Guanosina Trifosfato/biossíntese , Fator G para Elongação de Peptídeos/genética , Biossíntese de Proteínas/genética , Ribossomos/genética , GTP Fosfo-Hidrolases/genética , Guanosina Trifosfato/genética , Hidrólise , Fator G para Elongação de Peptídeos/biossíntese , RNA Mensageiro/genética , RNA de Transferência/genética
3.
Mitochondrion ; 34: 84-90, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28216230

RESUMO

We report the clinical, biochemical, and molecular findings in two brothers with encephalopathy and multi-systemic disease. Abnormal transferrin glycoforms were suggestive of a type I congenital disorder of glycosylation (CDG). While exome sequencing was negative for CDG related candidate genes, the testing revealed compound heterozygous mutations in the mitochondrial elongation factor G gene (GFM1). One of the mutations had been reported previously while the second, novel variant was found deep in intron 6, activating a cryptic splice site. Functional studies demonstrated decreased GFM1 protein levels, suggested disrupted assembly of mitochondrial complexes III and V and decreased activities of mitochondrial complexes I and IV, all indicating combined OXPHOS deficiency.


Assuntos
Anormalidades Congênitas/genética , Anormalidades Congênitas/patologia , Expressão Gênica , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/genética , Fosforilação Oxidativa , Fator G para Elongação de Peptídeos/biossíntese , Fator G para Elongação de Peptídeos/genética , Sítios de Splice de RNA , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Masculino
4.
Appl Microbiol Biotechnol ; 99(11): 4795-805, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25707863

RESUMO

Ribosome elongation factor G encoded by fusA promotes the translocation step of protein synthesis in bacteria; ribosome recycling factor encoded by frr, together with the elongation factor G, dissociates ribosomes from messenger RNA after the termination of translation. Both factors play important roles during protein synthesis in bacteria. In this study, we found that overexpression of fusA and/or frr led to the increase of L-isoleucine production in Corynebacterium glutamicum IWJ001, an L-isoleucine production strain generated by random mutagenesis. Reverse transcription polymerase chain reaction analysis showed that transcriptional levels of genes lysC, hom, thrB, ilvA, ilvBN, and ilvE encoding the key enzymes in the biosynthetic pathway of L-isoleucine increased in C. glutamicum IWJ001 when fusA and/or frr were overexpressed. Co-overexpression of fusA and frr, together with genes ilvA, ilvB, ilvN, and ppnk in C. glutamicum IWJ001, led to 76.5 % increase of L-isoleucine production in flask cultivation and produced 28.5 g/L L-isoleucine in 72-h fed-batch fermentation. The results demonstrate that overexpressing ribosome elongation factor G and ribosome recycling factor is an efficient approach to enhance L-isoleucine production in C. glutamicum.


Assuntos
Corynebacterium glutamicum/metabolismo , Expressão Gênica , Isoleucina/metabolismo , Engenharia Metabólica/métodos , Fator G para Elongação de Peptídeos/biossíntese , Proteínas Ribossômicas/biossíntese , Corynebacterium glutamicum/genética , Perfilação da Expressão Gênica , Fator G para Elongação de Peptídeos/genética , Proteínas Ribossômicas/genética
5.
Eur Biophys J ; 40(3): 289-303, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21152913

RESUMO

Translation on the ribosome is controlled by external factors. During polypeptide lengthening, elongation factors EF-Tu and EF-G consecutively interact with the bacterial ribosome. EF-Tu binds and delivers an aminoacyl-tRNA to the ribosomal A site and EF-G helps translocate the tRNAs between their binding sites after the peptide bond is formed. These processes occur at the expense of GTP. EF-Tu:tRNA and EF-G are of similar shape, share a common binding site, and undergo large conformational changes on interaction with the ribosome. To characterize the internal motion of these two elongation factors, we used 25 ns long all-atom molecular dynamics simulations. We observed enhanced mobility of EF-G domains III, IV, and V and of tRNA in the EF-Tu:tRNA complex. EF-Tu:GDP complex acquired a configuration different from that found in the crystal structure of EF-Tu with a GTP analogue, showing conformational changes in the switch I and II regions. The calculated electrostatic properties of elongation factors showed no global similarity even though matching electrostatic surface patches were found around the domain I that contacts the ribosome, and in the GDP/GTP binding region.


Assuntos
Guanosina Trifosfato/química , Simulação de Dinâmica Molecular , Fator G para Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/química , Aminoacil-RNA de Transferência/química , Ribossomos/química , Sítios de Ligação , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Movimento (Física) , Fator G para Elongação de Peptídeos/biossíntese , Fator G para Elongação de Peptídeos/metabolismo , Fator Tu de Elongação de Peptídeos/biossíntese , Fator Tu de Elongação de Peptídeos/metabolismo , Ligação Proteica , Biossíntese de Proteínas/fisiologia , Conformação Proteica , Aminoacil-RNA de Transferência/metabolismo , Ribossomos/metabolismo , Thermus/enzimologia , Thermus/metabolismo
6.
Protein Pept Lett ; 14(8): 804-10, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17979823

RESUMO

The fusA gene encoding a thermophilic protein EF-G with multiple rare condons was cloned from Thermoanaerobacter tengcongensis (TteEF-G) and overexpressed in Escherichia coli by cotransfering a RIG plasmid to overcome the potential codon-bias problem originated from Arg, Ile and Gly. The recombinant protein was identified by MALDI-TOF-MS for molecular mass with approximation of 76 kDa and by trypsin digestion coupled LC-MS/MS for peptide sequence coverage of 61.3%. The in vivo complementary assay indicates that TteEF-G could significantly rescue the E. coli LJ14 (frr(ts)) at the non-permission temperature of 42 degrees C in the bi-transformant of TteRRF and TteEF-G. This study indicated that coexpression of rare codons' cognate tRNA is a useful method for protein overexpression in E. coli.


Assuntos
Fator G para Elongação de Peptídeos/biossíntese , Thermoanaerobacter/química , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Dados de Sequência Molecular , Fator G para Elongação de Peptídeos/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
7.
Am J Hum Genet ; 80(1): 44-58, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17160893

RESUMO

Mitochondrial protein translation is a complex process performed within mitochondria by an apparatus composed of mitochondrial DNA (mtDNA)-encoded RNAs and nuclear DNA-encoded proteins. Although the latter by far outnumber the former, the vast majority of mitochondrial translation defects in humans have been associated with mutations in RNA-encoding mtDNA genes, whereas mutations in protein-encoding nuclear genes have been identified in a handful of cases. Genetic investigation involving patients with defective mitochondrial translation led us to the discovery of novel mutations in the mitochondrial elongation factor G1 (EFG1) in one affected baby and, for the first time, in the mitochondrial elongation factor Tu (EFTu) in another one. Both patients were affected by severe lactic acidosis and rapidly progressive, fatal encephalopathy. The EFG1-mutant patient had early-onset Leigh syndrome, whereas the EFTu-mutant patient had severe infantile macrocystic leukodystrophy with micropolygyria. Structural modeling enabled us to make predictions about the effects of the mutations at the molecular level. Yeast and mammalian cell systems proved the pathogenic role of the mutant alleles by functional complementation in vivo. Nuclear-gene abnormalities causing mitochondrial translation defects represent a new, potentially broad field of mitochondrial medicine. Investigation of these defects is important to expand the molecular characterization of mitochondrial disorders and also may contribute to the elucidation of the complex control mechanisms, which regulate this fundamental pathway of mtDNA homeostasis.


Assuntos
Antígenos de Neoplasias/genética , DNA Mitocondrial/genética , Encefalomiopatias Mitocondriais/patologia , Proteínas Mitocondriais/genética , Fator G para Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/genética , Sequência de Aminoácidos , Antígenos de Neoplasias/biossíntese , Encéfalo/anormalidades , Células Cultivadas , Pré-Escolar , DNA Mitocondrial/biossíntese , Feminino , Fibroblastos/metabolismo , Humanos , Lactente , Recém-Nascido , Encefalomiopatias Mitocondriais/congênito , Encefalomiopatias Mitocondriais/genética , Proteínas Mitocondriais/biossíntese , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fator G para Elongação de Peptídeos/biossíntese , Fator Tu de Elongação de Peptídeos/biossíntese , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
8.
Protein Expr Purif ; 37(2): 368-76, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15358359

RESUMO

Elongation factor G (EF-G) catalyzes the translocation step of protein biosynthesis. Genomic analysis suggests that two isoforms of this protein occur in mitochondria. The region of the cDNA coding for the mature sequence of isoform 1 of human mitochondrial EF-G (EF-G1(mt)) has been cloned and expressed in Escherichia coli. The recombinant protein has been purified to near homogeneity by chromatography on Ni-NTA resins and cation exchange high performance liquid chromatography. EF-G1(mt) is active on both bacterial and mitochondrial ribosomes. Human EF-G1(mt) is considerably more resistant to fusidic acid than many bacterial translocases. A molecular model for EF-G1(mt) has been created and analyzed in the context of its relationship to the translocases from other systems.


Assuntos
Fator G para Elongação de Peptídeos/biossíntese , Fator G para Elongação de Peptídeos/química , Sequência de Aminoácidos , Cromatografia , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Clonagem Molecular , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Etiquetas de Sequências Expressas , Ácido Fusídico/química , Glutamatos/química , Humanos , Mitocôndrias/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Níquel , Fator G para Elongação de Peptídeos/isolamento & purificação , Cloreto de Potássio/química , Isoformas de Proteínas , Transporte Proteico , Ribossomos/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...