Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800130

RESUMO

Vanishing white matter (VWM) disease is a genetic leukodystrophy leading to severe neurological disease and early death. VWM is caused by bi-allelic mutations in any of the five genes encoding the subunits of the eukaryotic translation factor 2B (EIF2B). Previous studies have attempted to investigate the molecular mechanism of VWN by constructing models for each subunit of EIF2B that causes VWM disease. The underlying molecular mechanisms of the way in which mutations in EIF2B3 result in VWM are largely unknown. Based on our recent results, we generated an eif2b3 knockout (eif2b3-/-) zebrafish model and performed quantitative proteomic analysis between the wild-type (WT) and eif2b3-/- zebrafish, and identified 25 differentially expressed proteins. Four proteins were significantly upregulated, and 21 proteins were significantly downregulated in eif2b3-/- zebrafish compared to WT. Lon protease and the neutral amino acid transporter SLC1A4 were significantly increased in eif2b3-/- zebrafish, and crystallin proteins were significantly decreased. The differential expression of proteins was confirmed by the evaluation of mRNA levels in eif2b3-/- zebrafish, using whole-mount in situ hybridization analysis. This study identified proteins which candidates as key regulators of the progression of VWN disease, using quantitative proteomic analysis in the first EIF2B3 animal model of VWN disease.


Assuntos
Sistema ASC de Transporte de Aminoácidos/metabolismo , Leucoencefalopatias/metabolismo , Proteoma/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Sistema ASC de Transporte de Aminoácidos/genética , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Fator de Iniciação 2B em Eucariotos/deficiência , Fator de Iniciação 2B em Eucariotos/metabolismo , Humanos , Leucoencefalopatias/genética , Leucoencefalopatias/patologia , Proteoma/genética , Proteômica , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
2.
J Virol ; 85(19): 9716-25, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21795329

RESUMO

Eukaryotic translation initiation factor 2B (eIF2B) is a heteropentameric guanine nucleotide exchange factor that converts protein synthesis initiation factor 2 (eIF2) from a GDP-bound form to the active eIF2-GTP complex. Cellular stress can repress translation initiation by activating kinases capable of phosphorylating the alpha subunit of eIF2 (eIF2α), which sequesters eIF2B to prevent exchange activity. Previously, we demonstrated that tumor cells are sensitive to viral replication, possibly due to the occurrence of defects in eIF2B that overcome the inhibitory effects of eIF2α phosphorylation. To extend this analysis, we have investigated the importance of eIF2Bα function and report that this subunit can functionally substitute for its counterpart, GCN3, in yeast. In addition, a variant of mammalian eIF2Bα harboring a point mutation (T41A) was able overcome translational inhibition invoked by amino acid depravation, which activates Saccharomyces cerevisiae GCN2 to phosphorylate the yeast eIF2α homolog SUI2. Significantly, we also demonstrate that the loss of eIF2Bα, or the expression of the T41A variant in mammalian cells, is sufficient to neutralize the consequences of eIF2α phosphorylation and render normal cells susceptible to virus infection. Our data emphasize the importance of eIF2Bα in mediating the eIF2 kinase translation-inhibitory activity and may provide insight into the complex nature of viral oncolysis.


Assuntos
Fator de Iniciação 2B em Eucariotos/metabolismo , Vesiculovirus/crescimento & desenvolvimento , Replicação Viral , Substituição de Aminoácidos/genética , Animais , Células Cultivadas , Fator de Iniciação 2B em Eucariotos/deficiência , Fator de Iniciação 2B em Eucariotos/genética , Teste de Complementação Genética , Humanos , Camundongos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae
3.
Hum Mutat ; 32(9): 1036-45, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21560189

RESUMO

Autosomal recessive mutations in eukaryotic initiation factor 2B (eIF2B) cause leukoencephalopathy vanishing white matter with a wide clinical spectrum. eIF2B comprises five subunits (α-ε; genes EIF2B1, 2, 3, 4 and 5) and is the guanine nucleotide-exchange factor (GEF) for eIF2. It plays a key role in protein synthesis. Here, we have studied the functional effects of selected VWM mutations in EIF2B2-5 by coexpressing mutated and wild-type subunits in human cells. The observed functional effects are very diverse, including defects in eIF2B complex integrity; binding to the regulatory α-subunit; substrate binding; and GEF activity. Activity data for recombinant eIF2B complexes agree closely with those for patient-derived cells with the same mutations. Some mutations do not affect these parameters even though they cause severe disease. These findings are important for three reasons; they demonstrate that measuring eIF2B activity in patients' cells has limited value as a diagnostic test; they imply that severe disease can result from alterations in eIF2B function other than defects in complex integrity, substrate binding or GEF activity, and last, the diversity of functional effects of VWM mutations implies that seeking agents to manage or treat VWM should focus on downstream effectors of eIF2B, not restoring eIF2B activity.


Assuntos
Fator de Iniciação 2B em Eucariotos/deficiência , Fator de Iniciação 2B em Eucariotos/metabolismo , Leucoencefalopatias/genética , Complexos Multiproteicos/metabolismo , Bioensaio , Extratos Celulares , Fator de Iniciação 2B em Eucariotos/química , Células HEK293 , Humanos , Proteínas Mutantes/metabolismo , Mutação/genética , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes , Homologia de Sequência de Aminoácidos
4.
Mol Genet Metab ; 88(1): 7-15, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16378743

RESUMO

Mutations in eukaryotic initiation factor 2B (eIF2B) cause one of the most common leukodystrophies, childhood ataxia with CNS hypomyelination/vanishing white matter disease or CACH/VWM. Patients may develop a wide spectrum of neurological abnormalities from prenatal-onset white matter disease to juvenile or adult-onset ataxia and dementia, sometimes with ovarian insufficiency. The pattern of diffuse white matter abnormalities on MRI of the head is often diagnostic. Neuropathological abnormalities indicate a unique and selective disruption of oligodendrocytes and astrocytes with sparing of neurons. Marked decrease of asialo-transferrin in cerebrospinal fluid is the only biochemical abnormality identified thus far. Eukaryotic translation initiation factor 2B (eIF2B) mutations cause a decrease in guanine nucleotide exchange activity on eIF2-GDP, resulting in increased susceptibility to stress and enhanced ATF4 expression during endoplasmic reticulum stress. eIF2B mutations are speculated to lead to increased susceptibility to various physiological stress conditions. Future research will be directed towards understanding why abnormal control of protein translation predominantly affects brain glial cells.


Assuntos
Fator de Iniciação 2B em Eucariotos/deficiência , Degenerações Espinocerebelares/genética , Encéfalo/patologia , Criança , Pré-Escolar , Fator de Iniciação 2B em Eucariotos/genética , Humanos , Imageamento por Ressonância Magnética , Degenerações Espinocerebelares/diagnóstico
5.
J Neuropathol Exp Neurol ; 63(6): 618-30, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15217090

RESUMO

Vanishing white matter disease (VWM) is a progressive cavitating disease of central white matter due to a deficiency of the translation initiation factor eIF2B. Oligodendrocytes appear to be numerically increased in some white matter areas, while decreased in others. We compared oligodendrocytes of cerebral, cerebellar, and pontine white matter from 5 VWM patients with those of age-matched controls by light microscopy and immunohistochemistry using antibodies to activated caspase-3, bak, bax, bcl-2, survivin, and Ki-67, as well as by the TUNEL technique. Oligodendrocytes were identified morphologically and quantified using an ocular grid. We observed statistically significant increases in their densities at all sites; Ki-67-labeled oligodendrocytes were identified in 2 of 5 patients. Apoptotic oligodendrocytes were documented in 3 of 5 patients, while bcl-2 and survivin labeling was observed in 2 of 5 and 2 of 2 patients, respectively. There was a trend toward an increase in apoptotic labeling of oligodendrocytes that was strongest in the cerebrum, the major locus of VWM, in the youngest and most severely affected patients. These data conclusively demonstrate increased oligodendrocytic densities in VWM; the increase is not an artifact of white matter contraction. Our data also document that oligodendrocytes undergo apoptosis, perhaps in conjunction with major neurologic crises, and that a subset of oligodendrocytes are able to persist and proliferate. Conflicting proliferative, cell-death, and survival signals impact the oligodendrocytes of VWM.


Assuntos
Encefalopatias/patologia , Doenças Desmielinizantes/patologia , Fibras Nervosas Mielinizadas/patologia , Oligodendroglia/patologia , Adolescente , Encefalopatias/genética , Morte Celular/fisiologia , Sobrevivência Celular/fisiologia , Criança , Pré-Escolar , Doenças Desmielinizantes/genética , Fator de Iniciação 2B em Eucariotos/deficiência , Fator de Iniciação 2B em Eucariotos/genética , Feminino , Humanos , Lactente , Masculino , Fibras Nervosas Mielinizadas/fisiologia , Oligodendroglia/citologia , Oligodendroglia/fisiologia
6.
Mol Cell Biol ; 24(6): 2352-63, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14993275

RESUMO

Childhood ataxia with central nervous system hypomyelination (CACH), or vanishing white matter leukoencephalopathy (VWM), is a fatal brain disorder caused by mutations in eukaryotic initiation factor 2B (eIF2B). eIF2B is essential for protein synthesis and regulates translation in response to cellular stresses. We performed mutagenesis to introduce changes equivalent to 12 human CACH/VWM mutations in three subunits of the equivalent factor from yeast (Saccharomyces cerevisiae) and analyzed effects on cell growth, translation, and gene expression in response to stresses. None of the mutations is lethal or temperature sensitive, but almost all confer some defect in eIF2B function significant enough to alter growth or gene expression under normal or stress conditions. Biochemical analyses indicate that mutations analyzed in eIF2Balpha and -epsilon reduce the steady-state level of the affected subunit, while the most severe mutant tested, eIF2Bbeta(V341D) (human eIF2B(betaV316D)), forms complexes with reduced stability and lower eIF2B activity. eIF2Bdelta is excluded from eIF2Bbeta(V341D) complexes. eIF2B(betav341D) function can be rescued by overexpression of eIF2Bdelta alone. Our findings imply CACH/VWM mutations do not specifically impair responses to eIF2 phosphorylation, but instead cause protein structure defects that impair eIF2B activity. Altered protein folding is characteristic of other diseases, including cystic fibrosis and neurodegenerative disorders such as Huntington, Alzheimer's, and prion diseases.


Assuntos
Fator de Iniciação 2B em Eucariotos/deficiência , Fator de Iniciação 2B em Eucariotos/genética , Mutação , Bainha de Mielina/metabolismo , Degenerações Espinocerebelares/genética , Degenerações Espinocerebelares/metabolismo , Sequência de Aminoácidos , Criança , Fator de Iniciação 2B em Eucariotos/química , Humanos , Técnicas In Vitro , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Subunidades Proteicas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...