Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 7778, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833342

RESUMO

Melanoma is a disease with a high recurrence rate and poor prognosis; therefore, the need for targeted therapeutics is steadily increasing. Oligodendrocyte transcription factor2 (Olig2) is a basic helix-loop-helix transcription factor that is expressed in the central nervous system during embryonic development. Olig2 is overexpressed in various malignant cell lines such as lung carcinoma, glioma and melanoma. Olig2 is known as a key transcription factor that promotes tumor growth in malignant glioma. However, the role of Olig2 in melanoma is not well characterized. We analyzed the role of Olig2 in apoptosis, migration, and invasion of melanoma cells. We confirmed that Olig2 was overexpressed in melanoma cells and tissues. Reduction of Olig2 increased apoptosis in melanoma cells by increasing p53 level and caspase-3/-7 enzyme activity. In addition, downregulation of Olig2 suppressed migration and invasion of melanoma cells by inhibiting EMT. Reduction of Olig2 inhibited expression of MMP-1 and the enzyme activity of MMP-2/-9 induced by TGF-ß. Moreover, Olig2 was involved in the downstream stages of MEK/ERK and PI3K/AKT, which are major signaling pathways in metastatic progression of melanoma. In conclusion, this study demonstrated the crucial roles of Olig2 in apoptosis, migration, and invasion of melanoma and may help to further our understanding of the relationship between Olig2 and melanoma progression.


Assuntos
Melanoma/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/fisiologia , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Processos Neoplásicos , Transdução de Sinais
2.
J Neurosci ; 40(15): 3063-3074, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32139583

RESUMO

The cerebellum influences motor control through Purkinje target neurons, which transmit cerebellar output. Such output is required, for instance, for larval zebrafish to learn conditioned fictive swimming. The output cells, called eurydendroid neurons (ENs) in teleost fish, are inhibited by Purkinje cells and excited by parallel fibers. Here, we investigated the electrophysiological properties of glutamatergic ENs labeled by the transcription factor olig2. Action potential firing and synaptic responses were recorded in current clamp and voltage clamp from olig2+ neurons in immobilized larval zebrafish (before sexual differentiation) and were correlated with motor behavior by simultaneous recording of fictive swimming. In the absence of swimming, olig2+ ENs had basal firing rates near 8 spikes/s, and EPSCs and IPSCs were evident. Comparing Purkinje firing rates and eurydendroid IPSC rates indicated that 1-3 Purkinje cells converge onto each EN. Optogenetically suppressing Purkinje simple spikes, while preserving complex spikes, suggested that eurydendroid IPSC size depended on presynaptic spike duration rather than amplitude. During swimming, EPSC and IPSC rates increased. Total excitatory and inhibitory currents during sensory-evoked swimming were both more than double those during spontaneous swimming. During both spontaneous and sensory-evoked swimming, the total inhibitory current was more than threefold larger than the excitatory current. Firing rates of ENs nevertheless increased, suggesting that the relative timing of IPSCs and EPSCs may permit excitation to drive additional eurydendroid spikes. The data indicate that olig2+ cells are ENs whose activity is modulated with locomotion, suiting them to participate in sensorimotor integration associated with cerebellum-dependent learning.SIGNIFICANCE STATEMENT The cerebellum contributes to movements through signals generated by cerebellar output neurons, called eurydendroid neurons (ENs) in fish (cerebellar nuclei in mammals). ENs receive sensory and motor signals from excitatory parallel fibers and inhibitory Purkinje cells. Here, we report electrophysiological recordings from ENs of larval zebrafish that directly illustrate how synaptic inhibition and excitation are integrated by cerebellar output neurons in association with motor behavior. The results demonstrate that inhibitory and excitatory drive both increase during fictive swimming, but inhibition greatly exceeds excitation. Firing rates nevertheless increase, providing evidence that synaptic integration promotes cerebellar output during locomotion. The data offer a basis for comparing aspects of cerebellar coding that are conserved and that diverge across vertebrates.


Assuntos
Cerebelo/fisiologia , Neurônios/fisiologia , Fator de Transcrição 2 de Oligodendrócitos/fisiologia , Natação/fisiologia , Sinapses/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/fisiologia , Potenciais de Ação/fisiologia , Animais , Animais Geneticamente Modificados , Fenômenos Eletrofisiológicos/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Larva , Optogenética , Técnicas de Patch-Clamp , Células de Purkinje/fisiologia
3.
Neuromolecular Med ; 21(1): 75-84, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30178266

RESUMO

Cerebral palsy (CP) is a leading cause of neurological disability among young children. Congenial and adverse perinatal clinical conditions, such as genetic factors, perinatal infection, and asphyxia, are risk factors for CP. Oligodendrocyte transcription factor (OLIG2) is a protein that is expressed in brain oligodendrocyte cells and is involved in neuron repair after brain injury. In this study, we employed a Chinese Han cohort of 763 CP infants and 738 healthy controls to study the association of OLIG2 gene polymorphisms with CP. We found marginal association of the SNP rs6517135 with CP (p = 0.044) at the genotype level, and the association was greatly strengthened when we focused on the subgroup of CP infants who suffered from hypoxic-ischemic encephalopathy (HIE) after birth, with p = 0.003 (OR = 0.558) at the allele level and p = 0.007 at the genotype level, indicating a risk-associated role of the T allele of the SNP rs6517135 under HIE conditions. The haplotype CTTG for rs6517135-rs1005573-rs6517137-rs9653711 in OLIG2 was also significantly associated with the occurrence of CP in infants with HIE (p = 0.01, OR = 0.521). Our results indicate that in the Han Chinese population, the polymorphisms of OLIG2 were associated with CP, especially in patients who had suffered HIE injury. This finding could be used to develop personalized care for infants with high susceptibility to CP.


Assuntos
Povo Asiático/genética , Paralisia Cerebral/genética , Hipóxia-Isquemia Encefálica/complicações , Fator de Transcrição 2 de Oligodendrócitos/genética , Polimorfismo de Nucleotídeo Único , Alelos , Asfixia Neonatal/complicações , Estudos de Casos e Controles , Paralisia Cerebral/etiologia , Criança , Pré-Escolar , Feminino , Retardo do Crescimento Fetal/epidemiologia , Predisposição Genética para Doença , Genótipo , Haplótipos/genética , Humanos , Lactente , Recém-Nascido de Baixo Peso , Recém-Nascido , Recém-Nascido Prematuro , Doenças do Prematuro/epidemiologia , Doenças do Prematuro/genética , Masculino , Fator de Transcrição 2 de Oligodendrócitos/deficiência , Fator de Transcrição 2 de Oligodendrócitos/fisiologia , Oligodendroglia/metabolismo , Gravidez , Complicações na Gravidez/epidemiologia , Risco
4.
PLoS Biol ; 16(2): e2003127, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29389974

RESUMO

During tissue development, multipotent progenitors differentiate into specific cell types in characteristic spatial and temporal patterns. We addressed the mechanism linking progenitor identity and differentiation rate in the neural tube, where motor neuron (MN) progenitors differentiate more rapidly than other progenitors. Using single cell transcriptomics, we defined the transcriptional changes associated with the transition of neural progenitors into MNs. Reconstruction of gene expression dynamics from these data indicate a pivotal role for the MN determinant Olig2 just prior to MN differentiation. Olig2 represses expression of the Notch signaling pathway effectors Hes1 and Hes5. Olig2 repression of Hes5 appears to be direct, via a conserved regulatory element within the Hes5 locus that restricts expression from MN progenitors. These findings reveal a tight coupling between the regulatory networks that control patterning and neuronal differentiation and demonstrate how Olig2 acts as the developmental pacemaker coordinating the spatial and temporal pattern of MN generation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Ciclo Celular/genética , Neurônios Motores/citologia , Neurogênese/genética , Fator de Transcrição 2 de Oligodendrócitos/fisiologia , Proteínas Repressoras/fisiologia , Análise de Célula Única , Fatores de Transcrição HES-1/fisiologia , Transcriptoma , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Corantes Fluorescentes/metabolismo , Regulação da Expressão Gênica/fisiologia , Genes Reporter , Interneurônios/citologia , Camundongos Transgênicos , Fator de Transcrição 2 de Oligodendrócitos/genética , Receptores Notch/metabolismo , Sequências Reguladoras de Ácido Nucleico , Proteínas Repressoras/genética , Transdução de Sinais , Fatores de Transcrição HES-1/genética
5.
Med Sci Monit ; 23: 4834-4840, 2017 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-28989170

RESUMO

BACKGROUND The pathogenesis of schizophrenia is complex and oligodendrocyte abnormality is an important component of the pathogenesis found in schizophrenia. This study was designed to evaluate the function of olig2 in cuprizone-induced schizophrenia-like symptoms in a mouse model, and to assess the related mechanisms. MATERIAL AND METHODS The schizophrenia-like symptoms were modeled by administration of cuprizone in mice. Open-field and elevated-plus maze tests were applied to detect behavioral changes. Adenovirus encoding olig2 siRNA was designed to silence olig2 expression. Real-time PCR and western blotting were applied to detect myelin basic protein (MBP), 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), glial fibrillary acidic protein (GFAP) and olig2 expressions. RESULTS Open field test showed that the distance and time spent in the center area were significantly decreased in cuprizone mice (model mice) when compared with control mice (p<0.05). By contrast, olig2 silence could significantly increase the time and distance spent in the center area compared with the model mice (p<0.05). As revealed by elevated-plus maze test, the mice in the model group preferred the open arm and spent more time and distance in the open arm compared with control mice (p<0.05), while olig2 silence significantly reversed the abnormalities (p<0.05). Mechanically, MBP and CNPase expression were reduced in the model group compared with the control (p<0.05). However, olig2 silence reversed the reduction caused by cuprizone modeling (p<0.05). In addition, GFAP was elevated after cuprizone modeling compared with control (p<0.05), and was significantly inhibited by olig2 silence compared with model (p<0.05). CONCLUSIONS Cuprizone-induced schizophrenia-like symptoms involved olig2 upregulation. The silence of olig2 could prevent changes, likely through regulating MBP, CNPase, and GFAP expressions.


Assuntos
Fator de Transcrição 2 de Oligodendrócitos/uso terapêutico , Esquizofrenia/metabolismo , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/análise , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Encéfalo/patologia , Cuprizona/administração & dosagem , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/análise , Proteína Glial Fibrilar Ácida/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína Básica da Mielina/análise , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/análise , Fator de Transcrição 2 de Oligodendrócitos/fisiologia , Oligodendroglia/patologia , Oligodendroglia/fisiologia , Esquizofrenia/induzido quimicamente , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...