Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
J Neuroinflammation ; 19(1): 289, 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463233

RESUMO

BACKGROUND: Neuroinflammation is one of the most important processes in secondary injury after traumatic brain injury (TBI). Triggering receptor expressed on myeloid cells 2 (TREM2) has been proven to exert neuroprotective effects in neurodegenerative diseases and stroke by modulating neuroinflammation, and promoting phagocytosis and cell survival. However, the role of TREM2 in TBI has not yet been elucidated. In this study, we are the first to use COG1410, an agonist of TREM2, to assess the effects of TREM2 activation in a murine TBI model. METHODS: Adult male wild-type (WT) C57BL/6 mice and adult male TREM2 KO mice were subjected to different treatments. TBI was established by the controlled cortical impact (CCI) method. COG1410 was delivered 1 h after CCI via tail vein injection. Western blot analysis, immunofluorescence, laser speckle contrast imaging (LSCI), neurological behaviour tests, brain electrophysiological monitoring, Evans blue assays, magnetic resonance imaging (MRI), and brain water content measurement were performed in this study. RESULTS: The expression of endogenous TREM2 peaked at 3 d after CCI, and it was mainly expressed on microglia and neurons. We found that COG1410 improved neurological functions within 3 d, as well as neurological functions and brain electrophysiological activity at 2 weeks after CCI. COG1410 exerted neuroprotective effects by inhibiting neutrophil infiltration and microglial activation, and suppressing neuroinflammation after CCI. In addition, COG1410 treatment alleviated blood brain barrier (BBB) disruption and brain oedema; furthermore, COG1410 promoted cerebral blood flow (CBF) recovery at traumatic injury sites after CCI. In addition, COG1410 suppressed neural apoptosis at 3 d after CCI. TREM2 activation upregulated p-Akt, p-CREB, BDNF, and Bcl-2 and suppressed TNF-α, IL-1ß, Bax, and cleaved caspase-3 at 3 d after CCI. Moreover, TREM2 knockout abolished the effects of COG1410 on vascular phenotypes and microglial states. Finally, the neuroprotective effects of COG1410 were suppressed by TREM2 depletion. CONCLUSIONS: Altogether, we are the first to demonstrate that TREM2 activation by COG1410 alleviated neural damage through activation of Akt/CREB/BDNF signalling axis in microglia after CCI. Finally, COG1410 treatment improved neurological behaviour and brain electrophysiological activity after CCI.


Assuntos
Lesões Encefálicas Traumáticas , Animais , Masculino , Camundongos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/imunologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/imunologia , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Receptores Imunológicos/agonistas , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Modelos Animais de Doenças , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/imunologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/imunologia , Sistema Nervoso/efeitos dos fármacos , Sistema Nervoso/imunologia
2.
Int J Med Sci ; 19(13): 1903-1911, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438922

RESUMO

COVID-19 clinically manifests from asymptomatic to the critical range. Immune response provokes the pro-inflammatory interactions, which lead to the cytokines, reactive oxygen/nitrogen species, peptidases, and arachidonic acid metabolites enlargement and activation of coagulation components. Matrix metalloproteinases (MMPs) contribute to tissue destruction in the development of COVID-19. Due to the endothelial, systemic course of the disease, VEGF A participates actively in COVID-19 development, while neurotrophic and metabolic effects of BDNF recommends for the prediction of complications in COVID-19 patients. Searching for a marker that would improve and simplify the ranking in COVID-19, the study intended to evaluate the relationship of MMP-9 with VEGF A, BDNF, and MMP-8 with the COVID-19 severity. Upon admission to the hospital and before the therapy administration, 77 patients were classified into a mild, moderate, severe, or critical group. Due to the inflammatory stage in COVID-19, a comparison between groups showed related differences in leukocytes, neutrophils, lymphocytes, and platelets counts as anticipated. Only in seriously ill patients, there is a significant increase in the serum concentration of MMP-9, MMP-8, and VEGF A, while BDNF values did not show significant variations between groups. However, all those parameters positively correlated with each other. The ratio of MMP-9/BDNF markedly decreased in the severe and critically patients compared to the mild group. Testing the capability of this ratio to predict the COVID-19 stage by ROC curves, we found the MMP-9/BDNF could be a suitable marker for differentiating stages I/II (AUC 0.7597), stage I/III (AUC 0.9011), and stage I/IV (AUC 0.7727). Presented data describe for the first time the high-level systemic MMP-9/BDNF ratio in patients with COVID-19. This parameter could contribute to a more precise determination of the phase of the disease.


Assuntos
Biomarcadores , Fator Neurotrófico Derivado do Encéfalo , COVID-19 , Metaloproteinase 9 da Matriz , Humanos , Biomarcadores/sangue , Biomarcadores/metabolismo , Fator Neurotrófico Derivado do Encéfalo/sangue , Fator Neurotrófico Derivado do Encéfalo/imunologia , COVID-19/sangue , COVID-19/imunologia , Metaloproteinase 8 da Matriz/sangue , Metaloproteinase 8 da Matriz/imunologia , Metaloproteinase 9 da Matriz/sangue , Metaloproteinase 9 da Matriz/imunologia , Fator A de Crescimento do Endotélio Vascular/sangue , Fator A de Crescimento do Endotélio Vascular/imunologia , Valor Preditivo dos Testes
3.
Cells ; 10(4)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924474

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of the central nervous system (CNS) affecting more than two million people worldwide. In MS, oligodendrocytes and myelin sheaths are destroyed by autoimmune-mediated inflammation, while remyelination is impaired. Recent investigations of post-mortem tissue suggest that Fibroblast growth factor (FGF) signaling may regulate inflammation and myelination in MS. FGF2 expression seems to correlate positively with macrophages/microglia and negatively with myelination; FGF1 was suggested to promote remyelination. In myelin oligodendrocyte glycoprotein (MOG)35-55-induced experimental autoimmune encephalomyelitis (EAE), systemic deletion of FGF2 suggested that FGF2 may promote remyelination. Specific deletion of FGF receptors (FGFRs) in oligodendrocytes in this EAE model resulted in a decrease of lymphocyte and macrophage/microglia infiltration as well as myelin and axon degeneration. These effects were mediated by ERK/Akt phosphorylation, a brain-derived neurotrophic factor, and downregulation of inhibitors of remyelination. In the first part of this review, the most important pharmacotherapeutic principles for MS will be illustrated, and then we will review recent advances made on FGF signaling in MS. Thus, we will suggest application of FGFR inhibitors, which are currently used in Phase II and III cancer trials, as a therapeutic option to reduce inflammation and induce remyelination in EAE and eventually MS.


Assuntos
Encefalomielite Autoimune Experimental/genética , Fator 2 de Crescimento de Fibroblastos/genética , Microglia/imunologia , Esclerose Múltipla/genética , Bainha de Mielina/imunologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/imunologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/imunologia , Fator 2 de Crescimento de Fibroblastos/deficiência , Regulação da Expressão Gênica , Humanos , Fatores Imunológicos/uso terapêutico , Camundongos Knockout , Microglia/efeitos dos fármacos , Microglia/patologia , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/patologia , Glicoproteína Mielina-Oligodendrócito/administração & dosagem , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/imunologia , Oligodendroglia/patologia , Fragmentos de Peptídeos/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/imunologia , Remielinização/efeitos dos fármacos , Remielinização/genética , Remielinização/imunologia , Transdução de Sinais
4.
Eur J Immunol ; 51(3): 557-566, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33169371

RESUMO

Macroenvironmental factors, including a patient's physical and social environment, play a role in cancer risk and progression. Our previous preclinical studies have shown that the enriched environment (EE) confers anti-obesity and anti-cancer phenotypes that are associated with enhanced adaptive immunity and are mediated by brain-derived neurotrophic factor (BDNF). Natural killer (NK) cells have anti-cancer and anti-viral properties, and their absence or depletion is associated with inferior clinical outcomes. In this study, we investigated the effects of EE on NK cell maturation following their depletion. Mice living in EE displayed a higher proportion of NK cells in the spleen, bone marrow, and blood, compared to those living in the standard environment (SE). EE enhanced NK cell maturation in the spleen and was associated with upregulation of BDNF expression in the hypothalamus. Hypothalamic BDNF overexpression reproduced the EE effects on NK cell maturation in secondary lymphoid tissues. Conversely, hypothalamic BDNF knockdown blocked the EE modulation on NK cell maturation. Our results demonstrate that a bio-behavior intervention enhanced NK cell maturation and was mediated at least in part by hypothalamic BDNF.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/imunologia , Hipotálamo/imunologia , Células Matadoras Naturais/imunologia , Animais , Meio Ambiente , Tecido Linfoide/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Baço/imunologia , Regulação para Cima/imunologia
5.
Neurosci Lett ; 739: 135448, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33129847

RESUMO

Zika virus (ZIKV) is a mosquito-borne Flavivirus structurally and antigenically related to Dengue virus (DENV). Zika virus has been associated with congenital anomalies and most ZIKV outbreaks have occurred in endemic areas of DENV. The present study investigated the effects of prior DENV serotype 1 (DENV1) immunity in immunocompetent female Swiss mice on gestational ZIKV infection in offspring. Physical/reflex development, locomotor activity, anxiety, visual acuity, and brain-derived neurotrophic factor (BDNF) levels were evaluated in offspring during infancy and adolescence. Anti-DENV1 and anti-ZIKV antibodies were detected in sera of the progenitors, whereas no ZIKV genomes were detected in the offspring brain. Pups from dams with only DENV1 immunity presented alterations of physical/reflex development. Pups from all infected dams exhibited time-related impairments in locomotor activity and anxiolytic-like behavior. Offspring from DENV/ZIKV-infected dams exhibited impairments in visual acuity during infancy but not during adolescence, which was consistent with morphometric analysis of the optic nerve. Pups from DENV1-, ZIKV-, and DENV/ZIKV-infected dams exhibited a decrease in BDNF levels during infancy and an increase during adolescence in distinct brain regions. In summary, we found no influence of prior DENV1 immunity on gestational ZIKV infection in offspring, with the exception of alterations of early visual parameters, and an increase in BDNF levels in the hippocampus during adolescence.


Assuntos
Comportamento Animal , Dengue/imunologia , Complicações Infecciosas na Gravidez/imunologia , Complicações Infecciosas na Gravidez/psicologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/psicologia , Animais , Encéfalo/imunologia , Encéfalo/virologia , Fator Neurotrófico Derivado do Encéfalo/imunologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Feminino , Masculino , Aprendizagem em Labirinto , Camundongos , Gravidez
6.
Theranostics ; 10(18): 8227-8249, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32724468

RESUMO

The regenerative capacity of the peripheral nervous system is closely related to the role that Schwann cells (SCs) play in construction of the basement membrane containing multiple extracellular matrix proteins and secretion of neurotrophic factors, including laminin (LN) and brain-derived neurotrophic factor (BDNF). Here, we developed a self-assembling peptide (SAP) nanofiber hydrogel based on self-assembling backbone Ac-(RADA)4-NH2 (RAD) dual-functionalized with laminin-derived motif IKVAV (IKV) and a BDNF-mimetic peptide epitope RGIDKRHWNSQ (RGI) for peripheral nerve regeneration, with the hydrogel providing a three-dimensional (3D) microenvironment for SCs and neurites. Methods: Circular dichroism (CD), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to characterize the secondary structures, microscopic structures, and morphologies of self-assembling nanofiber hydrogels. Then the SC adhesion, myelination and neurotrophin secretion were evaluated on the hydrogels. Finally, the SAP hydrogels were injected into hollow chitosan tubes to bridge a 10-mm-long sciatic nerve defect in rats, and in vivo gene expression at 1 week, axonal regeneration, target muscular re-innervation, and functional recovery at 12 weeks were assessed. Results: The bioactive peptide motifs were covalently linked to the C-terminal of the self-assembling peptide and the functionalized peptides could form well-defined nanofibrous hydrogels capable of providing a 3D microenvironment similar to native extracellular matrix. SCs displayed improved cell adhesion on hydrogels with both IKV and RGI, accompanied by increased cell spreading and elongation relative to other groups. RSCs cultured on hydrogels with IKV and RGI showed enhanced gene expression of NGF, BDNF, CNTF, PMP22 and NRP2, and decreased gene expression of NCAM compared with those cultured on other three groups after a 7-day incubation. Additionally, the secretion of NGF, BDNF, and CNTF of RSCs was significantly improved on dual-functionalized peptide hydrogels after 3 days. At 1 week after implantation, the expressions of neurotrophin and myelin-related genes in the nerve grafts in SAP and Autograft groups were higher than that in Hollow group, and the expression of S100 in groups containing both IKV and RGI was significantly higher than that in groups containing either IKV or RGI hydrogels, suggesting enhanced SC proliferation. The morphometric parameters of the regenerated nerves, their electrophysiological performance, the innervated muscle weight and remodeling of muscle fibers, and motor function showed that RAD/IKV/RGI and RAD/IKV-GG-RGI hydrogels could markedly improve axonal regeneration with enhanced re-myelination and motor functional recovery through the synergetic effect of IKV and RGI functional motifs. Conclusions: We found that the dual-functionalized SAP hydrogels promoted RSC adhesion, myelination, and neurotrophin secretion in vitro and successfully bridged a 10-mm gap representing a sciatic nerve defect in rats in vivo. The results demonstrated the synergistic effect of IKVAV and RGI on axonal regrowth and function recovery after peripheral nerve injury.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/imunologia , Laminina/imunologia , Regeneração Nervosa/imunologia , Oligopeptídeos/imunologia , Fragmentos de Peptídeos/imunologia , Traumatismos dos Nervos Periféricos/terapia , Alicerces Teciduais/química , Animais , Fator Neurotrófico Derivado do Encéfalo/química , Linhagem Celular , Dendrímeros/química , Modelos Animais de Doenças , Epitopos/imunologia , Humanos , Hidrogéis/química , Masculino , Nanofibras/química , Oligopeptídeos/química , Traumatismos dos Nervos Periféricos/patologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Ratos , Recuperação de Função Fisiológica/imunologia , Células de Schwann , Nervo Isquiático/lesões , Nervo Isquiático/patologia , Nervo Isquiático/fisiopatologia
7.
Front Immunol ; 11: 1357, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32676082

RESUMO

Streptococcus pneumoniae meningitis is a life-threatening bacterial infection of the central nervous system (CNS), and its unfavorable prognosis usually results from an intense inflammatory response. Recent studies have shown that brain-derived neurotrophic factor (BDNF) mediates anti-inflammatory and neuroprotective effects in CNS diseases; however, the distinct contribution of BDNF to pneumococcal meningitis (PM) remains unknown. In this study, we sought to investigate the effects of endogenous BDNF on the inflammatory response and brain damage in experimental PM. We used Camk2a-CreERT2 mice to delete Bdnf from the cerebral cortex and hippocampus, and meningitis was induced by intracisternal infection with S. pneumoniae. Clinical parameters were assessed during acute meningitis. At 24 h post-infection, histopathology, neutrophil granulocytes infiltration, and microglia/macrophage proliferation of brain tissues were evaluated. Additionally, cortical damage and hippocampal apoptosis were assessed using Nissl staining and terminal deoxynucleotidyl transferase dUTP-nick-end labeling (TUNEL), respectively. Pro-inflammatory cytokine levels were determined using real-time polymerase chain reaction (RT-PCR). Key molecules associated with the related signaling pathways were analyzed by RT-PCR and western blot. To investigate the role of microglia/macrophage in infected BDNF conditional knockout mice, GW2580 was used for microglia/macrophage depletion. Here, we, for the first time, found that BDNF conditional knockouts exhibited more profound clinical impairment, pathological severity, and neuron injury and enhanced microglia/macrophage proliferation than were observed in their littermate controls. Furthermore, the BDNF conditional knockouts showed an obviously increase in the expression of pro-inflammatory factors (Tnf-α, Il-1ß, and Il-6). Mechanistically, loss of BDNF activated TLR2- and NOD2-mediated downstream nuclear factor kappa B (NF-κB) p65 and p38 mitogen-activated protein kinase (MAPK) pathways associated with S. pneumoniae infection. Furthermore, targeted depletion of microglia/macrophage population decreased the resistance of mice to PM with diminishing neuroinflammation in BDNF conditional knockouts. Our findings suggest that loss of BDNF may enhance the inflammatory response and contribute to brain injury during PM at least partially by modulating TLR2- and NOD2-mediated signaling pathways, thereby providing a potential therapeutic target for future interventions in bacterial meningitis pathologies.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/imunologia , Inflamação/imunologia , Inflamação/patologia , Meningite Pneumocócica/imunologia , Meningite Pneumocócica/patologia , Animais , Lesões Encefálicas/imunologia , Lesões Encefálicas/patologia , Fator Neurotrófico Derivado do Encéfalo/deficiência , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/imunologia
8.
Muscle Nerve ; 62(3): 404-412, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32497302

RESUMO

BACKGROUND: After facial nerve injury and surgical repair in rats, recovery of vibrissal whisking is associated with a high proportion of mono-innervated neuro-muscular junctions (NMJs). Our earlier work with Sprague Dawley (SD)/Royal College of Surgeons (RCS) rats, which are blind and spontaneously restore NMJ-monoinnervation and whisking, showed correlations between functional recovery and increase of fibroblast growth factor-2 (FGF2) and brain-derived neurotrophic factor (BDNF) in denervated vibrissal muscles. METHODS: We used normally sighted rats (Wistar), in which NMJ-polyinnervation is highly correlated with poor whisking recovery, and injected the vibrissal muscle levator labii superioris (LLS) with combinations of BDNF, anti-BDNF, and FGF2 at different postoperative periods after facial nerve injury. RESULTS: Rats receiving anti-BDNF+FGF2 showed low NMJ-polyinnervation and best recovery of whisking amplitude. CONCLUSIONS: Restoration of target reinnervation after peripheral nerve injury requires a complex mixture of trophic factors with a specific time course of availability for each of them.


Assuntos
Anticorpos Neutralizantes/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/imunologia , Traumatismos do Nervo Facial/tratamento farmacológico , Fator 2 de Crescimento de Fibroblastos/uso terapêutico , Regeneração Nervosa/fisiologia , Recuperação de Função Fisiológica/fisiologia , Vibrissas/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Denervação , Músculos Faciais/efeitos dos fármacos , Músculos Faciais/inervação , Músculos Faciais/fisiopatologia , Traumatismos do Nervo Facial/fisiopatologia , Feminino , Fator 2 de Crescimento de Fibroblastos/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Ratos , Ratos Wistar , Recuperação de Função Fisiológica/efeitos dos fármacos
9.
J Agric Food Chem ; 68(21): 5835-5846, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32363873

RESUMO

Sea-buckthorn flavonoids (SFs) have been used as functional food components for their bioactive potential in preventing metabolic complications caused by diet, such as obesity and inflammation. However, the protective effect of SFs on cognitive functions is not fully clear. In this study, a high-fat and high-fructose diet (HFFD)-induced obese mice model was treated with SFs for 14 weeks. It was found that the oral SF administration (0.06% and 0.31% w/w, mixed in diet) significantly reduced bodyweight gain and insulin resistance in the HFFD-fed mice. SFs significantly prevented HFFD-induced neuronal loss and memory impairment in behavioral tests. Additionally, SFs also suppressed the HFFD-induced synaptic dysfunction and neuronal damages by increasing the protein expressions of PSD-95. Furthermore, SF treatment activated the ERK/CREB/BDNF and IRS-1/AKT pathways and inactivated the NF-κB signaling and its downstream inflammatory mediator expressions. In conclusion, SFs are a potential nutraceutical to prevent high-energy density diet-induced cognitive impairments, which could be possibly explained by their mediating effects on insulin signaling and inflammatory responses in the brain.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Dieta Hiperlipídica/efeitos adversos , Flavonoides/administração & dosagem , Frutose/efeitos adversos , Hippophae/química , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/imunologia , Disfunção Cognitiva/imunologia , Disfunção Cognitiva/psicologia , Frutose/metabolismo , Humanos , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/imunologia , Resistência à Insulina , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , NF-kappa B/imunologia , Neurônios/efeitos dos fármacos , Neurônios/imunologia
10.
J Neuroinflammation ; 17(1): 169, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32466783

RESUMO

BACKGROUND: Sepsis-associated encephalopathy (SAE) increases the mortality of septic patients, but its mechanism remains unclear. The present study aimed to investigate the roles of T lymphocytes, proBDNF, and their interaction in the pathogenesis of SAE. METHODS: Fear conditioning tests were conducted for cognitive assessment in the lipopolysaccharide (LPS, 5 mg kg-1)-induced septic mice. Meninges and peripheral blood were harvested for flow cytometry or qPCR. FTY720 and monoclonal anti-proBDNF antibody (McAb-proB) were used to investigate the effect of lymphocyte depletion and blocking proBDNF on the impaired cognitive functions in the septic mice. RESULTS: In the septic mice, cognitive function was impaired, the percentage of CD4+ T cells were decreased in the meninges (P = 0.0021) and circulation (P = 0.0222), and pro-inflammatory cytokines were upregulated, but the anti-inflammatory cytokines interleukin (IL)-4 (P < 0.0001) and IL-13 (P = 0.0350) were downregulated in the meninges. Lymphocyte depletion by intragastrically treated FTY720 (1 mg kg-1) for 1 week ameliorated LPS-induced learning deficit. In addition, proBDNF was increased in the meningeal (P = 0.0042) and peripheral (P = 0.0090) CD4+ T cells. Intraperitoneal injection of McAb-proB (100 µg) before LPS treatment significantly alleviated cognitive dysfunction, inhibited the downregulation of meningeal (P = 0.0264) and peripheral (P = 0.0080) CD4+ T cells, and normalized the gene expression of cytokines in the meninges. However, intra-cerebroventricular McAb-proB injection (1 µg) did not have such effect. Finally, exogenous proBDNF downregulated the percentage of CD4+ T cells in cultured splenocytes from septic mice (P = 0.0021). CONCLUSION: Upregulated proBDNF in immune system promoted the pathogenesis of SAE through downregulating the circulating CD4+ T cells, limiting its infiltration into the meninges and perturbing the meningeal pro-/anti-inflammatory homeostasis.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/imunologia , Linfócitos T CD4-Positivos/imunologia , Meninges/imunologia , Precursores de Proteínas/imunologia , Encefalopatia Associada a Sepse/imunologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Precursores de Proteínas/metabolismo , Encefalopatia Associada a Sepse/induzido quimicamente , Encefalopatia Associada a Sepse/metabolismo
11.
MAbs ; 12(1): 1755000, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32329655

RESUMO

The role of brain-derived neurotrophic factor (BDNF) signaling in chronic pain has been well documented. Given the important central role of BDNF in long term plasticity and memory, we sought to engineer a high affinity, peripherally-restricted monoclonal antibody against BDNF to modulate pain. BDNF shares 100% sequence homology across human and rodents; thus, we selected chickens as an alternative immune host for initial antibody generation. Here, we describe the affinity optimization of complementarity-determining region-grafted, chicken-derived R3bH01, an anti-BDNF antibody specifically blocking the TrkB receptor interaction. Antibody optimization led to the identification of B30, which has a > 300-fold improvement in affinity based on BIAcore, an 800-fold improvement in potency in a cell-based pERK assay and demonstrates exquisite selectivity over related neurotrophins. Affinity improvements measured in vitro translated to in vivo pharmacological activity, with B30 demonstrating a 30-fold improvement in potency over parental R3bH01 in a peripheral nerve injury model. We further demonstrate that peripheral BDNF plays a role in maintaining the plasticity of sensory neurons following nerve damage, with B30 reversing neuron hyperexcitability associated with heat and mechanical stimuli in a dose-dependent fashion. In summary, our data demonstrate that effective sequestration of BDNF via a high affinity neutralizing antibody has potential utility in modulating the pathophysiological mechanisms that drive chronic pain states.


Assuntos
Anticorpos Monoclonais/imunologia , Afinidade de Anticorpos/imunologia , Fator Neurotrófico Derivado do Encéfalo/imunologia , Dor Crônica/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Fator Neurotrófico Derivado do Encéfalo/antagonistas & inibidores , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Galinhas , Dor Crônica/fisiopatologia , Dor Crônica/prevenção & controle , Modelos Animais de Doenças , Humanos , Masculino , Medição da Dor , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/fisiopatologia , Traumatismos dos Nervos Periféricos/prevenção & controle , Ligação Proteica/efeitos dos fármacos , Ratos Sprague-Dawley , Receptor trkB/metabolismo
12.
Clin Exp Allergy ; 50(5): 577-584, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31925827

RESUMO

BACKGROUND: Pruritus is a major symptom of atopic dermatitis (AD) and is transmitted by a subpopulation of non-myelinated C-type free nerve endings in the epidermis and upper dermis. Stimulation of these nerve terminals is affected by histamine, neurotrophins and physical factors. Eosinophils of patients with AD are a source of neurotrophins, including brain-derived neurotrophic factor (BDNF), levels of which correlate with disease severity. OBJECTIVE: The purpose of this study was to determine the anatomical localization of eosinophils in the skin of patients with AD with regard to peripheral nerves and to investigate whether eosinophils induce sprouting and neurite outgrowth in murine sensory neurons. METHODS: Cryosections of skin derived from AD and control (NA) patients were subjected to immunofluorescence analysis with markers for eosinophils, BDNF and neuronal cells. Stimulated eosinophil supernatants were used for the treatment of cultured peripheral mouse dorsal root ganglia (DRG) neurons followed by morphometric analysis. RESULTS: Dermal axon density and the proximity of eosinophils to nerve fibres were significantly higher in AD patients vs NA. Both neuronal projections and eosinophils expressed BDNF. Furthermore, activated eosinophil supernatants induced BDNF-dependent mouse DRG neuron branching. CONCLUSIONS AND CLINICAL RELEVANCE: Our results indicate that BDNF-positive eosinophils are also localized in close proximity with nerve fibres in AD, suggesting a functional relationship between BDNF-expressing eosinophils and neuronal projections. These observations suggest that eosinophils may have considerable impact on pruritus by supporting sensory nerve branching.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/imunologia , Dermatite Atópica , Derme , Eosinófilos , Epiderme , Células Receptoras Sensoriais , Adolescente , Adulto , Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Derme/imunologia , Derme/inervação , Derme/patologia , Eosinófilos/imunologia , Eosinófilos/patologia , Epiderme/imunologia , Epiderme/inervação , Epiderme/patologia , Feminino , Humanos , Masculino , Células Receptoras Sensoriais/imunologia , Células Receptoras Sensoriais/patologia
13.
Proc Natl Acad Sci U S A ; 117(1): 426-431, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31871166

RESUMO

Herein we present a concept in cancer where an immune response is detrimental rather than helpful. In the cancer setting, the immune system is generally considered to be helpful in curtailing the initiation and progression of tumors. In this work we show that a patient's immune response to their tumor can, in fact, either enhance or inhibit tumor cell growth. Two closely related autoantibodies to the growth factor receptor TrkB were isolated from cancer patients' B cells. Although highly similar in sequence, one antibody was an agonist while the other was an antagonist. The agonist antibody was shown to increase breast cancer cell growth both in vitro and in vivo, whereas the antagonist antibody inhibited growth. From a mechanistic point of view, we showed that binding of the agonist antibody to the TrkB receptor was functional in that it initiated downstream signaling identical to its natural growth factor ligand, brain-derived neurotrophic factor (BDNF). Our study shows that individual autoantibodies may play a role in cancer patients.


Assuntos
Autoanticorpos/imunologia , Autoantígenos/imunologia , Neoplasias da Mama/patologia , Glicoproteínas de Membrana/imunologia , Metástase Neoplásica/imunologia , Receptor trkB/imunologia , Animais , Autoanticorpos/sangue , Autoanticorpos/isolamento & purificação , Autoanticorpos/metabolismo , Autoantígenos/sangue , Autoantígenos/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Fator Neurotrófico Derivado do Encéfalo/imunologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Neoplasias da Mama/sangue , Neoplasias da Mama/imunologia , Linhagem Celular Tumoral , Movimento Celular/imunologia , Proliferação de Células , Feminino , Humanos , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/sangue , Camundongos , Receptor trkB/agonistas , Receptor trkB/antagonistas & inibidores , Receptor trkB/sangue , Transdução de Sinais/imunologia
14.
Am J Physiol Renal Physiol ; 317(5): F1305-F1310, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31566429

RESUMO

We investigated the involvement of brain-derived neurotrophic factor (BDNF) in bladder and urethral dysfunction using spinal cord-injured mice. We evaluated bladder and urethral function of female mice with 4-wk spinal cord injury (SCI) by filling cystometry and electromyography (EMG) of the external urethral sphincter (EUS) under a conscious condition. Anti-BDNF antibodies (10 µg·kg-1·h-1) were administered in some mice for 1 wk before the evaluation. Bladder and spinal (L6-S1) BDNF protein levels were examined by ELISA. Transcript levels of transient receptor potential channels or acid-sensing ion channels (Asic) in L6-S1 dorsal root ganglia were evaluated by RT-PCR. Voided volume and voiding efficiency were significantly increased without any changes in nonvoiding contractions, and the duration of reduced EMG activity during the voiding phase was significantly prolonged in anti-BDNF antibody-treated SCI mice. Compared with spinal cord-intact mice, SCI mice showed increased concentrations of bladder and spinal BDNF. Anti-BDNF antibody treatment decreased bladder and spinal BDNF protein concentrations of SCI mice. Asic2 and Asic3 transcripts were significantly increased after SCI but decreased after anti-BDNF antibody administration. These results indicate that upregulated expression of bladder and spinal BDNF is involved in the emergence of inefficient voiding in SCI mice. Thus, BDNF-targeting treatment could be an effective modality for the treatment of voiding problems, including inefficient voiding and detrusor sphincter dyssynergia after SCI.


Assuntos
Anticorpos , Fator Neurotrófico Derivado do Encéfalo/antagonistas & inibidores , Traumatismos da Medula Espinal/complicações , Transtornos Urinários/etiologia , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/imunologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Feminino , Regulação da Expressão Gênica/imunologia , Camundongos , DNA Polimerase Dirigida por RNA , Reação em Cadeia da Polimerase em Tempo Real , Medula Espinal/metabolismo , Regulação para Cima , Bexiga Urinária/metabolismo
15.
BMC Complement Altern Med ; 19(1): 11, 2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30621666

RESUMO

BACKGROUND: Post-traumatic stress disorder (PTSD) is a disease associated with that the experience of traumatic stress. The traumatic experience results in the development of a prolonged stress response that causes impaired memory function and increased inflammation in the hippocampus. Currently, antidepressants are the only approved therapy for PTSD. However, the efficacy of antidepressants in the treatment of PTSD is marginal. The ethanol extract of Aralia continentalis (AC) is traditionally used in oriental medicine, and has been showed to possess pharmacological properties, including anti-inflammatory, anti-cancer, anti-atherosclerotic, and anti-diabetic effects. Nevertheless, the effects of AC on cognitive memory and its mechanism of action in PTSD remain unclear. Given the necessity of further treatment options for PTSD, we investigated the effect of AC on the spatial cognitive impairment caused by single prolonged stress (SPS) in a rat model of PTSD. METHODS: Male rats were treated with various intraperitoneal (i.p.) doses of AC for 21 consecutive days after inducing chronic stress with the SPS procedure. RESULTS: Cognitive impairment caused by SPS were inhibited after treatment with 100 mg/kg AC, as measured by the Morris water maze test and an object recognition test. Additionally, AC treatment significantly alleviated memory-related decreases in brain-derived neurotrophic factor (BDNF) mRNA and protein levels in the hippocampus. Our results suggest that AC significantly inhibited the cognitive deficits caused by SPS via increased expression of pro-inflammatory cytokines, including tumor necrosis factor-α and interleukin-6, in the rat brain. CONCLUSIONS: AC reversed the behavioral impairments and inflammation triggered by SPS-derived traumatic stress and should be further evaluated as a potential therapeutic drug for PTSD.


Assuntos
Anti-Inflamatórios/administração & dosagem , Aralia/química , Fator Neurotrófico Derivado do Encéfalo/genética , Disfunção Cognitiva/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Animais , Anti-Inflamatórios/isolamento & purificação , Fator Neurotrófico Derivado do Encéfalo/imunologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/imunologia , Disfunção Cognitiva/psicologia , Modelos Animais de Doenças , Humanos , Masculino , Aprendizagem em Labirinto , Extratos Vegetais/isolamento & purificação , Ratos , Ratos Sprague-Dawley , Transtornos de Estresse Pós-Traumáticos/genética , Transtornos de Estresse Pós-Traumáticos/imunologia , Transtornos de Estresse Pós-Traumáticos/psicologia
16.
J Neuroimmunol ; 328: 78-85, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30623801

RESUMO

The murine anti-CD52 antibody, an equivalent of the humanized antibody alemtuzumab, which is successfully used in the treatment of multiple sclerosis, was used to explore a potential neuroprotective effect driven by immune cell derived brain-derived neurotrophic factor (BDNF). Therefore, lineage specific constitutive knock-out mice with a BDNF deficiency in T cells and macrophages were used and compared to treated wildtype mice. Neither therapeutic nor preventive application of the murine anti-CD52 antibody in an animal model of multiple sclerosis, the MOG35-55 EAE, revealed a beneficial contribution of immune cell derived BDNF to the disease outcome. Furthermore, preventive application of the murine anti-CD52 antibody worsened the clinical EAE disease course and could only be overcome by a prolonged recovery phase after treatment and before disease induction.


Assuntos
Alemtuzumab/farmacologia , Fator Neurotrófico Derivado do Encéfalo/imunologia , Encefalomielite Autoimune Experimental/imunologia , Fatores Imunológicos/farmacologia , Animais , Encefalomielite Autoimune Experimental/patologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fármacos Neuroprotetores/farmacologia , Medula Espinal/imunologia , Medula Espinal/patologia , Linfócitos T/imunologia
17.
Food Funct ; 10(1): 244-249, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30547177

RESUMO

To investigate the effects and the underlying mechanisms of ginsenoside Rf in a surgically induced rat endometriosis model, endometriosis was constructed through homologous transplantation and the Wistar rats were further randomly classified into the sham group, the estradiol valerate (E2V) control group, the endometriosis group, and the ginsenoside Rf groups (1.0, 2.0 and 4.0 mg kg-1, respectively). After 7 days of treatment, the implant volume and writhing responses were recorded. Vascular endothelial growth factor (VEGF), inducible nitric oxide synthase (iNOS), interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α were analyzed using enzyme-linked immunosorbent assay (ELISA) and reverse transcription polymerase chain reaction (RT-PCR) assay. Brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinases (TrkB), and phosphate-c-AMP-responsive element binding protein (pCREB) were further measured. Compared with the endometriosis group, ginsenoside Rf could decrease the volume of the endometriotic implants and writhing responses. Furthermore, the expression levels of VEGF and inflammation-related iNOS, IL-6, IL-1ß, and TNF-α were significantly down-regulated in the ginsenoside Rf groups in a dose-dependent manner. The results also showed that ginsenoside Rf could decrease the expression of BDNF, TrkB, and pCREB in the endometriotic implants. The alleviation of endometriosis-associated dysmenorrhea and inflammation by ginsenoside Rf may be partially mediated by the BDNF-TrkB-CREB pathway.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/imunologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/imunologia , Dismenorreia/tratamento farmacológico , Endometriose/tratamento farmacológico , Ginsenosídeos/administração & dosagem , Receptor trkB/imunologia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Dismenorreia/genética , Dismenorreia/imunologia , Endometriose/genética , Endometriose/imunologia , Feminino , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Ratos , Ratos Wistar , Receptor trkB/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
18.
Neurosci Lett ; 692: 1-9, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30367955

RESUMO

Early-life infection has been shown to have profound effects on the brain and behavior across the lifespan, a phenomenon termed "early-life programming". Indeed, many neuropsychiatric disorders begin or have their origins early in life and have been linked to early-life immune activation (e.g. autism, ADHD, and schizophrenia). Furthermore, many of these disorders show a robust sex bias, with males having a higher risk of developing early-onset neurodevelopmental disorders. The concept of early-life programming is now well established, however, it is still unclear how such effects are initiated and then maintained across time to produce such a phenomenon. To begin to address this question, we examined changes in microglia, the immune cells of the brain, and peripheral immune cells in the hours immediately following early-life infection in male and female rats. We found that males showed a significant decrease in BDNF expression and females showed a significant increase in IL-6 expression in the cerebellum following E.coli infection on postnatal day 4; however, for most cytokines examined in the brain and in the periphery we were unable to identify any sex differences in the immune response, at least at the time points examined. Instead, neonatal infection with E.coli increased the expression of a number of cytokines in the brain of both males and females similarly including TNF-α, IL-1ß, and CD11b (a marker of microglia activation) in the hippocampus and, in the spleen, TNF-α and IL-1ß. We also found that protein levels of GRO-KC, MIP-1a, MCP1, IP-10, TNF-α, and IL-10 were elevated 8-hours postinfection, but this response was resolved by 24-hours. Lastly, we found that males have more thin microglia than females on P5, however, neonatal infection had no effect on any of the microglia morphologies we examined. These data show that sex differences in the acute immune response to neonatal infection are likely gene, region, and even time dependent. Future research should consider these factors in order to develop a comprehensive understanding of the immune response in males and females as these changes are likely the initiating agents that lead to the long-term, and often sex-specific, effects of early-life infection.


Assuntos
Cerebelo/imunologia , Infecções por Escherichia coli/imunologia , Hipocampo/imunologia , Microglia/imunologia , Caracteres Sexuais , Animais , Animais Recém-Nascidos , Fator Neurotrófico Derivado do Encéfalo/imunologia , Cerebelo/microbiologia , Feminino , Hipocampo/microbiologia , Inflamação/sangue , Inflamação/imunologia , Inflamação/microbiologia , Mediadores da Inflamação/sangue , Mediadores da Inflamação/imunologia , Interleucina-1beta/imunologia , Interleucina-6/imunologia , Masculino , Microglia/microbiologia , Fenótipo , Ratos Sprague-Dawley
19.
Molecules ; 23(8)2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-30042304

RESUMO

CB2 cannabinoid receptor (CB2R) gene is associated with depression. We investigated the gene-environment interaction between CB2R function and diverse stressors. First, anxiety-like behavior during chronic-mild-stress (CMS) was evaluated in C57BL/6JJmsSlc mice following treatment with CB2R agonist JWH015 or inverse-agonist AM630. Second, locomotor activity and anxiety-like behavior were measured following exposure to an immune poly I:C stressor. Gene expressions of HPA axis related molecules, Fkbp5, Nr3c1 and Crf and pro-inflammatory cytokine Il-1b, as well as Bdnf as a key neurotrophin that supports neuron health, function, and synaptic plasticity, were determined in hippocampus of Cnr2 knockout mice, as indicators of stressful environment. CMS-induced anxiety-like behavior was enhanced by AM630 and reduced by JWH015 and fluvoxamine. Poly I:C reduced locomotor activity and increased anxiety-like behavior, and these effects were pronounced in the heterozygote than in the wild type mice. Fkbp5 and Nr3c1 expression were lower in the Cnr2 heterozygotes than in the wild type mice with Poly I:C treatment. These findings indicate that interaction between CB2R gene and stressors increases the risk of depression-like behaviors that may be linked with neuro-immune crosstalk. Further studies in human subjects are necessary to determine the role of CB2R and environmental interaction in the development of depression.


Assuntos
Ansiedade/genética , Depressão/genética , Interação Gene-Ambiente , Sistema Hipotálamo-Hipofisário/imunologia , Sistema Hipófise-Suprarrenal/imunologia , Receptor CB2 de Canabinoide/genética , Animais , Ansiedade/induzido quimicamente , Ansiedade/imunologia , Ansiedade/fisiopatologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/imunologia , Agonistas de Receptores de Canabinoides/farmacologia , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/imunologia , Depressão/induzido quimicamente , Depressão/imunologia , Depressão/fisiopatologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Hipocampo/efeitos dos fármacos , Hipocampo/imunologia , Hipocampo/fisiopatologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/fisiopatologia , Fatores Imunológicos/administração & dosagem , Indóis/farmacologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/fisiopatologia , Poli I-C/administração & dosagem , Receptor CB2 de Canabinoide/deficiência , Receptor CB2 de Canabinoide/imunologia , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/imunologia , Transdução de Sinais , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/imunologia
20.
Biosens Bioelectron ; 116: 108-115, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-29860089

RESUMO

Brain-derived neurotrophic factor (BDNF) was detected in the extracellular matrix of neuronal cells using a dual probe immunosensor (DPI), where one of them was used as a working and another bioconjugate loading probe. The working probe was fabricated by covalently immobilizing capture anti-BDNF (Cap Ab) on the gold nanoparticles (AuNPs)/conducting polymer composite layer. The bioconjugate probe was modified by drop casting a bioconjugate particles composed of conducting polymer self-assembled AuNPs, immobilized with detection anti-BDNF (Det Ab) and toluidine blue O (TBO). Each sensor layer was characterized using the surface analysis and electrochemical methods. Two modified probes were precisely faced each other to form a microfluidic channel structure and the gap between inside modified surfaces was about 19 µm. At optimized conditions, the DPI showed a linear dynamic range from 4.0 to 600.0 pg/ml with a detection limit of 1.5 ±â€¯0.012 pg/ml. Interference effect of IgG, arginine, glutamine, serine, albumin, and fibrinogene were examined and stability of the developed biosensor was also investigated. The reliability of the DPI sensor was evaluated by monitoring the extracellular release of BDNF using exogenic activators (ethanol, K+, and nicotine) in neuronal and non-neuronal cells. In addition, the effect of nicotine onto neuroblastoma cancer cells (SH-SY5Y) was studied in detail.


Assuntos
Técnicas Biossensoriais , Fator Neurotrófico Derivado do Encéfalo/análise , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Imunoensaio , Nicotina/farmacologia , Animais , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Fator Neurotrófico Derivado do Encéfalo/imunologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Técnicas Eletroquímicas , Ouro/química , Humanos , Nanopartículas Metálicas/química , Nanocompostos/química , Neurônios/efeitos dos fármacos , Polímeros/química , Ratos , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...