Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Immunol ; 34(1): 35-43, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34673932

RESUMO

Marginal zone B cells (MZBs) represent a unique B-cell sub-population that rapidly differentiate into IgM-secreting plasma cells in response to T-independent (T-I) antigen. Sphingosine 1-phosphate (S1P) promotes MZB localization to the marginal zone. However, intracellular molecules involved in MZB localization and migration remain largely unknown. Here, we show that MZBs lacking the glia maturation factor-γ (GMFG) are impaired in chemotaxis toward S1P under both in vitro and in vivo conditions, suggesting that GMFG is an effector downstream of S1P receptors. GMFG undergoes serine phosphorylation upon S1P stimulation and is required for S1P-induced desensitization of S1P receptor 1 (S1PR1). Compared with wild-type mice, Gmfg-/- mice produce elevated levels of 4-hydroxy-3-nitrophenyl-acetyl (NP)-specific IgM against a T-I type II antigen, NP-Ficoll, accompanied by dysregulated MZB localization. These results identify GMFG as a regulator of S1P-induced MZB chemotaxis and reveal a role for MZB localization in the marginal zone for optimal IgM production against a T-I antigen.


Assuntos
Antígenos T-Independentes/imunologia , Linfócitos B/imunologia , Quimiotaxia/imunologia , Fator de Maturação da Glia/imunologia , Imunoglobulina M/imunologia , Receptores de Esfingosina-1-Fosfato/imunologia , Animais , Fator de Maturação da Glia/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
J Immunol ; 190(12): 6093-103, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23677465

RESUMO

TLR4 signaling must be tightly regulated to provide both effective immune protection and avoid inflammation-induced pathology. Thus, the mechanisms that negatively regulate the TLR4-triggered inflammatory response are of particular importance. Glia maturation factor-γ (GMFG), a novel actin depolymerization factor/cofilin superfamily protein that is expressed in inflammatory cells, has been implicated in mediating neutrophil and T cell migration, but its function in macrophage immune response remains unclear. In the current study, the role of GMFG in the LPS-induced TLR4-signaling pathway was investigated in THP-1 macrophages and human primary macrophages. LPS stimulation of macrophages decreased GMFG mRNA and protein expression. We show that GMFG negatively regulates LPS-induced activation of NF-κB-, MAPK-, and IRF3-signaling pathways and subsequent production of proinflammatory cytokines and type I IFN in human macrophages. We found that endogenous GMFG localized within early and late endosomes. GMFG knockdown delayed LPS-induced TLR4 internalization and caused prolonged TLR4 retention at the early endosome, suggesting that TLR4 transport from early to late endosomes is interrupted, which may contribute to enhanced LPS-induced TLR4 signaling. Taken together, our findings suggest that GMFG functions as a negative regulator of TLR4 signaling by facilitating TLR4 endocytic trafficking in macrophages.


Assuntos
Fator de Maturação da Glia/metabolismo , Macrófagos/metabolismo , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/metabolismo , Citometria de Fluxo , Imunofluorescência , Fator de Maturação da Glia/imunologia , Humanos , Immunoblotting , Macrófagos/imunologia , Microscopia Confocal , Reação em Cadeia da Polimerase , Transporte Proteico/fisiologia , Interferência de RNA , Receptor 4 Toll-Like/imunologia
3.
BMC Immunol ; 13: 21, 2012 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-22510515

RESUMO

BACKGROUND: Lymphocyte migration and chemotaxis are essential for effective immune surveillance. A critical aspect of migration is cell polarization and the extension of pseudopodia in the direction of movement. However, our knowledge of the underlying molecular mechanisms responsible for these events is incomplete. Proteomic analysis of the isolated leading edges of CXCL12 stimulated human T cell lines was used to identify glia maturation factor gamma (GMFG) as a component of the pseudopodia. This protein is predominantly expressed in hematopoietic cells and it has been shown to regulate cytoskeletal branching. The present studies were undertaken to examine the role of GMFG in lymphocyte migration. RESULTS: Microscopic analysis of migrating T-cells demonstrated that GMFG was distributed along the axis of movement with enrichment in the leading edge and behind the nucleus of these cells. Inhibition of GMFG expression in T cell lines and IL-2 dependent human peripheral blood T cells with shRNAmir reduced cellular basal and chemokine induced migration responses. The failure of the cells with reduced GMFG to migrate was associated with an apparent inability to detach from the substrates that they were moving on. It was also noted that these cells had an increased adherence to extracellular matrix proteins such as fibronectin. These changes in adherence were associated with altered patterns of ß1 integrin expression and increased levels of activated integrins as detected with the activation specific antibody HUTS4. GMFG loss was also shown to increase the expression of the ß2 integrin LFA-1 and to increase the adhesion of these cells to ICAM-1. CONCLUSIONS: The present studies demonstrate that GMFG is a component of human T cell pseudopodia required for migration. The reduction in migration and increased adherence properties associated with inhibition of GMFG expression suggest that GMFG activity influences the regulation of integrin mediated adhesion.


Assuntos
Células Sanguíneas/imunologia , Fator de Maturação da Glia/metabolismo , Linfócitos T/imunologia , Adesão Celular/genética , Adesão Celular/imunologia , Linhagem Celular , Movimento Celular/genética , Movimento Celular/imunologia , Quimiocina CXCL12/imunologia , Citoesqueleto/imunologia , Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Fator de Maturação da Glia/genética , Fator de Maturação da Glia/imunologia , Humanos , Integrinas/metabolismo , Interleucina-2/imunologia , Pseudópodes/imunologia , Pseudópodes/metabolismo , RNA Interferente Pequeno/genética
4.
Brain Res ; 1373: 230-9, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21146509

RESUMO

Glia maturation factor (GMF), a protein primarily localized in the central nervous system (CNS) was isolated, sequenced and cloned in our laboratory. We previously demonstrated that GMF mediates the experimental autoimmune encephalomyelitis (EAE)-induced production of pro-inflammatory cytokines and chemokines in the central nervous system of mice. In the present study we show that immunization with myelin oligodendrocyte glycoprotein peptide 35-55 (MOG35-55) caused an early onset (days 7-9 post immunization) and severe EAE with a mean peak score of 3.5 ± 0.5 in mice. Neutralization of GMF with four injections of anti-GMF antibody 5 to 11 days post immunization delayed the time of onset (days 12-14 post immunization) and significantly reduced the severity of EAE (mean peak score of 1.5 ± 0.4). Consistent with these clinical scores, histological examination of the CNS of these mice revealed profound differences between GMF-antibody treated mice and isotype matched control-antibody treated mice. Histological analysis of the spinal cord and brain showed severe inflammation and demyelination in the control antibody-treated mice whereas significantly reduced inflammation and demyelination was detected in GMF-antibody-treated mice at days 8, 16, and 24 post immunization. The decreased incidence and reduced severity of EAE in GMF-antibody-treated mice was consistent with the significantly reduced expressions of pro-inflammatory cytokines and chemokines. Our overall results demonstrate that neutralization of endogenous GMF with an affinity purified GMF antibody significantly decreased the inflammation, severity and progression of immunization induced active, passive and relapsing-remitting EAE. Treatment of mice with isotype-matched control antibody did not have any effect on EAE. Taken together, these results demonstrate the critical role of GMF in EAE, and GMF antibody as a potent anti-inflammatory therapeutic agent for effectively suppressing EAE in mouse models of major types of multiple sclerosis (MS).


Assuntos
Anticorpos/uso terapêutico , Encefalomielite Autoimune Experimental/complicações , Encefalomielite Autoimune Experimental/patologia , Fator de Maturação da Glia/imunologia , Inflamação/tratamento farmacológico , Inflamação/etiologia , Neurônios/efeitos dos fármacos , Animais , Citocinas/genética , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/etiologia , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Glicoproteínas/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito , Fragmentos de Peptídeos/efeitos adversos , Toxina Pertussis/efeitos adversos , RNA Mensageiro/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...