Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 5): 209-215, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32356522

RESUMO

Factor for inversion stimulation (Fis) is a versatile bacterial nucleoid-associated protein that can directly bind and bend DNA to influence DNA topology. It also plays crucial roles in regulating bacterial virulence factors and in optimizing bacterial adaptation to various environments. Fis from Pseudomonas aeruginosa (PA4853, referred to as PaFis) has recently been found to be required for virulence by regulating the expression of type III secretion system (T3SS) genes. PaFis can specifically bind to the promoter region of exsA, which functions as a T3SS master regulator, to regulate its expression and plays an essential role in transcription elongation from exsB to exsA. Here, the crystal structure of PaFis, which is composed of a four-helix bundle and forms a homodimer, is reported. PaFis shows remarkable structural similarities to the well studied Escherichia coli Fis (EcFis), including an N-terminal flexible loop and a C-terminal helix-turn-helix (HTH) motif. However, the critical residues for Hin-catalyzed DNA inversion in the N-terminal loop of EcFis are not conserved in PaFis and further studies are required to investigate its exact role. A gel-electrophoresis mobility-shift assay showed that PaFis can efficiently bind to the promoter region of exsA. Structure-based mutagenesis revealed that several conserved basic residues in the HTH motif play essential roles in DNA binding. These structural and biochemical studies may help in understanding the role of PaFis in the regulation of T3SS expression and in virulence.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Fator Proteico para Inversão de Estimulação/química , Pseudomonas aeruginosa/metabolismo , Fatores de Virulência/química , Motivos de Aminoácidos/genética , Arginina/química , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Domínio Catalítico/genética , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Dimerização , Escherichia coli/química , Fator Proteico para Inversão de Estimulação/genética , Regulação Bacteriana da Expressão Gênica/genética , Lisina/química , Mutagênese Sítio-Dirigida , Filogenia , Regiões Promotoras Genéticas , Ligação Proteica/genética , Conformação Proteica em alfa-Hélice/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Transativadores , Sistemas de Secreção Tipo III/metabolismo , Fatores de Virulência/genética
2.
Biochem J ; 477(7): 1345-1362, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32207815

RESUMO

We report the identification and characterization of a bacteriophage λ-encoded protein, NinH. Sequence homology suggests similarity between NinH and Fis, a bacterial nucleoid-associated protein (NAP) involved in numerous DNA topology manipulations, including chromosome condensation, transcriptional regulation and phage site-specific recombination. We find that NinH functions as a homodimer and is able to bind and bend double-stranded DNA in vitro. Furthermore, NinH shows a preference for a 15 bp signature sequence related to the degenerate consensus favored by Fis. Structural studies reinforced the proposed similarity to Fis and supported the identification of residues involved in DNA binding which were demonstrated experimentally. Overexpression of NinH proved toxic and this correlated with its capacity to associate with DNA. NinH is the first example of a phage-encoded Fis-like NAP that likely influences phage excision-integration reactions or bacterial gene expression.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas de Bactérias/química , Sequência de Bases , Sítios de Ligação , Simulação por Computador , DNA/metabolismo , DNA Viral/metabolismo , Proteínas de Ligação a DNA/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Fator Proteico para Inversão de Estimulação/química , Fator Proteico para Inversão de Estimulação/genética , Expressão Gênica , Proteínas Mutantes/metabolismo , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Multimerização Proteica/genética , Proteínas Virais/química
3.
J Phys Chem B ; 123(48): 10152-10162, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31710235

RESUMO

DNA supercoiling, where the DNA strand forms a writhe to relieve torsional stress, plays a vital role in packaging the genetic material in cells. Experiment, simulation, and theory have all demonstrated how supercoiling emerges due to the over- or underwinding of the DNA strand. Nucleoid-associated proteins (NAPs) help structure DNA in prokaryotes, yet the role that they play in the supercoiling process has not been as thoroughly investigated. We develop a coarse-grained simulation to model DNA supercoiling in the presence of proteins, providing a rigorous physical understanding of how NAPs affect supercoiling behavior. Specifically, we demonstrate how the force and torque necessary to form supercoils are affected by the presence of NAPs. NAPs that bend DNA stabilize the supercoil, thus shifting the transition between extended and supercoiled DNAs. We develop a theory to explain how NAP binding affects DNA supercoiling. This provides insight into how NAPs modulate DNA compaction via a combination of supercoiling and local protein-dependent deformations.


Assuntos
DNA Bacteriano/química , DNA Super-Helicoidal/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Fator Proteico para Inversão de Estimulação/química , Sítios de Ligação , DNA Bacteriano/metabolismo , DNA Super-Helicoidal/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Fator Proteico para Inversão de Estimulação/metabolismo , Cinética , Simulação de Dinâmica Molecular , Ligação Proteica , Termodinâmica , Torque
4.
Nucleic Acids Res ; 47(16): 8874-8887, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31616952

RESUMO

Localized arrays of proteins cooperatively assemble onto chromosomes to control DNA activity in many contexts. Binding cooperativity is often mediated by specific protein-protein interactions, but cooperativity through DNA structure is becoming increasingly recognized as an additional mechanism. During the site-specific DNA recombination reaction that excises phage λ from the chromosome, the bacterial DNA architectural protein Fis recruits multiple λ-encoded Xis proteins to the attR recombination site. Here, we report X-ray crystal structures of DNA complexes containing Fis + Xis, which show little, if any, contacts between the two proteins. Comparisons with structures of DNA complexes containing only Fis or Xis, together with mutant protein and DNA binding studies, support a mechanism for cooperative protein binding solely by DNA allostery. Fis binding both molds the minor groove to potentiate insertion of the Xis ß-hairpin wing motif and bends the DNA to facilitate Xis-DNA contacts within the major groove. The Fis-structured minor groove shape that is optimized for Xis binding requires a precisely positioned pyrimidine-purine base-pair step, whose location has been shown to modulate minor groove widths in Fis-bound complexes to different DNA targets.


Assuntos
Bacteriófago lambda/genética , Cromossomos Bacterianos/química , DNA Nucleotidiltransferases/química , DNA Bacteriano/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Fator Proteico para Inversão de Estimulação/química , Proteínas Virais/química , Sítio Alostérico , Bacteriófago lambda/metabolismo , Sequência de Bases , Sítios de Ligação , Cromossomos Bacterianos/metabolismo , Clonagem Molecular , Cristalografia por Raios X , DNA Nucleotidiltransferases/genética , DNA Nucleotidiltransferases/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fator Proteico para Inversão de Estimulação/genética , Fator Proteico para Inversão de Estimulação/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reparo de DNA por Recombinação , Alinhamento de Sequência , Termodinâmica , Proteínas Virais/genética , Proteínas Virais/metabolismo
5.
J Am Chem Soc ; 141(45): 18113-18126, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31566963

RESUMO

As a master transcription regulator, the Fis protein influences over two hundred genes of E. coli. The Fis protein's nonspecific binding to DNA is widely acknowledged, and its kinetics of dissociation from DNA is strongly influenced by its surroundings: the dissociation rate increases as the concentration of the Fis protein in the solution phase increases. In this study, we use computational methods to explore the global binding energy landscape of the Fis1:Fis2:DNA ternary complex. The complex contains a binary-Fis molecular dyad whose formation relies on complex structural rearrangements. The simulations allow us to distinguish several different pathways for the dissociation of the protein from DNA with different functional outcomes and involving different protein stoichiometries: (1) simple exchange of proteins and (2) cooperative unbinding of two Fis proteins to yield bare DNA. In the case of exchange, the protein on the DNA is replaced by the solution-phase protein through competition for DNA binding sites. This process seen in fluorescence imaging experiments has been called facilitated dissociation. In the latter case of cooperative unbinding of pairs, two neighboring Fis proteins on DNA form a unique binary-Fis configuration via protein-protein interactions, which in turn leads to the codissociation of both molecules simultaneously, a process akin to the "molecular stripping" seen in the NFκB/IκB genetic broadcasting system. This simulation shows that the existence of multiple binding configurations of transcription factors can have a significant impact on the kinetics and outcome of transcription factor dissociation from DNA, with important implications for the systems biology of gene regulation by Fis.


Assuntos
DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Fator Proteico para Inversão de Estimulação/metabolismo , DNA/química , Escherichia coli/química , Proteínas de Escherichia coli/química , Fator Proteico para Inversão de Estimulação/química , Cinética , Simulação de Dinâmica Molecular , Análise de Componente Principal , Ligação Proteica , Termodinâmica
6.
Methods Mol Biol ; 1624: 85-97, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28842878

RESUMO

The advent of Chromatin Immunoprecipitation sequencing (ChIP-Seq) has allowed the identification of genomic regions bound by a DNA binding protein in-vivo on a genome-wide scale. The impact of the DNA binding protein on gene expression can be addressed using transcriptome experiments in appropriate genetic settings. Overlaying the above two sources of data enables us to dissect the direct and indirect effects of a DNA binding protein on gene expression. Application of these techniques to Nucleoid Associated Proteins (NAPs) and Global Transcription Factors (GTFs) has underscored the complex relationship between DNA-protein interactions and gene expression change, highlighting the role of combinatorial control. Here, we demonstrate the usage of ChIP-Seq to infer binding properties and transcriptional effects of NAPs such as Fis and HNS, and the GTF CRP in the model organism Escherichia coli K12 MG1655 (E. coli).


Assuntos
Imunoprecipitação da Cromatina/métodos , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/metabolismo , Perfilação da Expressão Gênica/métodos , Análise de Sequência de DNA/métodos , Fatores de Transcrição/metabolismo , Sítios de Ligação , Biologia Computacional , Proteína Receptora de AMP Cíclico/química , Proteína Receptora de AMP Cíclico/metabolismo , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Fator Proteico para Inversão de Estimulação/química , Fator Proteico para Inversão de Estimulação/metabolismo , Expressão Gênica , Genoma Bacteriano , Fatores de Transcrição/química
7.
J Bacteriol ; 198(12): 1735-42, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27044624

RESUMO

UNLABELLED: Off-rates of proteins from the DNA double helix are widely considered to be dependent only on the interactions inside the initially bound protein-DNA complex and not on the concentration of nearby molecules. However, a number of recent single-DNA experiments have shown off-rates that depend on solution protein concentration, or "facilitated dissociation." Here, we demonstrate that this effect occurs for the major Escherichia coli nucleoid protein Fis on isolated bacterial chromosomes. We isolated E. coli nucleoids and showed that dissociation of green fluorescent protein (GFP)-Fis is controlled by solution Fis concentration and exhibits an "exchange" rate constant (kexch) of ≈10(4) M(-1) s(-1), comparable to the rate observed in single-DNA experiments. We also show that this effect is strongly salt dependent. Our results establish that facilitated dissociation can be observed in vitro on chromosomes assembled in vivo IMPORTANCE: Bacteria are important model systems for the study of gene regulation and chromosome dynamics, both of which fundamentally depend on the kinetics of binding and unbinding of proteins to DNA. In experiments on isolated E. coli chromosomes, this study showed that the prolific transcription factor and chromosome packaging protein Fis displays a strong dependence of its off-rate from the bacterial chromosome on Fis concentration, similar to that observed in in vitro experiments. Therefore, the free cellular DNA-binding protein concentration can strongly affect lifetimes of proteins bound to the chromosome and must be taken into account in quantitative considerations of gene regulation. These results have particularly profound implications for transcription factors where DNA binding lifetimes can be a critical determinant of regulatory function.


Assuntos
Cromossomos Bacterianos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fator Proteico para Inversão de Estimulação/metabolismo , Cromossomos Bacterianos/química , Cromossomos Bacterianos/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Fator Proteico para Inversão de Estimulação/química , Fator Proteico para Inversão de Estimulação/genética , Cinética , Ligação Proteica , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Gene ; 554(2): 249-53, 2015 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-25445294

RESUMO

Pasteurella multocida is responsible behind a variety of diseases in animals. The disease causing substance of this bacterium is a capsular polysaccharide. The expression of the gene that codes for the bacterial capsule is regulated by the protein Fis. Fis also regulates the expression of various different genes in P. multocida. So far there have been no previous reports that depict the characterization of Fis from P. multocida from a structural point of view. In the present work, an attempt has been made to characterize Fis by in silico methods. The structure of Fis was built by comparative modeling technique. The model of Fis was then docked onto the corresponding promoter regions of the gene encoding the capsular polysaccharide. The docked complexes of promoter DNA with Fis protein were subjected to molecular dynamics simulations to identify the mode of DNA-protein interactions. The DNA binding amino acid residues from the Fis protein were identified. And a mechanistic detail of the DNA binding interactions was predicted. So far, this is the first report that depicts the mechanistic details of Fis-DNA interactions involved in the regulation of gene expression by Fis protein. This work may therefore be useful to illuminate the still obscure molecular mechanism behind the disease propagation by P. multocida.


Assuntos
Proteínas de Bactérias/química , Fator Proteico para Inversão de Estimulação/química , Pasteurella multocida/metabolismo , Sítios de Ligação , DNA Bacteriano/metabolismo , Fator Proteico para Inversão de Estimulação/metabolismo , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Regiões Promotoras Genéticas , Conformação Proteica , Estrutura Secundária de Proteína , Fatores de Virulência/química
9.
Biochem J ; 466(2): 323-35, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25484033

RESUMO

Pet is a cytotoxic autotransporter protein secreted by the pathogenic enteroaggregative Escherichia coli strain 042. Expression of Pet is co-dependent on two global transcription regulators: CRP (cyclic AMP receptor protein) and Fis (factor for inversion stimulation). At the pet promoter CRP binds to a single site centred at position -40.5 upstream of the start site for transcription. Due to the suboptimal positioning of this site, CRP alone activates transcription poorly and requires Fis to bind upstream to promote full activation. Here, we show that CRP and Fis control the expression of other important autotransporter toxins, namely Sat from uropathogenic E. coli (UPEC) and SigA from Shigella sonnei, and that this regulation has been conserved in different pathogens. Furthermore, we investigate the mechanism of Fis-mediated co-activation, exploiting a series of semi-synthetic promoters, with similar architecture to the pet promoter. We show that, when bound at position -40.5, CRP recruits RNA polymerase inefficiently and that Fis compensates by aiding polymerase recruitment through a direct protein-protein interaction. We demonstrate that other suitably positioned upstream transcription factors, which directly recruit RNA polymerase, can also compensate for the inappropriate positioning of CRP. We propose that this is a simple 'shared-recruitment' mechanism, by which co-dependence of promoters on two transcription factors could evolve.


Assuntos
Toxinas Bacterianas/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Fator Proteico para Inversão de Estimulação/metabolismo , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Elementos de Resposta , Escherichia coli Uropatogênica/metabolismo , Região 5'-Flanqueadora , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Proteína Receptora de AMP Cíclico/química , Proteína Receptora de AMP Cíclico/genética , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Enterotoxinas/genética , Enterotoxinas/metabolismo , Escherichia coli K12/enzimologia , Escherichia coli K12/metabolismo , Escherichia coli K12/patogenicidade , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Fator Proteico para Inversão de Estimulação/química , Fator Proteico para Inversão de Estimulação/genética , Mutação , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Shigella sonnei/enzimologia , Shigella sonnei/metabolismo , Shigella sonnei/patogenicidade , Fator sigma/química , Fator sigma/genética , Fator sigma/metabolismo , Transcrição Gênica , Escherichia coli Uropatogênica/enzimologia , Escherichia coli Uropatogênica/patogenicidade
10.
J Mol Biol ; 426(21): 3553-68, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25158097

RESUMO

Transcription initiation by bacterial σ(54)-polymerase requires the action of a transcriptional activator protein. Activators bind sequence-specifically upstream of the transcription initiation site via a DNA-binding domain (DBD). The structurally characterized DBDs from activators all belong to the Fis (factor for inversion stimulation) family of helix-turn-helix DNA-binding proteins. We report here structures of the free and DNA-bound forms of the DBD of NtrC4 (4DBD) from Aquifex aeolicus, a member of the NtrC family of σ(54) activators. Two NtrC4-binding sites were identified upstream (-145 and -85bp) from the start of the lpxC gene, which is responsible for the first committed step in lipid A biosynthesis. This is the first experimental evidence for σ(54) regulation in lpxC expression. 4DBD was crystallized both without DNA and in complex with the -145-binding site. The structures, together with biochemical data, indicate that NtrC4 binds to DNA in a manner that is similar to that of its close homolog, Fis. The greater sequence specificity for the binding of 4DBD relative to Fis seems to arise from a larger number of base-specific contacts contributing to affinity than for Fis.


Assuntos
Bactérias/enzimologia , DNA/química , Proteínas de Escherichia coli/química , Fator Proteico para Inversão de Estimulação/química , Proteínas PII Reguladoras de Nitrogênio/química , RNA Polimerase Sigma 54/química , Fatores de Transcrição/química , Proteínas de Bactérias/química , Sítios de Ligação , Cristalografia por Raios X , Desoxirribonuclease I/química , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Conformação de Ácido Nucleico , Estrutura Terciária de Proteína , Proteínas/química , Transcrição Gênica , Ativação Transcricional
11.
PLoS One ; 8(12): e84382, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24358360

RESUMO

The nucleoid-associated protein FIS is a global regulator of gene expression and chromosome structure in Escherichia coli and Salmonella enterica. Despite the importance of FIS for infection and intracellular invasion, very little is known about the regulation of S. enterica fis expression. Under standard laboratory growth conditions, fis is highly expressed during rapid growth but is then silenced as growth slows. However, if cells are cultured in non-aerated conditions, fis expression is sustained during stationary phase. This led us to test whether the redox-sensing transcription factors ArcA and FNR regulate S. enterica fis. Deletion of FNR had no detectable effect, whereas deletion of ArcA had the unexpected effect of further elevating fis expression in stationary phase. ArcA required RpoS for induction of fis expression, suggesting that ArcA indirectly affects fis expression. Other putative regulators were found to play diverse roles: FIS acted directly as an auto-repressor (as expected), whereas CRP had little direct effect on fis expression. Deleting regions of the fis promoter led to the discovery of a novel anaerobically-induced transcription start site (Pfis-2) upstream of the primary transcription start site (Pfis-1). Promoter truncation also revealed that the shortest functional fis promoter was incapable of sustained expression. Moreover, fis expression was observed to correlate directly with DNA supercoiling in non-aerated conditions. Thus, the full-length S. enterica fis promoter region may act as a topological switch that is sensitive to stress-induced duplex destabilisation and up-regulates expression in non-aerated conditions.


Assuntos
Fator Proteico para Inversão de Estimulação/genética , Regulação Bacteriana da Expressão Gênica , Oxigênio/metabolismo , Regiões Promotoras Genéticas , Salmonella typhimurium/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Sequência de Bases , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Fator Proteico para Inversão de Estimulação/química , Fator Proteico para Inversão de Estimulação/metabolismo , Ordem dos Genes , Dados de Sequência Molecular , Mutação , Sequências Reguladoras de Ácido Nucleico , Proteínas Repressoras/metabolismo , Salmonella typhimurium/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Elife ; 2: e01211, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24151546

RESUMO

Serine recombinases are often tightly controlled by elaborate, topologically-defined, nucleoprotein complexes. Hin is a member of the DNA invertase subclass of serine recombinases that are regulated by a remote recombinational enhancer element containing two binding sites for the protein Fis. Two Hin dimers bound to specific recombination sites associate with the Fis-bound enhancer by DNA looping where they are remodeled into a synaptic tetramer competent for DNA chemistry and exchange. Here we show that the flexible beta-hairpin arms of the Fis dimers contact the DNA binding domain of one subunit of each Hin dimer. These contacts sandwich the Hin dimers to promote remodeling into the tetramer. A basic region on the Hin catalytic domain then contacts enhancer DNA to complete assembly of the active Hin tetramer. Our results reveal how the enhancer generates the recombination complex that specifies DNA inversion and regulates DNA exchange by the subunit rotation mechanism. DOI:http://dx.doi.org/10.7554/eLife.01211.001.


Assuntos
Proteínas de Bactérias/química , DNA Nucleotidiltransferases/química , Elementos Facilitadores Genéticos , Fator Proteico para Inversão de Estimulação/química , Regulação Bacteriana da Expressão Gênica , Salmonella enterica/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , DNA Nucleotidiltransferases/genética , DNA Nucleotidiltransferases/metabolismo , DNA Super-Helicoidal , Escherichia coli/genética , Escherichia coli/metabolismo , Fator Proteico para Inversão de Estimulação/genética , Fator Proteico para Inversão de Estimulação/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Recombinação Genética , Salmonella enterica/metabolismo
13.
Nucleic Acids Res ; 41(13): 6750-60, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23661683

RESUMO

The width of the DNA minor groove varies with sequence and can be a major determinant of DNA shape recognition by proteins. For example, the minor groove within the center of the Fis-DNA complex narrows to about half the mean minor groove width of canonical B-form DNA to fit onto the protein surface. G/C base pairs within this segment, which is not contacted by the Fis protein, reduce binding affinities up to 2000-fold over A/T-rich sequences. We show here through multiple X-ray structures and binding properties of Fis-DNA complexes containing base analogs that the 2-amino group on guanine is the primary molecular determinant controlling minor groove widths. Molecular dynamics simulations of free-DNA targets with canonical and modified bases further demonstrate that sequence-dependent narrowing of minor groove widths is modulated almost entirely by the presence of purine 2-amino groups. We also provide evidence that protein-mediated phosphate neutralization facilitates minor groove compression and is particularly important for binding to non-optimally shaped DNA duplexes.


Assuntos
DNA/química , Fator Proteico para Inversão de Estimulação/química , Pareamento de Bases , DNA/metabolismo , Fator Proteico para Inversão de Estimulação/metabolismo , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Fosfatos/química , Ligação Proteica , Purinas/química
14.
Biochem Biophys Res Commun ; 415(1): 131-4, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22020072

RESUMO

Chromosomes contain DNA covered with proteins performing functions such as architectural organization and transcriptional regulation. The ability to count the number of proteins bound to various regions of the genome is essential for understanding both architectural and regulatory functions. We present a straightforward method of counting gfp-conjugated proteins bound to an individual duplex DNA molecule by calibrating to a commercially available fluorescence standard using wide-field fluorescence microscopy. We demonstrate our method using the E. coli nucleoid-associated protein Fis.


Assuntos
Proteínas de Ligação a DNA/análise , DNA/química , Microscopia de Fluorescência/métodos , DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Fator Proteico para Inversão de Estimulação/análise , Fator Proteico para Inversão de Estimulação/química , Fator Proteico para Inversão de Estimulação/metabolismo , Microscopia de Fluorescência/normas
15.
Nucleic Acids Res ; 39(13): 5568-77, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21427084

RESUMO

Determining numbers of proteins bound to large DNAs is important for understanding their chromosomal functions. Protein numbers may be affected by physical factors such as mechanical forces generated in DNA, e.g. by transcription or replication. We performed single-DNA stretching experiments with bacterial nucleoid proteins HU and Fis, verifying that the force-extension measurements were in thermodynamic equilibrium. We, therefore, could use a thermodynamic Maxwell relation to deduce the change of protein number on a single DNA due to varied force. For the binding of both HU and Fis under conditions studied, numbers of bound proteins decreased as force was increased. Our experiments showed that most of the bound HU proteins were driven off the DNA at 6.3 pN for HU concentrations lower than 150 nM; our HU data were fit well by a statistical-mechanical model of protein-induced bending of DNA. In contrast, a significant amount of Fis proteins could not be forced off the DNA at forces up to 12 pN and Fis concentrations up to 20 nM. This thermodynamic approach may be applied to measure changes in numbers of a wide variety of molecules bound to DNA or other polymers. Force-dependent DNA binding by proteins suggests mechano-chemical mechanisms for gene regulation.


Assuntos
Proteínas de Ligação a DNA/química , DNA/química , Proteínas de Escherichia coli/química , Fator Proteico para Inversão de Estimulação/química , Termodinâmica , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Fator Proteico para Inversão de Estimulação/metabolismo , Modelos Estatísticos , Ligação Proteica
16.
Protein Sci ; 20(2): 302-12, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21280122

RESUMO

Factor for inversion stimulation (FIS), a 98-residue homodimeric protein, does not contain tryptophan (Trp) residues but has four tyrosine (Tyr) residues located at positions 38, 51, 69, and 95. The equilibrium denaturation of a P61A mutant of FIS appears to occur via a three-state (N(2) ⇆ I(2) ⇆ 2U) process involving a dimeric intermediate (I(2)). Although it was suggested that this intermediate had a denatured C-terminus, direct evidence was lacking. Therefore, three FIS double mutants, P61A/Y38W, P61A/Y69W, and P61A/Y95W were made, and their denaturation was monitored by circular dichroism and Trp fluorescence. Surprisingly, the P61A/Y38W mutant best monitored the N(2) ⇆ I(2) transition, even though Trp38 is buried within the dimer removed from the C-terminus. In addition, although Trp69 is located on the protein surface, the P61A/Y69W FIS mutant exhibited clearly biphasic denaturation curves. In contrast, P61A/Y95W FIS was the least effective in decoupling the two transitions, exhibiting a monophasic fluorescence transition with modest concentration-dependence. When considering the local environment of the Trp residues and the effect of each mutation on protein stability, these results not only confirm that P61A FIS denatures via a dimeric intermediate involving a disrupted C-terminus but also suggest the occurrence of conformational changes near Tyr38. Thus, the P61A mutation appears to compromise the denaturation cooperativity of FIS by failing to propagate stability to those regions involved mostly in intramolecular interactions. Furthermore, our results highlight the challenge of anticipating the optimal location to engineer a Trp residue for investigating the denaturation mechanism of even small proteins.


Assuntos
Fator Proteico para Inversão de Estimulação/química , Triptofano/química , Tirosina/química , Substituição de Aminoácidos , Dicroísmo Circular , Cristalografia por Raios X , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fator Proteico para Inversão de Estimulação/genética , Fator Proteico para Inversão de Estimulação/metabolismo , Microscopia de Fluorescência , Modelos Moleculares , Conformação Proteica , Desnaturação Proteica , Engenharia de Proteínas , Dobramento de Proteína , Estabilidade Proteica , Triptofano/genética , Triptofano/metabolismo , Tirosina/genética , Tirosina/metabolismo
17.
Mol Biosyst ; 7(3): 878-88, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21165487

RESUMO

Focusing on the DNA-bridging nucleoid proteins Fis and H-NS, and integrating several independent experimental and bioinformatic data sources, we investigate the links between chromosomal spatial organization and global transcriptional regulation. By means of a novel multi-scale spatial aggregation analysis, we uncover the existence of contiguous clusters of nucleoid-perturbation sensitive genes along the genome, whose expression is affected by a combination of topological DNA state and nucleoid-shaping protein occupancy. The clusters correlate well with the macrodomain structure of the genome. The most significant of them lay symmetrically at the edges of the Ter macrodomain and involve all of the flagellar and chemotaxis machinery, in addition to key regulators of biofilm formation, suggesting that the regulation of the physical state of the chromosome by the nucleoid proteins plays an important role in coordinating the transcriptional response leading to the switch between a motile and a biofilm lifestyle.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/genética , Família Multigênica/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , DNA Super-Helicoidal/química , DNA Super-Helicoidal/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fator Proteico para Inversão de Estimulação/química , Fator Proteico para Inversão de Estimulação/genética , Fator Proteico para Inversão de Estimulação/metabolismo , Deleção de Genes , Genoma Bacteriano/genética , Conformação de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Conformação Proteica , Transcrição Gênica/genética
18.
Genes Dev ; 24(8): 814-26, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20395367

RESUMO

The bacterial nucleoid-associated protein Fis regulates diverse reactions by bending DNA and through DNA-dependent interactions with other control proteins and enzymes. In addition to dynamic nonspecific binding to DNA, Fis forms stable complexes with DNA segments that share little sequence conservation. Here we report the first crystal structures of Fis bound to high- and low-affinity 27-base-pair DNA sites. These 11 structures reveal that Fis selects targets primarily through indirect recognition mechanisms involving the shape of the minor groove and sequence-dependent induced fits over adjacent major groove interfaces. The DNA shows an overall curvature of approximately 65 degrees , and the unprecedented close spacing between helix-turn-helix motifs present in the apodimer is accommodated by severe compression of the central minor groove. In silico DNA structure models show that only the roll, twist, and slide parameters are sufficient to reproduce the changes in minor groove widths and recreate the curved Fis-bound DNA structure. Models based on naked DNA structures suggest that Fis initially selects DNA targets with intrinsically narrow minor grooves using the separation between helix-turn-helix motifs in the Fis dimer as a ruler. Then Fis further compresses the minor groove and bends the DNA to generate the bound structure.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Fator Proteico para Inversão de Estimulação/química , Fator Proteico para Inversão de Estimulação/metabolismo , Modelos Moleculares , Sequência de Bases , Cristalização , Proteínas de Escherichia coli/genética , Fator Proteico para Inversão de Estimulação/genética , Guanina/química , Dados de Sequência Molecular , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Alinhamento de Sequência
19.
Mol Cell ; 34(6): 746-59, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19560425

RESUMO

Hin, a member of the serine family of site-specific recombinases, regulates gene expression by inverting a DNA segment. DNA inversion requires assembly of an invertasome complex in which a recombinational enhancer DNA segment bound by the Fis protein associates with the Hin synaptic complex at the base of a supercoiled DNA branch. Each of the four Hin subunits becomes covalently joined to the cleaved DNA ends, and DNA exchange occurs by translocation of a Hin subunit pair within the tetramer. We show here that, although the Hin tetramer forms a bidirectional molecular swivel, the Fis/enhancer system determines both the direction and number of subunit rotations. The chirality of supercoiling directs rotational direction, and the short DNA loop stabilized by Fis-Hin contacts limit rotational processivity, thereby ensuring that the DNA strands religate in the recombinant configuration. We identify multiple rotational conformers that are formed under different supercoiling and solution conditions.


Assuntos
DNA Nucleotidiltransferases/fisiologia , DNA Super-Helicoidal/química , Fator Proteico para Inversão de Estimulação/fisiologia , Recombinação Genética , Salmonella/genética , Sítios de Ligação , Cisteína/química , Cisteína/metabolismo , DNA Nucleotidiltransferases/química , DNA Nucleotidiltransferases/metabolismo , DNA Super-Helicoidal/metabolismo , Elementos Facilitadores Genéticos , Fator Proteico para Inversão de Estimulação/química , Fator Proteico para Inversão de Estimulação/genética , Modelos Genéticos , Mutação , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Salmonella/metabolismo
20.
Microbiology (Reading) ; 155(Pt 4): 1203-1214, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19332822

RESUMO

Transposition activity in bacteria is generally maintained at a low level. The activity of mobile DNA elements can be controlled by bacterially encoded global regulators. Regulation of transposition of Tn4652 in Pseudomonas putida is one such example. Activation of transposition of Tn4652 in starving bacteria requires the stationary-phase sigma factor RpoS and integration host factor (IHF). IHF plays a dual role in Tn4652 translocation by activating transcription of the transposase gene tnpA of the transposon and facilitating TnpA binding to the inverted repeats of the transposon. Our previous results have indicated that besides IHF some other P. putida-encoded global regulator(s) might bind to the ends of Tn4652 and regulate transposition activity. In this study, employing a DNase I footprint assay we have identified a binding site of P. putida Fis (factor for inversion stimulation) centred 135 bp inside the left end of Tn4652. Our results of gel mobility shift and DNase I footprint studies revealed that Fis out-competes IHF from the left end of Tn4652, thereby abolishing the binding of TnpA. Thus, the results obtained in this study indicate that the transposition of Tn4652 is regulated by the cellular amount of P. putida global regulators Fis and IHF.


Assuntos
Elementos de DNA Transponíveis/genética , Fator Proteico para Inversão de Estimulação/metabolismo , Regulação Bacteriana da Expressão Gênica , Fatores Hospedeiros de Integração/metabolismo , Pseudomonas putida/metabolismo , Transposases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Pegada de DNA , Elementos de DNA Transponíveis/fisiologia , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Desoxirribonucleases/metabolismo , Fator Proteico para Inversão de Estimulação/química , Fator Proteico para Inversão de Estimulação/genética , Regulação Enzimológica da Expressão Gênica , Fatores Hospedeiros de Integração/química , Fatores Hospedeiros de Integração/genética , Dados de Sequência Molecular , Pseudomonas putida/genética , Pseudomonas putida/crescimento & desenvolvimento , Transposases/química , Transposases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...