Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 665
Filtrar
1.
Cells ; 13(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38995016

RESUMO

Classical swine fever (CSF) is caused by the classical swine fever virus (CSFV), which poses a threat to swine production. The activation of host innate immunity through linker proteins such as tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) is crucial for the induction of the NF-κB pathway. Recent research has revealed the involvement of mitochondrial antiviral-signaling protein (MAVS) in the interaction with TRAF2, 3, 5, and 6 to activate both the NF-κB and IRF3 pathways. This study revealed that CSFV infection led to the upregulation of TRAF1 mRNA and protein levels; moreover, TRAF1 overexpression inhibited CSFV replication, while TRAF1 knockdown promoted replication, highlighting its importance in the host response to CSFV infection. Additionally, the expression of RIG-I, MAVS, TRAF1, IRF1, and ISG15 were detected in PK-15 cells infected with CSFV, revealing that TRAF1 plays a role in regulating IRF1 and ISG15 within the RIG-I pathway. Furthermore, Co-IP, GST pull-down, and IFA analyses demonstrated that TRAF1 interacted with MAVS and co-localized in the cytoplasm during CSFV infection. Ultimately, TRAF1 acted as a novel member of the TRAF family, bound to MAVS as a linker molecule, and functioned as a mediator downstream of MAVS in the RIG-I/MAVS pathway against CSFV replication.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Vírus da Febre Suína Clássica , Fator Regulador 1 de Interferon , Fator 1 Associado a Receptor de TNF , Regulação para Cima , Animais , Vírus da Febre Suína Clássica/fisiologia , Fator 1 Associado a Receptor de TNF/metabolismo , Fator 1 Associado a Receptor de TNF/genética , Suínos , Regulação para Cima/genética , Fator Regulador 1 de Interferon/metabolismo , Fator Regulador 1 de Interferon/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Transdução de Sinais , Peste Suína Clássica/virologia , Peste Suína Clássica/metabolismo , Peste Suína Clássica/genética , Replicação Viral , Linhagem Celular , Citocinas/metabolismo , Ligação Proteica
2.
Cell Rep ; 43(6): 114289, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38833371

RESUMO

Type I interferon (IFN-I) and IFN-γ foster antitumor immunity by facilitating T cell responses. Paradoxically, IFNs may promote T cell exhaustion by activating immune checkpoints. The downstream regulators of these disparate responses are incompletely understood. Here, we describe how interferon regulatory factor 1 (IRF1) orchestrates these opposing effects of IFNs. IRF1 expression in tumor cells blocks Toll-like receptor- and IFN-I-dependent host antitumor immunity by preventing interferon-stimulated gene (ISG) and effector programs in immune cells. In contrast, expression of IRF1 in the host is required for antitumor immunity. Mechanistically, IRF1 binds distinctly or together with STAT1 at promoters of immunosuppressive but not immunostimulatory ISGs in tumor cells. Overexpression of programmed cell death ligand 1 (PD-L1) in Irf1-/- tumors only partially restores tumor growth, suggesting multifactorial effects of IRF1 on antitumor immunity. Thus, we identify that IRF1 expression in tumor cells opposes host IFN-I- and IRF1-dependent antitumor immunity to facilitate immune escape and tumor growth.


Assuntos
Fator Regulador 1 de Interferon , Animais , Humanos , Camundongos , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Imunidade , Fator Regulador 1 de Interferon/metabolismo , Fator Regulador 1 de Interferon/genética , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/genética , Fator de Transcrição STAT1/metabolismo , Masculino , Feminino
3.
J Zhejiang Univ Sci B ; 25(6): 451-470, 2024 Jun 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38910492

RESUMO

Interferon regulatory factor 1 (IRF-1) is a member of the IRF family. It is the first transcription factor to be identified that could bind to the interferon-stimulated response element (ISRE) on the target gene and displays crucial roles in the interferon-induced signals and pathways. IRF-1, as an important medium, has all of the advantages of full cell cycle regulation, cell death signaling transduction, and reinforcing immune surveillance, which are well documented. Current studies indicate that IRF-1 is of vital importance to the occurrence and evolution of multifarious liver diseases, including but not limited to inhibiting the replication of the hepatitis virus (A/B/C/E), alleviating the progression of liver fibrosis, and aggravating hepatic ischemia-reperfusion injury (HIRI). The tumor suppression of IRF-1 is related to the clinical characteristics of liver cancer patients, which makes it a potential indicator for predicting the prognosis and recurrence of liver cancer; additionally, the latest studies have revealed other effects of IRF-1 such as protection against alcoholic/non-alcoholic fatty liver disease (AFLD/NAFLD), cholangiocarcinoma suppression, and uncommon traits in other liver diseases that had previously received little attention. Intriguingly, several compounds and drugs have featured a protective function in specific liver disease models in which there is significant involvement of the IRF-1 signal. In this paper, we hope to propose a prospective research basis upon which to help decipher translational medicine applications of IRF-1 in liver disease treatment.


Assuntos
Fator Regulador 1 de Interferon , Hepatopatias , Neoplasias Hepáticas , Fator Regulador 1 de Interferon/metabolismo , Fator Regulador 1 de Interferon/genética , Humanos , Hepatopatias/metabolismo , Animais , Neoplasias Hepáticas/metabolismo , Transdução de Sinais , Cirrose Hepática/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Traumatismo por Reperfusão , Colangiocarcinoma/metabolismo
4.
Biomed Pharmacother ; 176: 116907, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38865849

RESUMO

The plant alkaloid homoharringtonine (HHT) is a Food and Drug Administration (FDA)-approved drug for the treatment of hematologic malignancies. In addition to its well-established antitumor activity, accumulating evidence attributes anti-inflammatory effects to HHT, which have mainly been studied in leukocytes to date. However, a potential influence of HHT on inflammatory activation processes in endothelial cells, which are a key feature of inflammation and a prerequisite for the leukocyte-endothelial cell interaction and leukocyte extravasation, remains poorly understood. In this study, the anti-inflammatory potential of HHT and its derivative harringtonine (HT) on the TNF-induced leukocyte-endothelial cell interaction was assessed, and the underlying mechanistic basis of these effects was elucidated. HHT affected inflammation in vivo in a murine peritonitis model by reducing leukocyte infiltration and proinflammatory cytokine expression as well as ameliorating abdominal pain behavior. In vitro, HT and HHT impaired the leukocyte-endothelial cell interaction by decreasing the expression of the endothelial cell adhesion molecules intracellular adhesion molecule -1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). This effect was mediated by a bipartite mechanism. While HHT did not affect the prominent TNF-induced pro-inflammatory NF-ĸB signaling cascade, the compound downregulated the VCAM1 mRNA expression in an IRF-1-dependent manner and diminished active ICAM1 mRNA translation as determined by polysome profiling. This study highlights HHT as an anti-inflammatory compound that efficiently hampers the leukocyte-endothelial cell interaction by targeting endothelial activation processes.


Assuntos
Regulação para Baixo , Mepesuccinato de Omacetaxina , Inflamação , Fator Regulador 1 de Interferon , RNA Mensageiro , Molécula 1 de Adesão de Célula Vascular , Animais , Regulação para Baixo/efeitos dos fármacos , Molécula 1 de Adesão de Célula Vascular/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Inflamação/tratamento farmacológico , Inflamação/patologia , Inflamação/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Humanos , Fator Regulador 1 de Interferon/metabolismo , Fator Regulador 1 de Interferon/genética , Camundongos , Mepesuccinato de Omacetaxina/farmacologia , Masculino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Anti-Inflamatórios/farmacologia , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/genética , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo
5.
Iran J Allergy Asthma Immunol ; 23(2): 197-220, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38822514

RESUMO

Systemic sclerosis (SSc) is an autoimmune systemic disease that is characterized by immune dysregulation, inflammation, vasculopathy, and fibrosis. Tissue fibrosis plays an important role in SSc and can affect several organs such as the dermis, lungs, and heart. Dysregulation of interferon (IFN) signaling contributes to the SSc pathogenesis and interferon regulatory factor 1 (IRF1) has been indicated as the main regulator of type I IFN. This study aimed to clarify the effect of IFN-gamma (-γ) and dexamethasone (DEX) on the IRF1, extracellular signal-regulated kinase 1/2 (ERK1/2), and the expression of alpha-smooth muscle actin (α-SMA) in myofibroblasts and genes involved in the inflammation and fibrosis processes in early diffuse cutaneous systemic sclerosis (dcSSc). A total of 10 early dcSSc patients (diffuse cutaneous form) and 10 unaffected control dermis biopsies were obtained to determine IFNγ and DEX effects on inflammation and fibrosis. Fibroblasts were treated with IFNγ and DEX at optimum time and dose. The expression level of genes and proteins involved in the fibrosis and inflammation processes have been quantified by quantitative real-time PCR (RT-qPCR) and western blot, respectively. IFNγ could up-regulate some of the inflammation-related genes (Interleukin-6; IL6) and down-regulate some of the fibrosis-related genes (COL1A1) in cultured fibroblasts of patients with early dcSSc compared to the untreated group. Besides, it has been revealed that IFNγ can induce fibroblast differentiation to the myofibroblast that expresses α-SMA. Concerning the inhibitory effect of IFNγ on some fibrotic genes and its positive effect on the inflammatory genes and myofibroblast differentiation, it seems that IFNγ may play a dual role in SSc.


Assuntos
Actinas , Fibroblastos , Interferon gama , Interleucina-6 , Escleroderma Sistêmico , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Actinas/metabolismo , Actinas/genética , Células Cultivadas , Dexametasona/farmacologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/efeitos dos fármacos , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Fator Regulador 1 de Interferon/metabolismo , Fator Regulador 1 de Interferon/genética , Interferon gama/farmacologia , Interleucina-6/metabolismo , Interleucina-6/genética , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Escleroderma Sistêmico/imunologia
6.
Int Immunopharmacol ; 136: 112346, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38850785

RESUMO

Myocardial infarction (MI) is an event of heart attack due to the formation of plaques in the interior walls of the arteries. This study is conducted to explore the role of ubiquitin-specific peptidase 47 (USP47) in cardiac function and inflammatory immunity. MI mouse models were established, followed by an appraisal of cardiac functions, infarct size, pathological changes, and USP47 and NLRP3 levels. MI cell models were established in HL-1 cells using anoxia. Levels of cardiac function-associated proteins, USP7, interferon regulatory factor 1 (IRF1), platelet factor-4 (CXCL4), pyroptotic factors, and neutrophil extracellular traps (NETs) were determined. The bindings of IRF1 to USP47 and the CXCL4 promoter and the ubiquitination of IRF1 were analyzed. USP47 was upregulated in myocardial tissues of MI mice. USP47 inhibition alleviated cardiac functions, and decreased infarct size, pro-inflammatory cytokines, NETs, NLRP3, and pyroptosis. The ubiquitination and expression levels of IRF1 were increased by silencing USP47, and IRF1 bound to the CXCL4 promoter to promote CXCL4. Overexpression of IRF1 or CXCL4 in vitro and injection of Nigericin in vivo reversed the effect of silencing USP47 on alleviating pyroptosis and cardiac functions. Collectively, USP47 stabilized IRF1 and promoted CXCL4, further promoting pyroptosis, impairing cardiac functions, and aggravating immune inflammation through NLRP3 pathways.


Assuntos
Inflamassomos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio , Proteína 3 que Contém Domínio de Pirina da Família NLR , Transdução de Sinais , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/metabolismo , Camundongos , Inflamassomos/metabolismo , Masculino , Piroptose , Fator Regulador 1 de Interferon/metabolismo , Fator Regulador 1 de Interferon/genética , Modelos Animais de Doenças , Linhagem Celular , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/imunologia , Proteases Específicas de Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/genética , Fator Plaquetário 4/metabolismo , Fator Plaquetário 4/genética , Ubiquitinação , Humanos
7.
Mol Immunol ; 170: 156-169, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692097

RESUMO

Type-I and -III interferons play a central role in immune rejection of pathogens and tumors, thus promoting immunogenicity and suppressing tumor recurrence. Double strand RNA is an important ligand that stimulates tumor immunity via interferon responses. Differentiation of embryonic stem cells to pluripotent epithelial cells activates the interferon response during development, raising the question of whether epithelial vs. mesenchymal gene signatures in cancer potentially regulate the interferon pathway as well. Here, using genomics and signaling approaches, we show that Grainyhead-like-2 (GRHL2), a master programmer of epithelial cell identity, promotes type-I and -III interferon responses to double-strand RNA. GRHL2 enhanced the activation of IRF3 and relA/NF-kB and the expression of IRF1; a functional GRHL2 binding site in the IFNL1 promoter was also identified. Moreover, time to recurrence in breast cancer correlated positively with GRHL2 protein expression, indicating that GRHL2 is a tumor recurrence suppressor, consistent with its enhancement of interferon responses. These observations demonstrate that epithelial cell identity supports interferon responses in the context of cancer.


Assuntos
Neoplasias da Mama , Proteínas de Ligação a DNA , Fatores de Transcrição , Animais , Feminino , Humanos , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Fator Regulador 1 de Interferon/metabolismo , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/imunologia , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/genética , Interferons/metabolismo , Interferons/imunologia , Interferons/genética , Recidiva Local de Neoplasia/imunologia , RNA de Cadeia Dupla/imunologia , Transdução de Sinais/imunologia , Fator de Transcrição RelA/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia
8.
Ecotoxicol Environ Saf ; 278: 116433, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38714087

RESUMO

Trichloroethylene (TCE), a widely distributed environmental chemical contaminant, is extensively dispersed throughout the environment. Individuals who are exposed to TCE may manifest occupational medicamentose-like dermatitis due to trichloroethylene (OMDT). Renal impairment typically manifests in the initial phase of OMDT and is intricately linked to the disease progression and patient outcomes. Although recombinant human tumor necrosis factor-α receptor II fusion protein (rh TNFR:Fc) has been employed in the clinical management of OMDT, there was no substantial improvement in renal function observed in patients following one week of treatment. This study primarily examined the mechanism of TNFα- and IFNγ-induced endothelial cells (ECs) PANoptosis in TCE-induced kidney injury and hypothesized that the synergistic effect of TNFα and IFNγ could be the key factor affecting the efficacy of rh TNFR:Fc therapy in OMDT patients. A TCE-sensitized mouse model was utilized in this study to investigate the effects of TNFα and IFNγ neutralizing antibodies on renal vascular endothelial cell PANoptosis. The gene of interferon regulatory factor 1 (IRF1) in human umbilical vein endothelial cells (HUVEC) was silenced by using small interfering RNA (siRNA), and the cells were then treated with TNFα and IFNγ recombinant protein to investigate the mechanism of TNFα combined with IFNγ-induced PANoptosis in HUVEC. The findings indicated that mice sensitized to TCE exhibited increased levels of PANoptosis-related markers in renal endothelial cells, and treatment with TNFα and IFNγ neutralizing antibodies resulted in a significant reduction in PANoptosis and improvement in renal function. In vitro experiments demonstrated that silencing IRF1 could reverse TNFα and IFNγ-induced PANoptosis in endothelial cells. These results suggest that the efficacy of rh TNFR:Fc may be influenced by TNFα and IFNγ-mediated PANoptosis in kidney vascular endothelial cells. The joint application of TNFα and IFNγ neutralizing antibody represented a solid alternative to existing therapeutics.


Assuntos
Células Endoteliais da Veia Umbilical Humana , Fator Regulador 1 de Interferon , Interferon gama , Tricloroetileno , Fator de Necrose Tumoral alfa , Animais , Humanos , Camundongos , Injúria Renal Aguda/induzido quimicamente , Células Endoteliais/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Fator Regulador 1 de Interferon/metabolismo , Rim/efeitos dos fármacos , Tricloroetileno/toxicidade , Fator de Necrose Tumoral alfa/metabolismo , Feminino , Camundongos Endogâmicos BALB C
9.
J Neuroinflammation ; 21(1): 119, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715061

RESUMO

BACKGROUND: Cerebral malaria (CM) is the most lethal complication of malaria, and survivors usually endure neurological sequelae. Notably, the cytotoxic effect of infiltrating Plasmodium-activated CD8+ T cells on cerebral microvasculature endothelial cells is a prominent feature of the experimental CM (ECM) model with blood-brain barrier disruption. However, the damage effect of CD8+ T cells infiltrating the brain parenchyma on neurons remains unclear. Based on the immunosuppressive effect of the PD-1/PD-L1 pathway on T cells, our previous study demonstrated that the systemic upregulation of PD-L1 to inhibit CD8+ T cell function could effectively alleviate the symptoms of ECM mice. However, it has not been reported whether neurons can suppress the pathogenic effect of CD8+ T cells through the PD-1/PD-L1 negative immunomodulatory pathway. As the important inflammatory factor of CM, interferons can induce the expression of PD-L1 via different molecular mechanisms according to the neuro-immune microenvironment. Therefore, this study aimed to investigate the direct interaction between CD8+ T cells and neurons, as well as the mechanism of neurons to alleviate the pathogenic effect of CD8+ T cells through up-regulating PD-L1 induced by IFNs. METHODS: Using the ECM model of C57BL/6J mice infected with Plasmodium berghei ANKA (PbA), morphological observations were conducted in vivo by electron microscope and IF staining. The interaction between the ECM CD8+ T cells (immune magnetic bead sorting from spleen of ECM mice) and primary cultured cortical neurons in vitro was observed by IF staining and time-lapse photography. RNA-seq was performed to analyze the signaling pathway of PD-L1 upregulation in neurons induced by IFNß or IFNγ, and verified through q-PCR, WB, IF staining, and flow cytometry both in vitro and in vivo using IFNAR or IFNGR gene knockout mice. The protective effect of adenovirus-mediated PD-L1 IgGFc fusion protein expression was verified in ECM mice with brain stereotaxic injection in vivo and in primary cultured neurons via viral infection in vitro. RESULTS: In vivo, ECM mice showed infiltration of activated CD8+ T cells and neuronal injury in the brain parenchyma. In vitro, ECM CD8+ T cells were in direct contact with neurons and induced axonal damage, as an active behavior. The PD-L1 protein level was elevated in neurons of ECM mice and in primary cultured neurons induced by IFNß, IFNγ, or ECM CD8+ T cells in vitro. Furthermore, the IFNß or IFNγ induced neuronal expression of PD-L1 was mediated by increasing STAT1/IRF1 pathway via IFN receptors. The increase of PD-L1 expression in neurons during PbA infection was weakened after deleting the IFNAR or IFNGR. Increased PD-L1 expression by adenovirus partially protected neurons from CD8+ T cell-mediated damage both in vitro and in vivo. CONCLUSION: Our study demonstrates that both type I and type II IFNs can induce neurons to upregulate PD-L1 via the STAT1/IRF1 pathway mediated by IFN receptors to protect against activated CD8+ T cell-mediated damage, providing a targeted pathway to alleviate neuroinflammation during ECM.


Assuntos
Antígeno B7-H1 , Linfócitos T CD8-Positivos , Malária Cerebral , Camundongos Endogâmicos C57BL , Neurônios , Fator de Transcrição STAT1 , Regulação para Cima , Animais , Camundongos , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Fator Regulador 1 de Interferon/metabolismo , Interferon gama/metabolismo , Malária Cerebral/imunologia , Malária Cerebral/metabolismo , Malária Cerebral/patologia , Camundongos Knockout , Neurônios/metabolismo , Plasmodium berghei , Transdução de Sinais/fisiologia , Fator de Transcrição STAT1/metabolismo , Regulação para Cima/efeitos dos fármacos
10.
Nat Commun ; 15(1): 3684, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693181

RESUMO

The metal-nucleic acid nanocomposites, first termed metal-nucleic acid frameworks (MNFs) in this work, show extraordinary potential as functional nanomaterials. However, thus far, realized MNFs face limitations including harsh synthesis conditions, instability, and non-targeting. Herein, we discover that longer oligonucleotides can enhance the synthesis efficiency and stability of MNFs by increasing oligonucleotide folding and entanglement probabilities during the reaction. Besides, longer oligonucleotides provide upgraded metal ions binding conditions, facilitating MNFs to load macromolecular protein drugs at room temperature. Furthermore, longer oligonucleotides facilitate functional expansion of nucleotide sequences, enabling disease-targeted MNFs. As a proof-of-concept, we build an interferon regulatory factor-1(IRF-1) loaded Ca2+/(aptamer-deoxyribozyme) MNF to target regulate glucose transporter (GLUT-1) expression in human epidermal growth factor receptor-2 (HER-2) positive gastric cancer cells. This MNF nanodevice disrupts GSH/ROS homeostasis, suppresses DNA repair, and augments ROS-mediated DNA damage therapy, with tumor inhibition rate up to 90%. Our work signifies a significant advancement towards an era of universal MNF application.


Assuntos
Aptâmeros de Nucleotídeos , DNA Catalítico , Neoplasias Gástricas , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Humanos , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Linhagem Celular Tumoral , DNA Catalítico/metabolismo , DNA Catalítico/química , Animais , Receptor ErbB-2/metabolismo , Fator Regulador 1 de Interferon/metabolismo , Fator Regulador 1 de Interferon/genética , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Reparo do DNA , Dano ao DNA , Glutationa/metabolismo , Glutationa/química , Ácidos Nucleicos/metabolismo , Ácidos Nucleicos/química
11.
Front Cell Infect Microbiol ; 14: 1383811, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38808062

RESUMO

Introduction: While astrocytes participate in the CNS innate immunity against herpes simplex virus type 1 (HSV-1) infection, they are the major target for the virus. Therefore, it is of importance to understand the interplay between the astrocyte-mediated immunity and HSV-1 infection. Methods: Both primary human astrocytes and the astrocyte line (U373) were used in this study. RT-qPCR and Western blot assay were used to measure IFNs, the antiviral IFN-stimulated genes (ISGs), IFN regulatory factors (IRFs) and HSV-1 DNA. IRF1 knockout or knockdown was performed with CRISPR/Cas9 and siRNA transfection techniques. Results: Poly(dA:dT) could inhibit HSV-1 replication and induce IFN-ß/IFN-λs production in human astrocytes. Poly(dA:dT) treatment of astrocytes also induced the expression of the antiviral ISGs (Viperin, ISG56 and MxA). Among IRFs members examined, poly(dA:dT) selectively unregulated IRF1 and IRF9, particularly IRF1 in human astrocytes. The inductive effects of poly(dA:dT) on IFNs and ISGs were diminished in the IRF1 knockout cells. In addition, IRF1 knockout attenuated poly(dA:dT)-mediated HSV-1 inhibition in the cells. Conclusion: The DNA sensors activation induces astrocyte intracellular innate immunity against HSV-1. Therefore, targeting the DNA sensors has potential for immune activation-based HSV-1 therapy.


Assuntos
Astrócitos , Herpesvirus Humano 1 , Fator Regulador 1 de Interferon , Replicação Viral , Humanos , Astrócitos/virologia , Astrócitos/metabolismo , Fator Regulador 1 de Interferon/metabolismo , Fator Regulador 1 de Interferon/genética , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiologia , Imunidade Inata , Poli dA-dT , Herpes Simples/imunologia , Herpes Simples/virologia , Citosol/metabolismo , Linhagem Celular , Células Cultivadas , DNA Viral/genética , Técnicas de Inativação de Genes
12.
Front Immunol ; 15: 1384606, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660315

RESUMO

Introduction: Ultraviolet (UV) light is a known trigger of both cutaneous and systemic disease manifestations in lupus patients. Lupus skin has elevated expression of type I interferons (IFNs) that promote increased keratinocyte (KC) death after UV exposure. The mechanisms by which KC cell death is increased by type I IFNs are unknown. Methods: Here, we examine the specific cell death pathways that are activated in KCs by type I IFN priming and UVB exposure using a variety of pharmacological and genetic approaches. Mice that overexpress Ifnk in the epidermis were exposed to UVB light and cell death was measured. RNA-sequencing from IFN-treated KCs was analyzed to identify candidate genes for further analysis that could drive enhanced cell death responses after UVB exposure. Results: We identify enhanced activation of caspase-8 dependent apoptosis, but not other cell death pathways, in type I IFN and UVB-exposed KCs. In vivo, overexpression of epidermal Ifnk resulted in increased apoptosis in murine skin after UVB treatment. This increase in KC apoptosis was not dependent on known death ligands but rather dependent on type I IFN-upregulation of interferon regulatory factor 1 (IRF1). Discussion: These data suggest that enhanced sensitivity to UV light exhibited by lupus patients results from type I IFN priming of KCs that drives IRF1 expression resulting in caspase-8 activation and increased apoptosis after minimal exposures to UVB.


Assuntos
Caspase 8 , Interferon-alfa , Queratinócitos , Animais , Camundongos , Apoptose , Caspase 8/metabolismo , Caspase 8/genética , Fator Regulador 1 de Interferon/metabolismo , Fator Regulador 1 de Interferon/genética , Interferon-alfa/metabolismo , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Camundongos Endogâmicos C57BL , Raios Ultravioleta/efeitos adversos
13.
EMBO J ; 43(11): 2233-2263, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38658796

RESUMO

Type I interferons (IFN-I, including IFNß) and IFNγ produce overlapping, yet clearly distinct immunological activities. Recent data show that the distinctness of global transcriptional responses to the two IFN types is not apparent when comparing their immediate effects. By analyzing nascent transcripts induced by IFN-I or IFNγ over a period of 48 h, we now show that the distinctiveness of the transcriptomes emerges over time and is based on differential employment of the ISGF3 complex as well as of the second-tier transcription factor IRF1. The distinct transcriptional properties of ISGF3 and IRF1 correspond with a largely diverse nuclear protein interactome. Mechanistically, we describe the specific input of ISGF3 and IRF1 into enhancer activation and the regulation of chromatin accessibility at interferon-stimulated genes (ISG). We further report differences between the IFN types in altering RNA polymerase II pausing at ISG 5' ends. Our data provide insight how transcriptional regulators create immunological identities of IFN-I and IFNγ.


Assuntos
Regulação da Expressão Gênica , Fator Regulador 1 de Interferon , Interferon beta , Interferon gama , Transdução de Sinais , Interferon gama/metabolismo , Fator Regulador 1 de Interferon/metabolismo , Fator Regulador 1 de Interferon/genética , Interferon beta/metabolismo , Interferon beta/genética , Humanos , Fator Gênico 3 Estimulado por Interferon/metabolismo , Fator Gênico 3 Estimulado por Interferon/genética , Animais , Camundongos , RNA Polimerase II/metabolismo , RNA Polimerase II/genética
14.
Environ Pollut ; 349: 123913, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38582189

RESUMO

Cigarette smoke (CS), the main source of indoor air pollution and the primary risk factor for respiratory diseases, contains chemicals that can perturb microbiota through antibiotic effects. Although smoking induces a disturbance of microbiota in the lower respiratory tract, whether and how it contributes to initiation or promotion of emphysema are not well clarified. Here, we demonstrated an aberrant microbiome in lung tissue of patients with smoking-related COPD. We found that Stenotrophomonas maltophilia (S. maltophilia) was expanded in lung tissue of patients with smoking-related COPD. We revealed that S. maltophilia drives PANoptosis in alveolar epithelial cells and represses formation of alveolar organoids through IRF1 (interferon regulatory factor 1). Mechanistically, IRF1 accelerated transcription of ZBP1 (Z-DNA Binding Protein 1) in S. maltophilia-infected alveolar epithelial cells. Elevated ZBP1 served as a component of the PANoptosome, which triggered PANoptosis in these cells. By using of alveolar organoids infected by S. maltophilia, we found that targeting of IRF1 mitigated S. maltophilia-induced injury of these organoids. Moreover, the expansion of S. maltophilia and the expression of IRF1 negatively correlated with the progression of emphysema. Thus, the present study provides insights into the mechanism of lung dysbiosis in smoking-related COPD, and presents a potential target for mitigation of COPD progression.


Assuntos
Células Epiteliais Alveolares , Fator Regulador 1 de Interferon , Enfisema Pulmonar , Fumar , Stenotrophomonas maltophilia , Animais , Humanos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/microbiologia , Fator Regulador 1 de Interferon/metabolismo , Fator Regulador 1 de Interferon/genética , Pulmão/microbiologia , Microbiota , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/microbiologia , Fumar/efeitos adversos
15.
J Reprod Immunol ; 163: 104212, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38432052

RESUMO

Interferon-τ (IFN-τ) participates in the establishment of endometrial receptivity in ruminants. However, the precise mechanisms by which IFN-τ establishes bovine endometrial receptivity remain largely unknown. Interferon regulatory factor 1 (IRF1) is a classical interferon-stimulated gene (ISG) induced by type I interferon, including IFN-τ. Leukemia inhibitory factor receptor (LIFR) is a transmembrane receptor for leukemia inhibitory factor (LIF), which is a key factor in regulating embryo implantation in mammals. This study aimed to investigate the roles of IRF1 and LIFR in the regulation of bovine endometrial receptivity by IFN-τ. In vivo, we found IRF1 and LIFR were upregulated in the bovine endometrial luminal epithelium on Day 18 of pregnancy compared to Day 18 of the estrous cycle. In vitro, IFN-τ could upregulate IRF1, LIFR, and endometrial receptivity markers (LIF, HOXA10, ITGAV, and ITGB3) expression, downregulate E-cadherin expression and reduce the quantity of microvilli of bovine endometrial epithelial cells (bEECs). Overexpression of IRF1 had similar effects to IFN-τ on endometrial receptivity, and interference of LIFR could block these effects, suggesting the positive effects of IRF1 on endometrial receptivity were mediated by LIFR. Dual luciferase reporter assay verified that IRF1 could transactivate LIFR transcription by binding to its promoter. In conclusion, IFN-τ can induce IRF1 expression in bovine endometrial epithelial cells, and IRF1 upregulates LIFR expression by binding to LIFR promoter, contributing to the enhancement of bovine endometrial receptivity.


Assuntos
Implantação do Embrião , Endométrio , Fator Regulador 1 de Interferon , Interferon Tipo I , Animais , Feminino , Bovinos , Endométrio/metabolismo , Endométrio/imunologia , Fator Regulador 1 de Interferon/metabolismo , Fator Regulador 1 de Interferon/genética , Implantação do Embrião/imunologia , Interferon Tipo I/metabolismo , Gravidez , Receptores de OSM-LIF/metabolismo , Proteínas da Gravidez/metabolismo , Proteínas da Gravidez/genética , Ativação Transcricional , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/imunologia
16.
Cancer Immunol Res ; 12(6): 779-790, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38517470

RESUMO

IFN regulatory factor 1 (IRF1) can promote antitumor immunity. However, we have shown previously that in the tumor cell, IRF1 can promote tumor growth, and IRF1-deficient tumor cells exhibit severely restricted tumor growth in several syngeneic mouse tumor models. Here, we investigate the potential of functionally modulating IRF1 to reduce tumor progression and prolong survival. Using inducible IRF1 expression, we established that it is possible to regulate IRF1 expression to modulate tumor progression in established B16-F10 tumors. Expression of IRF2, which is a functional antagonist of IRF1, downregulated IFNγ-induced expression of inhibitory ligands, upregulated MHC-related molecules, and slowed tumor growth and extended survival. We characterized the functional domain(s) of IRF2 needed for this antitumor activity, showing that a full-length IRF2 was required for its antitumor functions. Finally, using an oncolytic vaccinia virus as a delivery platform, we showed that IRF2-expressing vaccinia virus suppressed tumor progression and prolonged survival in multiple tumor models. These results suggest the potency of targeting IRF1 and using IRF2 to modulate immunotherapy.


Assuntos
Fator Regulador 1 de Interferon , Fator Regulador 2 de Interferon , Vírus Oncolíticos , Animais , Fator Regulador 2 de Interferon/metabolismo , Fator Regulador 2 de Interferon/genética , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Camundongos , Linhagem Celular Tumoral , Fator Regulador 1 de Interferon/metabolismo , Fator Regulador 1 de Interferon/genética , Terapia Viral Oncolítica/métodos , Humanos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Vaccinia virus/genética , Vaccinia virus/imunologia , Camundongos Endogâmicos C57BL , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Modelos Animais de Doenças , Feminino
17.
Transplant Proc ; 56(3): 678-685, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38433025

RESUMO

BACKGROUND: Abdominal aortic calcification (AAC) is associated with cardiovascular-related mortality, along with an elevated risk of coronary, cerebrovascular, and cardiovascular events. Notably, AAC is strongly associated with poor overall and recurrence free survival posthepatectomy for hepatocellular carcinoma. Despite the acknowledged significance of atherosclerosis in systemic inflammation, its response to ischemia/reperfusion injury (IRI) remains poorly elucidated. In this study, we aimed to clarify the impact of atherosclerosis on the liver immune system using a warm IRI mouse model. METHODS: Injury was induced in an atherosclerotic mouse model (ApoE-/-) or C57BL/6J wild-type (WT) mice through 70% clamping for 1 hour and analyzed after 6 hours of reperfusion. RESULTS: Elevated serum levels of aspartate and alanine aminotransferase, along with histological assessment, indicated considerable damage in the livers of ApoE-/- mice than that in WT mice. This indicates a substantial contribution of atherosclerosis to IRI. Furthermore, T and natural killer (NK) cells in ApoE-/- mouse livers displayed a more inflammatory phenotype than those in WT mouse livers. Reverse transcription-polymerase chain reaction analysis revealed a significant upregulation of interleukin (IL)-15 and its transcriptional regulator, interferon regulatory factor-1 (IRF-1) in ApoE-/- mouse livers compared with that in WT mouse livers. CONCLUSIONS: These findings suggest that in an atherosclerotic mouse model, atherosclerosis can mirror intrahepatic immunity, particularly activating liver NK and T cells through IL-15 production, thereby exacerbating hepatic damage. The upregulation of IL-15 expression is associated with IRF-1 overexpression.


Assuntos
Aterosclerose , Modelos Animais de Doenças , Fator Regulador 1 de Interferon , Fígado , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão , Animais , Traumatismo por Reperfusão/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Camundongos , Fígado/patologia , Fígado/metabolismo , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Masculino , Células Matadoras Naturais/imunologia , Interleucina-15/genética
18.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38396830

RESUMO

IRF1 is a transcription factor well known for its role in IFN signaling. Although IRF1 was initially identified for its involvement in inflammatory processes, there is now evidence that it provides a function in carcinogenesis as well. IRF1 has been shown to affect several important antitumor mechanisms, such as induction of apoptosis, cell cycle arrest, remodeling of tumor immune microenvironment, suppression of telomerase activity, suppression of angiogenesis and others. Nevertheless, the opposite effects of IRF1 on tumor growth have also been demonstrated. In particular, the "immune checkpoint" molecule PD-L1, which is responsible for tumor immune evasion, has IRF1 as a major transcriptional regulator. These and several other properties of IRF1, including its proposed association with response and resistance to immunotherapy and several chemotherapeutic drugs, make it a promising object for further research. Numerous mechanisms of IRF1 regulation in cancer have been identified, including genetic, epigenetic, transcriptional, post-transcriptional, and post-translational mechanisms, although their significance for tumor progression remains to be explored. This review will focus on the established tumor-suppressive and tumor-promoting functions of IRF1, as well as the molecular mechanisms of IRF1 regulation identified in various cancers.


Assuntos
Fator Regulador 1 de Interferon , Neoplasias , Humanos , Carcinogênese/genética , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Transdução de Sinais , Microambiente Tumoral
20.
Arthritis Rheumatol ; 76(6): 882-893, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38268484

RESUMO

OBJECTIVE: Interferon regulatory factor 1 (IRF1) is a transcriptional regulator conventionally associated with immunomodulation. Recent molecular analyses mapping DNA binding sites of IRF1 have suggested its potential function in DNA repair. However, the physiologic significance of this noncanonical function remains unexplored. Here, we investigated the role of IRF1 in osteoarthritis (OA), a condition marked by senescence and chronic joint inflammation. METHODS: OA progression was examined in wild-type and Irf1-/- mice using histologic assessments and microcomputed tomography analysis of whole-joint OA manifestations and behavioral assessments of joint pain. An integrated analysis of assay for transposase-accessible chromatin with sequencing and whole transcriptome data was conducted for the functional assessment of IRF1 in chondrocytes. The role of IRF1 in DNA repair and senescence was investigated by assaying γ-H2AX foci and senescence-associated beta-galactosidase activity. RESULTS: Our genome-wide investigation of IRF1 footprinting in chondrocytes revealed its primary occupancies in the promoters of DNA repair genes without noticeable footprint patterns in those of interferon-responsive genes. Chondrocytes lacking IRF1 accumulated irreversible DNA damage under oxidative stress, facilitating their entry into cellular senescence. IRF1 was down-regulated in the cartilage of human and mouse OA. Although IRF1 overexpression did not elicit an inflammatory response in joints or affect OA development, genetic deletion of Irf1 caused enhanced chondrocyte senescence and exacerbated post-traumatic OA in mice. CONCLUSION: IRF1 offers DNA damage surveillance in chondrocytes, protecting them from oxidative stress associated with OA risk factors. Our study provides a crucial and cautionary perspective that compromising IRF1 activity renders chondrocytes vulnerable to cellular senescence and promotes OA development.


Assuntos
Cartilagem Articular , Condrócitos , Dano ao DNA , Fator Regulador 1 de Interferon , Camundongos Knockout , Osteoartrite , Animais , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Camundongos , Condrócitos/metabolismo , Cartilagem Articular/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Senescência Celular/genética , Reparo do DNA , Humanos , Progressão da Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...