Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.118
Filtrar
1.
Stem Cell Res Ther ; 15(1): 200, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971770

RESUMO

BACKGROUND: Neural stem cell (NSC) proliferation and differentiation in the mammalian brain decreases to minimal levels postnatally. Nevertheless, neurogenic niches persist in the adult cortex and hippocampus in rodents, primates and humans, with adult NSC differentiation sharing key regulatory mechanisms with development. Adult neurogenesis impairments have been linked to Alzheimer's disease (AD) pathology. Addressing these impairments by using neurotrophic factors is a promising new avenue for therapeutic intervention based on neurogenesis. However, this possibility has been hindered by technical difficulties of using in-vivo models to conduct screens, including working with scarce NSCs in the adult brain and differences between human and mouse models or ethical limitations. METHODS: Here, we use a combination of mouse and human stem cell models for comprehensive in-vitro characterization of a novel neurogenic compound, focusing on the brain-derived neurotrophic factor (BDNF) pathway. The ability of ENT-A011, a steroidal dehydroepiandrosterone derivative, to activate the tyrosine receptor kinase B (TrkB) receptor was tested through western blotting in NIH-3T3 cells and its neurogenic and neuroprotective action were assessed through proliferation, cell death and Amyloid-ß (Aß) toxicity assays in mouse primary adult hippocampal NSCs, mouse embryonic cortical NSCs and neural progenitor cells (NPCs) differentiated from three human induced pluripotent stem cell lines from healthy and AD donors. RNA-seq profiling was used to assess if the compound acts through the same gene network as BDNF in human NPCs. RESULTS: ENT-A011 was able to increase proliferation of mouse primary adult hippocampal NSCs and embryonic cortical NSCs, in the absence of EGF/FGF, while reducing Aß-induced cell death, acting selectively through TrkB activation. The compound was able to increase astrocytic gene markers involved in NSC maintenance, protect hippocampal neurons from Αß toxicity and prevent synapse loss after Aß treatment. ENT-A011 successfully induces proliferation and prevents cell death after Aß toxicity in human NPCs, acting through a core gene network shared with BDNF as shown through RNA-seq. CONCLUSIONS: Our work characterizes a novel BDNF mimetic with preferable pharmacological properties and neurogenic and neuroprotective actions in Alzheimer's disease via stem cell-based screening, demonstrating the promise of stem cell systems for short-listing competitive candidates for further testing.


Assuntos
Doença de Alzheimer , Células-Tronco Neurais , Neurogênese , Fármacos Neuroprotetores , Receptor trkB , Animais , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Camundongos , Neurogênese/efeitos dos fármacos , Receptor trkB/metabolismo , Receptor trkB/agonistas , Receptor trkB/genética , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Fármacos Neuroprotetores/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo
2.
Brain Behav ; 14(7): e3618, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39010692

RESUMO

BACKGROUND: High-frequency repetitive transcranial magnetic stimulation (HF-rTMS) has been found to ameliorate cognitive impairment. However, the effects of HF-rTMS remain unknown in chronic cerebral hypoperfusion (CCH). AIM: To investigate the effects of HF-rTMS on cognitive improvement and its potential mechanisms in CCH mice. MATERIALS AND METHODS: Daily HF-rTMS therapy was delivered after bilateral carotid stenosis (BCAS) and continued for 14 days. The mice were randomly assigned to three groups: the sham group, the model group, and the HF-rTMS group. The Y maze and the new object recognition test were used to assess cognitive function. The expressions of MAP-2, synapsis, Myelin basic protein(MBP), and brain-derived growth factors (BDNF) were analyzed by immunofluorescence staining and western blot to evaluate neuronal plasticity and white matter myelin regeneration. Nissl staining and the expression of caspase-3, Bax, and Bcl-2 were used to observe neuronal apoptosis. In addition, the activation of microglia and astrocytes were evaluated by fluorescence staining. The inflammation levels of IL-1ß, IL-6, and Tumor Necrosis Factor(TNF)-α were detected by qPCR in the hippocampus of mice in each group. RESULTS: Via behavioral tests, the BCAS mice showed reduced a rate of new object preference and decreased a rate of spontaneous alternations, while HF-rTMS significantly improved hippocampal learning and memory deficits. In addition, the mice in the model group showed decreased levels of MAP-2, synapsis, MBP, and BDNF, while HF-rTMS treatment reversed these effects. As expected, activated microglia and astrocytes increased in the model group, but HF-rTMS treatment suppressed these changes. HF-rTMS decreased BCAS-induced neuronal apoptosis and the expression of pro-apoptotic protein (Caspase-3 and Bax) and increased the expression of anti-apoptotic protein (Bcl-2). In addition, HF-rTMS inhibited the expression of inflammatory cytokines (IL-1ß, IL-6, and TNF-α). CONCLUSIONS: HF-rTMS alleviates cognitive impairment in CCH mice by enhancing neuronal plasticity and inhibiting inflammation, thus serving as a potential method for vascular cognitive impairment.


Assuntos
Transtornos da Memória , Doenças Neuroinflamatórias , Estimulação Magnética Transcraniana , Animais , Estimulação Magnética Transcraniana/métodos , Camundongos , Masculino , Transtornos da Memória/terapia , Transtornos da Memória/etiologia , Transtornos da Memória/fisiopatologia , Doenças Neuroinflamatórias/terapia , Hipocampo/metabolismo , Modelos Animais de Doenças , Estenose das Carótidas/terapia , Estenose das Carótidas/fisiopatologia , Camundongos Endogâmicos C57BL , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Microglia/metabolismo , Plasticidade Neuronal/fisiologia , Apoptose , Astrócitos/metabolismo , Disfunção Cognitiva/terapia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia
3.
J Mol Neurosci ; 74(3): 61, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954245

RESUMO

Lifestyle influences physical and cognitive development during the period of adolescence greatly. The most important of these lifestyle factors are diet and stress. Therefore, the aim of this study was to investigate the impact of high fat diet (HFD) and chronic mild stress on cognitive function and anxiety-like behaviors in young rats and to study the role of caffeic acid as a potential treatment for anxiety and cognitive dysfunction. Forty rats were assigned into 4 groups: control, HFD, HFD + stress, and caffeic acid-treated group. Rats were sacrificed after neurobehavioral testing. We detected memory impairment and anxiety-like behavior in rats which were more exaggerated in stressed rats. Alongside the behavioral changes, there were biochemical and histological changes. HFD and/or stress decreased hippocampal brain-derived neurotrophic factor (BDNF) levels and induced oxidative and inflammatory changes in the hippocampus. In addition, they suppressed Wnt/ß-catenin pathway which was associated with activation of glycogen synthase kinase 3ß (GSK3ß). HFD and stress increased arginase 1 and inducible nitric oxide synthase (iNOS) levels as well. These disturbances were found to be aggravated in stressed rats than HFD group. However, caffeic acid was able to reverse these deteriorations leading to memory improvement and ameliorating anxiety-like behavior. So, the current study highlights an important neuroprotective role for caffeic acid that may guard against induction of cognitive dysfunction and anxiety disorders in adolescents who are exposed to HFD and/or stress.


Assuntos
Ansiedade , Fator Neurotrófico Derivado do Encéfalo , Ácidos Cafeicos , Dieta Hiperlipídica , Glicogênio Sintase Quinase 3 beta , Hipocampo , Fármacos Neuroprotetores , Estresse Psicológico , Animais , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/uso terapêutico , Ratos , Glicogênio Sintase Quinase 3 beta/metabolismo , Ansiedade/tratamento farmacológico , Ansiedade/etiologia , Masculino , Dieta Hiperlipídica/efeitos adversos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Estresse Psicológico/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ratos Wistar , beta Catenina/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Cognição/efeitos dos fármacos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/prevenção & controle , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Óxido Nítrico Sintase Tipo II/metabolismo
4.
J Ovarian Res ; 17(1): 141, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982490

RESUMO

INTRODUCTION: Premature ovarian insufficiency (POI) is one of the causes of female infertility. Unexplained POI is increasingly affecting women in their reproductive years. However, the etiology of POI is diverse and remains elusive. We and others have shown that brain-derived neurotrophic factor (BDNF) plays an important role in adult ovarian function. Here, we report on a novel role of BDNF in the Developmental Origins of POI. METHODS: Placental BDNF knockout mice were created using CRISPR/CAS9. Homozygous knockout (cKO(HO)) mice didn't survive, while heterozygous knockout (cKO(HE)) mice did. BDNF reduction in cKO(HE) mice was confirmed via immunohistochemistry and Western blots. Ovaries were collected from cKO(HE) mice at various ages, analyzing ovarian metrics, FSH expression, and litter sizes. In one-month-old mice, oocyte numbers were assessed using super-ovulation, and oocyte gene expression was analyzed with smart RNAseq. Ovaries of P7 mice were studied with SEM, and gene expression was confirmed with RT-qPCR. Alkaline phosphatase staining at E11.5 and immunofluorescence for cyclinD1 assessed germ cell number and cell proliferation. RESULTS: cKO(HE) mice had decreased ovarian function and litter size in adulthood. They were insensitive to ovulation induction drugs manifested by lower oocyte release after superovulation in one-month-old cKO(HE) mice. The transcriptome and SEM results indicate that mitochondria-mediated cell death or aging might occur in cKO(HE) ovaries. Decreased placental BDNF led to diminished primordial germ cell proliferation at E11.5 and ovarian reserve which may underlie POI in adulthood. CONCLUSION: The current results showed decreased placental BDNF diminished primordial germ cell proliferation in female fetuses during pregnancy and POI in adulthood. Our findings can provide insights into understanding the underlying mechanisms of POI.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Camundongos Knockout , Placenta , Insuficiência Ovariana Primária , Animais , Insuficiência Ovariana Primária/metabolismo , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Feminino , Camundongos , Gravidez , Placenta/metabolismo , Ovário/metabolismo , Ovário/patologia , Modelos Animais de Doenças , Oócitos/metabolismo
5.
Sci Rep ; 14(1): 15996, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987609

RESUMO

Alzheimer's disease (AD) is a neurological condition that is connected with a decline in a person's memory as well as their cognitive ability. One of the key topics of AD research has been the exploration of metabolic causes. We investigated the effects of treadmill exercise and intranasal insulin on learning and memory impairment and the expression of IGF1, BDNF, and GLUT4 in hypothalamus. The animals were put into 9 groups at random. In this study, we examined the impact of insulin on spatial memory in male Wistar rats and analyzed the effects of a 4-week pretreatment of moderate treadmill exercise and insulin on the mechanisms of improved hypothalamic glucose metabolism through changes in gene and protein expression of IGF1, BDNF, and GLUT4. We discovered that rat given Aß25-35 had impaired spatial learning and memory, which was accompanied by higher levels of Aß plaque burden in the hippocampus and lower levels of IGF1, BDNF, and GLUT4 mRNA and protein expression in the hypothalamus. Additionally, the administration of exercise training and intranasal insulin results in the enhancement of spatial learning and memory impairments, the reduction of plaque burden in the hippocampus, and the enhancement of the expression of IGF1, BDNF, and GLUT4 in the hypothalamus of rats that were treated with Aß25-35. Our results show that the improvement of learning and spatial memory due to the improvement of metabolism and upregulation of the IGF1, BDNF, and GLUT4 pathways can be affected by pretreatment exercise and intranasal insulin.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Transportador de Glucose Tipo 4 , Hipotálamo , Fator de Crescimento Insulin-Like I , Insulina , Condicionamento Físico Animal , Ratos Wistar , Transdução de Sinais , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/terapia , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Insulina/metabolismo , Ratos , Hipotálamo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 4/genética , Peptídeos beta-Amiloides/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Administração Intranasal , Fragmentos de Peptídeos , Memória Espacial/efeitos dos fármacos , Aprendizagem Espacial/efeitos dos fármacos
6.
Brain Behav ; 14(7): e3614, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38988101

RESUMO

PURPOSE: Levothyroxine (LEV) monotherapy cannot completely improve cognitive and behavioral impairments induced by hypothyroidism, whereas a combination therapy of exercise and LEV may ameliorate these deficits. This study aimed to determine the effects of mild-intensity forced exercise and LEV treatment on the anxiety profile and cognitive functions in male offspring of hypothyroid dams. METHOD: Twenty-four female rats (mothers) were randomly divided into sham (healthy) and hypothyroidism groups and then placed with male rats to mate. The presence of vaginal plaque confirmed pregnancy (gestational day, GD 0). 6-propyl-2-thiouracil (PTU, 100 ppm) was added to the drinking water of the hypothyroidism group from GD 6 to the 21st postnatal day (PND). The sham group received tap water. On PND 21, serum T4 levels of mothers, and 10 pups were measured to confirm hypothyroidism. Sixty-four male pups were left undisturbed for 30 days and then were divided into eight groups that received saline or LEV (50 µg/kg, i.p.) with or without forced mild-intensity exercise. After 14 days of interventions, anxiety-like behaviors, spatial learning and memory, and hippocampal brain-derived neurotrophic factor (BDNF) levels were evaluated. FINDING: A pre and postnatal PTU-induced model of hypothyroidism increased anxiety-like behaviors, impaired spatial learning and memory, and decreased hippocampal BDNF levels in male offspring rats. LEV alone increased BDNF levels and improved spatial learning. Exercise alone increased BDNF levels, improved spatial learning and memory, and decreased anxiety-like behaviors. Exercise plus LEV more effectively improved anxiety-like behaviors and spatial learning than exercise or LEV alone. CONCLUSION: Practically, these pre-clinical findings highlight the importance of the combination of exercise and LEV regimen in treating patients with hyperthyroidism.


Assuntos
Ansiedade , Fator Neurotrófico Derivado do Encéfalo , Hipocampo , Hipotireoidismo , Condicionamento Físico Animal , Tiroxina , Animais , Hipotireoidismo/tratamento farmacológico , Hipotireoidismo/metabolismo , Hipotireoidismo/terapia , Hipotireoidismo/fisiopatologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Masculino , Tiroxina/farmacologia , Tiroxina/administração & dosagem , Ratos , Ansiedade/terapia , Ansiedade/etiologia , Ansiedade/tratamento farmacológico , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Feminino , Condicionamento Físico Animal/fisiologia , Gravidez , Ratos Wistar , Efeitos Tardios da Exposição Pré-Natal/terapia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Aprendizagem Espacial/efeitos dos fármacos , Aprendizagem Espacial/fisiologia , Terapia Combinada , Propiltiouracila/farmacologia , Propiltiouracila/administração & dosagem
7.
CNS Neurosci Ther ; 30(7): e14855, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38992889

RESUMO

BACKGROUND: G1 is a specific agonist of G protein-coupled estrogen receptor 1 (GPER1), which binds and activates GPER1 to exert various neurological functions. However, the preventive effect of G1 on post-traumatic stress disorder (PTSD) and its mechanisms are unclear. OBJECTIVE: To evaluate the protective effect of G1 against synaptic and mitochondrial impairments and to investigate the mechanism of G1 to improve PTSD from brain-derived neurotrophic factor (BDNF)/tyrosine kinase receptor B (TrkB) signaling. METHODS: This study initially detected GPER1 expression in the hippocampus of single prolonged stress (SPS) mice, utilizing both Western blot and immunofluorescence staining. Subsequently, the effects of G1 on PTSD-like behaviors, synaptic, and mitochondrial functions in SPS mice were investigated. Additionally, the involvement of BDNF/TrkB signaling involved in the protection was further confirmed using GPER1 antagonist and TrkB inhibitor, respectively. RESULTS: The expression of GPER1 was reduced in the hippocampus of SPS mice, and G1 treatment given for 14 consecutive days significantly improved PTSD-like behaviors in SPS mice compared with model group. Electrophysiological local field potential (LFP) results showed that G1 administration for 14 consecutive days could reverse the abnormal changes in the gamma oscillation in the CA1 region of SPS mice. Meanwhile, G1 administration for 14 consecutive days could significantly improve the abnormal expression of synaptic proteins, increase the expression of mitochondria-related proteins, increase the number of synapses in the hippocampus, and ameliorate the damage of hippocampal mitochondrial structure in SPS mice. In addition, G15 (GPER1 inhibitor) and ANA-12 (TrkB inhibitor) blocked the ameliorative effects of G1 on PTSD-like behaviors and aberrant expression of hippocampal synaptic and mitochondrial proteins in SPS mice and inhibited the reparative effects of G1 on structural damage to hippocampal mitochondria, respectively. CONCLUSION: G1 improved PTSD-like behaviors in SPS mice, possibly by increasing hippocampal GPER1 expression and promoting BDNF/TrkB signaling to repair synaptic and mitochondrial functional impairments. This study would provide critical mechanism for the prevention and treatment of PTSD.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Hipocampo , Mitocôndrias , Receptores de Estrogênio , Receptores Acoplados a Proteínas G , Transtornos de Estresse Pós-Traumáticos , Sinapses , Animais , Transtornos de Estresse Pós-Traumáticos/metabolismo , Transtornos de Estresse Pós-Traumáticos/prevenção & controle , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Camundongos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Receptores de Estrogênio/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Receptor trkB/metabolismo , Receptor trkB/antagonistas & inibidores , Camundongos Endogâmicos C57BL
8.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000303

RESUMO

Two cases of complicated pain exist: posterior screw fixation and myofascial pain. Intramuscular pulsed radiofrequency (PRF) may be an alternative treatment for such patients. This is a two-stage animal study. In the first stage, two muscle groups and two nerve groups were subdivided into a high-temperature group with PRF at 58 °C and a regular temperature with PRF at 42 °C in rats. In the second stage, two nerve injury groups were subdivided into nerve injury with PRF 42 °C on the sciatic nerve and muscle. Blood and spinal cord samples were collected. In the first stage, the immunohistochemical analysis showed that PRF upregulated brain-derived neurotrophic factor (BDNF) in the spinal cord in both groups of rats. In the second stage, the immunohistochemical analysis showed significant BDNF and tropomyosin receptor kinase B (TrkB) expression within the spinal cord after PRF in muscles and nerves after nerve injury. The blood biomarkers showed a significant increase in BDNF levels. PRF in the muscle in rats could upregulate BDNF-TrkB in the spinal cord, similar to PRF on the sciatica nerve for pain relief in rats. PRF could be considered clinically for patients with complicated pain and this study also demonstrated the role of BDNF in pain modulation. The optimal temperature for PRF was 42 °C.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Tratamento por Radiofrequência Pulsada , Receptor trkB , Medula Espinal , Regulação para Cima , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptor trkB/metabolismo , Ratos , Medula Espinal/metabolismo , Tratamento por Radiofrequência Pulsada/métodos , Masculino , Ratos Sprague-Dawley , Manejo da Dor/métodos , Nervo Isquiático/metabolismo , Nervo Isquiático/lesões , Dor/metabolismo , Dor/etiologia
9.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000543

RESUMO

Human individual differences in brain cytochrome P450 (CYP) metabolism, including induction, inhibition, and genetic variation, may influence brain sensitivity to neurotoxins and thus participate in the onset of neurodegenerative diseases. The aim of this study was to explore the modulation of CYPs in neuronal cells. The experimental approach was focused on differentiating human neuroblastoma SH-SY5Y cells into a phenotype resembling mature dopamine neurons and investigating the effects of specific CYP isoform induction. The results demonstrated that the differentiation protocols using retinoic acid followed by phorbol esters or brain-derived neurotrophic factor successfully generated SH-SY5Y cells with morphological neuronal characteristics and increased neuronal markers (NeuN, synaptophysin, ß-tubulin III, and MAO-B). qRT-PCR and Western blot analysis showed that expression of the CYP 1A1, 3A4, 2D6, and 2E1 isoforms was detectable in undifferentiated cells, with subsequent increases in CYP 2E1, 2D6, and 1A1 following differentiation. Further increases in the 1A1, 2D6, and 2E1 isoforms following ß-naphthoflavone treatment and 1A1 and 2D6 isoforms following ethanol treatment were evident. These results demonstrate that CYP isoforms can be modulated in SH-SY5Y cells and suggest their potential as an experimental model to investigate the role of CYPs in neuronal processes involved in the development of neurodegenerative diseases.


Assuntos
Diferenciação Celular , Sistema Enzimático do Citocromo P-450 , Doenças Neurodegenerativas , Humanos , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Linhagem Celular Tumoral , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Tretinoína/farmacologia , Tretinoína/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neuroblastoma/genética , Isoenzimas/metabolismo , Isoenzimas/genética , Neurônios Dopaminérgicos/metabolismo , Neurônios/metabolismo
10.
PLoS One ; 19(7): e0305358, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008492

RESUMO

BACKGROUND: Huntington's disease (HD) is an extremely harmful autosomal inherited neurodegenerative disease. Motor dysfunction, mental disorder, and cognitive deficits are the characteristic features of this disease. The current study examined whether 6-shogaol has a protective effect against 3-Nitropropionic Acid (3-NPA)-induced HD in rats. METHODS: A total of thirty male Wistar rats received 6-shogaol (10 and 20 mg/kg, per oral) an hour before injection of 3-NPA (10 mg/kg i.p.) for 15 days. Behavioral tests were performed, including narrow beam walk, rotarod test, and grip strength test. Biochemical tests promoting oxidative stress were evaluated [superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT) and malondialdehyde (MDA)], including changes to neurotransmitters serotonin (5-HT), dopamine (DA), norepinephrine (NE), homovanillic acid (HVA), (3,4-dihydroxyphenylacetic acid (DOPAC), γ-aminobutyric acid (GABA), and 5-hydroxy indole acetic acid (5-HIAA), nuclear factor kappa-B (NF-κB), tumor necrosis factor-α (TNF-α), interleukins-1ß (IL-1ß), IL-6, brain-derived neurotrophic factor (BDNF), and nuclear factor erythroid 2-related factor 2 (Nrf2). The 6-shogaol was docked to the active site of TNF-α (2AZ5), NF-κB (1SVC), BDNF) [1B8M], and Nrf2 [5FZN] proteins using AutoDock tools. RESULTS: The 6-shogaol group significantly improved behavioral activity over the 3-NPA-injected control rats. Moreover, 3-NPA-induced significantly altered neurotransmitters, biochemical and neuroinflammatory indices, which could efficiently be reversed by 6-shogaol. The 6-shogaol showed favorable negative binding energies at -9.271 (BDNF) kcal/mol. CONCLUSIONS: The present investigation demonstrated the neuroprotective effects of 6-shogaol in an experimental animal paradigm against 3-NPA-induced HD in rats. The suggested mechanism is supported by immunohistochemical analysis and western blots, although more research is necessary for definite confirmation.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Catecóis , Citocinas , Doença de Huntington , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2 , NF-kappa B , Nitrocompostos , Propionatos , Ratos Wistar , Animais , Doença de Huntington/metabolismo , Doença de Huntington/induzido quimicamente , Doença de Huntington/tratamento farmacológico , Propionatos/farmacologia , Masculino , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ratos , NF-kappa B/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Catecóis/farmacologia , Catecóis/química , Citocinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia
11.
Biomed Res ; 45(4): 163-172, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39010192

RESUMO

Exercise training increases brain-derived neurotrophic factor (BDNF) expression and improves cognitive function. However, the dynamics of BDNF during inactivity and the effects of exercise intervention on BDNF levels have rarely been examined. Therefore, we aimed to examine changes in serum, skeletal muscle, and brain BDNF levels under these conditions. Mice were divided into control (Co), cast immobilization (CI), reloading (RL), and exercise (Ex) groups. Muscle atrophy was induced by cast immobilization for 2 weeks in the CI, RL, and Ex groups. After cast removal, the RL and Ex groups underwent regrounding and treadmill exercise, respectively, for 2 weeks. Serum, skeletal muscle, and brain BDNF levels showed a similar decreasing trend in the CI group, recovery in the RL group, and a further increase in the Ex group compared with those in the Co group. This indicates that BDNF levels change in parallel with the degree of activity. However, the magnitude of variation differed among the tissues in the order of serum > skeletal muscle > brain tissue. These results suggest that different mechanisms in different tissues regulate BDNF expression. BDNF could potentially act as an objective measure of the impact of both inactivity and exercise-based interventions.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Encéfalo , Músculo Esquelético , Condicionamento Físico Animal , Animais , Masculino , Camundongos , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/sangue , Cinética , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/terapia
12.
Brain Behav ; 14(7): e3605, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38956819

RESUMO

BACKGROUND: High-frequency repeated transcranial magnetic stimulation (rTMS) stimulating the primary motor cortex (M1) is an alternative, adjunctive therapy for improving the motor symptoms of Parkinson's disease (PD). However, whether the high frequency of rTMS positively correlates to the improvement of motor symptoms of PD is still undecided. By controlling for other parameters, a disease animal model may be useful to compare the neuroprotective effects of different high frequencies of rTMS. OBJECTIVE: The current exploratory study was designed to compare the protective effects of four common high frequencies of rTMS (5, 10, 15, and 20 Hz) and iTBS (a special form of high-frequency rTMS) and explore the optimal high-frequency rTMS on an animal PD model. METHODS: Following high frequencies of rTMS application (twice a week for 5 weeks) in a MPTP/probenecid-induced chronic PD model, the effects of the five protocols on motor behavior as well as dopaminergic neuron degeneration levels were identified. The underlying molecular mechanisms were further explored. RESULTS: We found that all the high frequencies of rTMS had protective effects on the motor functions of PD models to varying degrees. Among them, the 10, 15, and 20 Hz rTMS interventions induced comparable preservation of motor function through the protection of nigrostriatal dopamine neurons. The enhancement of brain-derived neurotrophic factor (BDNF), dopamine transporter (DAT), and vesicular monoamine transporter 2 (VMAT-2) and the suppression of TNF-α and IL-1ß in the nigrostriatum were involved in the process. The efficacy of iTBS was inferior to that of the above three protocols. The effect of 5 Hz rTMS protocol was weakest. CONCLUSIONS: Combined with the results of the present study and the possible side effects induced by rTMS, we concluded that 10 Hz might be the optimal stimulation frequency for preserving the motor functions of PD models using rTMS treatment.


Assuntos
Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Transtornos Parkinsonianos , Probenecid , Estimulação Magnética Transcraniana , Animais , Estimulação Magnética Transcraniana/métodos , Camundongos , Masculino , Probenecid/farmacologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/terapia , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/fisiopatologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Córtex Motor/metabolismo , Córtex Motor/fisiopatologia , Neurônios Dopaminérgicos/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Interleucina-1beta/metabolismo , Substância Negra/metabolismo , Corpo Estriado/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Intoxicação por MPTP/terapia , Intoxicação por MPTP/prevenção & controle , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/fisiopatologia , Atividade Motora/fisiologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia
13.
Transl Psychiatry ; 14(1): 294, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025836

RESUMO

This systematic review addresses the complex nature of Panic Disorder (PD), characterized by recurrent episodes of acute fear, with a focus on updating and consolidating knowledge regarding neurochemical, genetic, and epigenetic factors associated with PD. Utilizing the PRISMA methodology, 33 original peer-reviewed studies were identified, comprising 6 studies related to human neurochemicals, 10 related to human genetic or epigenetic alterations, and 17 animal studies. The review reveals patterns of altered expression in various biological systems, including neurotransmission, the Hypothalamic-Pituitary-Adrenal (HPA) axis, neuroplasticity, and genetic and epigenetic factors leading to neuroanatomical modifications. Noteworthy findings include lower receptor binding of GABAA and serotonin neurotransmitters in the amygdala. The involvement of orexin (ORX) neurons in the dorsomedial/perifornical region in triggering panic reactions is highlighted, with systemic ORX-1 receptor antagonists blocking panic responses. Elevated Interleukin 6 and leptin levels in PD patients suggest potential connections between stress-induced inflammatory changes and PD. Brain-derived neurotrophic factor (BDNF) and tyrosine receptor kinase B (TrkB) signaling are implicated in panic-like responses, particularly in the dorsal periaqueductal gray (dPAG), where BDNF's panicolytic-like effects operate through GABAA-dependent mechanisms. GABAergic neurons' inhibitory influence on dorsomedial and posterior hypothalamus nuclei is identified, potentially reducing the excitability of neurons involved in panic-like responses. The dorsomedial hypothalamus (DMH) is highlighted as a specific hypothalamic nucleus relevant to the genesis and maintenance of panic disorder. Altered brain lactate and glutamate concentrations, along with identified genetic polymorphisms linked to PD, further contribute to the intricate neurochemical landscape associated with the disorder. The review underscores the potential impact of neurochemical, genetic, and epigenetic factors on the development and expression of PD. The comprehensive insights provided by this systematic review contribute to advancing our understanding of the multifaceted nature of Panic Disorder and pave the way for targeted therapeutic strategies.


Assuntos
Sistema Hipotálamo-Hipofisário , Transtorno de Pânico , Humanos , Transtorno de Pânico/genética , Transtorno de Pânico/metabolismo , Animais , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Orexinas/metabolismo , Orexinas/genética , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Epigênese Genética
14.
Cell Physiol Biochem ; 58(4): 292-310, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973197

RESUMO

BACKGROUND/AIMS: Tactile perception relies on mechanoreceptors and nerve fibers, including c-fibers, Aß-fibers and Aδ-fibers. Schwann cells (SCs) play a crucial role in supporting nerve fibers, with non-myelinating SCs enwrapping c-fibers and myelinating SCs ensheathing Aß and Aδ fibers. Recent research has unveiled new functions for cutaneous sensory SCs, highlighting the involvement of nociceptive SCs in pain perception and Meissner corpuscle SCs in tactile sensation. Furthermore, Piezo2, previously associated with Merkel cell tactile sensitivity, has been identified in SCs. The goal of this study was to investigate the channels implicated in SC mechanosensitivity and the release process of neurotrophic factor secretion. METHODS: Immortalized IFRS1 SCs and human primary SCs generated two distinct subtypes of SCs: undifferentiated and differentiated SCs. Quantitative PCR was employed to evaluate the expression of differentiation markers and mechanosensitive channels, including TRP channels (TRPV4, TRPM7 and TRPA1) and Piezo channels (Piezo1 and Piezo2). To validate the functionality of specific mechanosensitive channels, Ca2+ imaging and electronic cell sizing experiments were conducted under hypotonic conditions, and inhibitors and siRNAs were used. Protein expression was assessed by Western blotting and immunostaining. Additionally, secretome analysis was performed to evaluate the release of neurotrophic factors in response to hypotonic stimulation, with BDNF, a representative trophic factor, quantified using ELISA. RESULTS: Induction of differentiation increased Piezo2 mRNA expression levels both in IFRS1 and in human primary SCs. Both cell types were responsive to hypotonic solutions, with differentiated SCs displaying a more pronounced response. Gd3+ and FM1-43 effectively inhibited hypotonicity-induced Ca2+ transients in differentiated SCs, implicating Piezo2 channels. Conversely, inhibitors of Piezo1 and TRPM7 (Dooku1 and NS8593, respectively) had no discernible impact. Moreover, Piezo2 in differentiated SCs appeared to participate in regulatory volume decreases (RVD) after cell swelling induced by hypotonic stimulation. A Piezo2 deficiency correlated with reduced RVD and prolonged cell swelling, leading to heightened release of the neurotrophic factor BDNF by upregulating the function of endogenously expressed Ca2+-permeable TRPV4. CONCLUSION: Our study unveils the mechanosensitivity of SCs and implicates Piezo2 channels in the release of neurotrophic factors from SCs. These results suggest that Piezo2 may contribute to RVD, thereby maintaining cellular homeostasis, and may also serve as a negative regulator of neurotrophic factor release. These findings underscore the need for further investigation into the role of Piezo2 in SC function and neurotrophic regulation.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Tamanho Celular , Canais Iônicos , Células de Schwann , Células de Schwann/metabolismo , Células de Schwann/citologia , Humanos , Canais Iônicos/metabolismo , Tamanho Celular/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , RNA Interferente Pequeno/metabolismo , Diferenciação Celular , Células Cultivadas , Interferência de RNA , Cálcio/metabolismo , Canal de Cátion TRPA1/metabolismo , Canal de Cátion TRPA1/genética , Mecanotransdução Celular
15.
CNS Neurosci Ther ; 30(7): e14798, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39015099

RESUMO

BACKGROUND: Sleep deprivation (SD) is a growing global health problem with many deleterious effects, such as cognitive impairment. Microglia activation-induced neuroinflammation may be an essential factor in this. Propofol has been shown to clear sleep debt after SD in rats. This study aims to evaluate the effects of propofol-induced sleep on ameliorating sleep quality impairment and cognitive decline after 48 h SD. METHODS: Almost 8-12-week-old rats were placed in the SD system for 48 h of natural sleep or continuous SD. Afterwards, rats received propofol (20 mg·kg-1·h-1, 6 h) via the tail or slept naturally. The Morris water maze (MWM) and Y-maze test assessed spatial learning and memory abilities. Rat EEG/EMG monitored sleep. The expression of brain and muscle Arnt-like protein 1 (BMAL1), brain-derived neurotrophic factor (BDNF) in the hippocampus and BMAL1 in the hypothalamus were assessed by western blot. Enzyme-linked immunosorbent assay detected IL-6, IL-1ß, arginase 1 (Arg1), and IL-10 levels in the hippocampus. Immunofluorescence was used to determine microglia expression as well as morphological changes. RESULTS: Compared to the control group, the sleep-deprived rats showed poor cognitive performance on both the MWM test and the Y-maze test, accompanied by disturbances in sleep structure, including increased total sleep time, and increased time spent and delta power in non-rapid eye movement sleep. In addition, SD induces abnormal expression of the circadian rhythm protein BMAL1, activates microglia, and causes neuroinflammation and nerve damage. Propofol reversed these changes and saved sleep and cognitive impairment. Furthermore, propofol treatment significantly reduced hippocampal IL-1ß and IL-6 levels, increased BDNF, Arg1, and IL-10 levels, and switched microglia surface markers from the inflammatory M1 type to the anti-inflammatory M2 type. CONCLUSION: Propofol reduces SD-induced cognitive impairment and circadian rhythm disruption, possibly by lowering neuronal inflammation and switching the microglia phenotype from an M1 to an M2 activated state, thus exerting neuroprotective effects.


Assuntos
Fatores de Transcrição ARNTL , Disfunção Cognitiva , Aprendizagem em Labirinto , Microglia , Propofol , Ratos Sprague-Dawley , Privação do Sono , Animais , Privação do Sono/complicações , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fatores de Transcrição ARNTL/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/biossíntese , Masculino , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Ratos , Propofol/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Sono/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo
16.
Food Chem Toxicol ; 190: 114814, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876379

RESUMO

Lead (Pb) is a common environmental neurotoxicant that causes behavioral impairments in both rodents and humans. Isochlorogenic acid A (ICAA), a phenolic acid found in a variety of natural sources such as tea, fruits, vegetables, coffee, plant-based food products, and various medicinal plants, exerts multiple effects, including protective effects on the lungs, livers, and intestines. The objective of this study was to investigate the potential neuroprotective effects of ICAA against Pb-induced neurotoxicity in ICR mice. The results indicate that ICAA attenuates Pb-induced anxiety-like behaviors. ICAA reduced neuroinflammation, ferroptosis, and oxidative stress caused by Pb. ICAA successfully mitigated the Pb-induced deficits in the cholinergic system in the brain through the reduction of ACH levels and the enhancement of AChE and BChE activities. ICAA significantly reduced the levels of ferrous iron and MDA in the brain and prevented decreases in GSH, SOD, and GPx activity. Immunofluorescence analysis demonstrated that ICAA attenuated ferroptosis and upregulated GPx4 expression in the context of Pb-induced nerve damage. Additionally, ICAA downregulated TNF-α and IL-6 expression while concurrently enhancing the activations of Nrf2, HO-1, NQO1, BDNF, and CREB in the brains of mice. The inhibition of BDNF, Nrf2 and GPx4 reversed the protective effects of ICAA on Pb-induced ferroptosis in nerve cells. In general, ICAA ameliorates Pb-induced neuroinflammation, ferroptosis, oxidative stress, and anxiety-like behaviors through the activation of the BDNF/Nrf2/GPx4 pathways.


Assuntos
Ansiedade , Ácido Clorogênico , Ferroptose , Chumbo , Doenças Neuroinflamatórias , Transdução de Sinais , Animais , Masculino , Camundongos , Ansiedade/tratamento farmacológico , Ansiedade/induzido quimicamente , Comportamento Animal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ácido Clorogênico/farmacologia , Ácido Clorogênico/análogos & derivados , Ferroptose/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Chumbo/toxicidade , Camundongos Endogâmicos ICR , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
17.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38892438

RESUMO

The strength of inhibitory neurotransmission depends on intracellular neuronal chloride concentration, primarily regulated by the activity of cation-chloride cotransporters NKCC1 (Sodium-Potassium-Chloride Cotransporter 1) and KCC2 (Potassium-Chloride Cotransporter 2). Brain-derived neurotrophic factor (BDNF) influences the functioning of these co-transporters. BDNF is synthesized from precursor proteins (proBDNF), which undergo proteolytic cleavage to yield mature BDNF (mBDNF). While previous studies have indicated the involvement of BDNF signaling in the activity of KCC2, its specific mechanisms are unclear. We investigated the interplay between both forms of BDNF and chloride homeostasis in rat hippocampal neurons and in utero electroporated cortices of rat pups, spanning the behavioral, cellular, and molecular levels. We found that both pro- and mBDNF play a comparable role in immature neurons by inhibiting the capacity of neurons to extrude chloride. Additionally, proBDNF increases the endocytosis of KCC2 while maintaining a depolarizing shift of EGABA in maturing neurons. Behaviorally, proBDNF-electroporated rat pups in the somatosensory cortex exhibit sensory deficits, delayed huddling, and cliff avoidance. These findings emphasize the role of BDNF signaling in regulating chloride transport through the modulation of KCC2. In summary, this study provides valuable insights into the intricate interplay between BDNF, chloride homeostasis, and inhibitory synaptic transmission, shedding light on the underlying cellular mechanisms involved.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Cloretos , Cotransportadores de K e Cl- , Neurônios , Membro 2 da Família 12 de Carreador de Soluto , Animais , Feminino , Ratos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Cloretos/metabolismo , Hipocampo/metabolismo , Homeostase , Neurônios/metabolismo , Precursores de Proteínas/metabolismo , Simportadores/metabolismo
18.
PeerJ ; 12: e17427, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827289

RESUMO

Background: Survivors of sepsis may encounter cognitive impairment following their recovery from critical condition. At present, there is no standardized treatment for addressing sepsis-associated encephalopathy. Lactobacillus rhamnosus GG (LGG) is a prevalent bacterium found in the gut microbiota and is an active component of probiotic supplements. LGG has demonstrated to be associated with cognitive improvement. This study explored whether LGG administration prior to and following induced sepsis could ameliorate cognitive deficits, and explored potential mechanisms. Methods: Female C57BL/6 mice were randomly divided into three groups: sham surgery, cecal ligation and puncture (CLP), and CLP+LGG. Cognitive behavior was assessed longitudinally at 7-9d, 14-16d, and 21-23d after surgery using an open field test and novel object recognition test. The impact of LGG treatment on pathological changes, the expression level of brain-derived neurotrophic factor (BDNF), and the phosphorylation level of the TrkB receptor (p-TrkB) in the hippocampus of mice at two weeks post-CLP (16d) were evaluated using histological, immunofluorescence, immunohistochemistry, and western blot analyses. Results: The CLP surgery induced and sustained cognitive impairment in mice with sepsis for a minimum of three weeks following the surgery. Compared to mice subjected to CLP alone, the administration of LGG improved the survival of mice with sepsis and notably enhanced their cognitive functioning. Moreover, LGG supplementation significantly alleviated the decrease in hippocampal BDNF expression and p-TrkB phosphorylation levels caused by sepsis, preserving neuronal survival and mitigating the pathological changes within the hippocampus of mice with sepsis. LGG supplementation mitigates sepsis-related cognitive impairment in mice and preserves BDNF expression and p-TrkB levels in the hippocampus.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Disfunção Cognitiva , Hipocampo , Lacticaseibacillus rhamnosus , Camundongos Endogâmicos C57BL , Probióticos , Sepse , Animais , Sepse/complicações , Sepse/terapia , Sepse/microbiologia , Sepse/metabolismo , Disfunção Cognitiva/terapia , Disfunção Cognitiva/etiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Feminino , Camundongos , Hipocampo/metabolismo , Probióticos/farmacologia , Probióticos/administração & dosagem , Probióticos/uso terapêutico , Modelos Animais de Doenças , Receptor trkB/metabolismo , Encefalopatia Associada a Sepse/metabolismo , Encefalopatia Associada a Sepse/patologia , Encefalopatia Associada a Sepse/dietoterapia , Fosforilação
19.
J Nutr Sci Vitaminol (Tokyo) ; 70(3): 193-202, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38945884

RESUMO

Oleuropein aglycone (OA), which is the absorbed form of oleuropein, is a major phenolic compound in extra virgin olive oil. We analyzed the anti-obesity effect of OA intake combined with mild treadmill walking (MTW, 4 m/min for 20 min/d, 5-6 d/wk, without electric shocks and slope) in rats under a high-fat diet (HF). Four-week-old male Sprague-Dawley rats (n=28) were equally divided into four groups: control (HF), 0.08% oleuropein-supplemented HF (HFO), HF with MTW (HF+W), and HFO with MTW (HFO+W) groups. After 28 d, the inguinal subcutaneous fat content and weight gain were significantly lower in the HFO+W group than in the control group. The HFO+W group also had significantly higher levels of urinary noradrenaline secretion, interscapular brown adipose tissue, uncoupling protein 1, brain transient receptor potential ankyrin subtype 1 (TRPA1), vanilloid subtype 1 (TRPV1), and brain-derived neurotrophic factor (BDNF) than the control group. Especially, the HFO+W group showed a synergistic effect on noradrenaline secretion. Therefore, OA combined with MTW may accelerate the enhancement of UCP1 and BDNF levels in rats with HF-induced obesity by increasing noradrenaline secretion after TRPA1 and TRPV1 activation.


Assuntos
Tecido Adiposo Marrom , Fator Neurotrófico Derivado do Encéfalo , Dieta Hiperlipídica , Glucosídeos Iridoides , Iridoides , Norepinefrina , Obesidade , Ratos Sprague-Dawley , Canal de Cátion TRPA1 , Proteína Desacopladora 1 , Animais , Masculino , Proteína Desacopladora 1/metabolismo , Glucosídeos Iridoides/farmacologia , Obesidade/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Iridoides/farmacologia , Norepinefrina/metabolismo , Canal de Cátion TRPA1/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ratos , Fármacos Antiobesidade/farmacologia , Caminhada , Aumento de Peso/efeitos dos fármacos , Condicionamento Físico Animal , Canais de Cátion TRPV
20.
Brain Behav ; 14(7): e3610, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38945806

RESUMO

INTRODUCTION: Pregnant women may need to undergo non-obstetric surgery under general anesthesia owing to medical needs, and pregnant women frequently experience sleep disturbances during late gestation. Preclinical studies demonstrated that maternal isoflurane exposure (MISO) or maternal sleep deprivation (MSD) contributed to cognitive impairments in offspring. Research studies in mice have revealed that SD can aggravate isoflurane-induced cognitive deficits. However, it remains unclear whether MSD aggravates MISO-induced cognitive deficits in offspring. The purpose of this research was to explore the combined effects of MSD and MISO on offspring cognitive function and the role of neuroinflammation and synaptic function in the process of MSD + MISO. METHODS: Pregnant mice were exposed to 1.4% isoflurane by inhalation for 4 h on gestational day (GD) 14. Dams were then subjected to SD for 6 h (12:00-18:00 h) during GD15-21. At 3 months of age, the offspring mice were subjected to the Morris water maze test to assess cognitive function. Then the levels of inflammatory and anti-inflammatory markers and synaptic function-related proteins were assessed using molecular biology methods. RESULTS: The results of this study demonstrated that MISO led to cognitive dysfunction, an effect that was aggravated by MSD. In addition, MSD exacerbated the maternal isoflurane inhalation, leading to an enhancement in the expression levels of interleukin (IL)-1ß, IL-6, and tumor necrosis factor-alpha and a reduction in the hippocampal levels of IL-10, synaptophysin, post-synaptic density-95, growth-associated protein-43, and brain-derived neurotrophic factor. CONCLUSION: Our findings revealed that MSD aggravated the cognitive deficits induced by MISO in male offspring mice, and these results were associated with neuroinflammation and alternations in synaptic function.


Assuntos
Anestésicos Inalatórios , Disfunção Cognitiva , Hipocampo , Isoflurano , Doenças Neuroinflamatórias , Efeitos Tardios da Exposição Pré-Natal , Privação do Sono , Animais , Isoflurano/efeitos adversos , Isoflurano/farmacologia , Isoflurano/administração & dosagem , Feminino , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/fisiopatologia , Gravidez , Privação do Sono/complicações , Privação do Sono/fisiopatologia , Camundongos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Anestésicos Inalatórios/efeitos adversos , Anestésicos Inalatórios/farmacologia , Anestésicos Inalatórios/administração & dosagem , Sinapses/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Privação Materna , Fator Neurotrófico Derivado do Encéfalo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...