Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.803
Filtrar
1.
Mol Med Rep ; 30(2)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38940327

RESUMO

Osteoarthritis (OA) is a chronic disease that involves chondrocyte injury. ADAMTS5 has been confirmed to mediate chondrocyte injury and thus regulate OA progression, but its underlying molecular mechanisms remain unclear. In the present study, interleukin­1ß (IL­1ß)­induced chondrocytes were used to mimic OA in vitro. Cell proliferation and apoptosis were assessed by MTT assay, EdU assay and flow cytometry, and protein levels of ADAMTS5, specificity protein 1 (SP1), matrix­related markers and Wnt/ß­catenin pathway­related markers were examined using western blotting. In addition, ELISA was performed to measure the concentrations of inflammation factors, and oxidative stress was evaluated by detecting SOD activity and MDA levels. The mRNA expression levels of ADAMTS5 and SP1 were determined by reverse transcription­quantitative PCR, and the interaction between SP1 and ADAMTS5 was analyzed using a dual­luciferase reporter assay and chromatin immunoprecipitation assay. IL­1ß suppressed proliferation, but promoted apoptosis, extracellular matrix degradation, inflammation and oxidative stress in chondrocytes. ADAMTS5 was upregulated in IL­1ß­induced chondrocytes, and its knockdown alleviated IL­1ß­induced chondrocyte injury. SP1 could bind to the ADAMTS5 promoter region to promote its transcription, and SP1 knockdown relieved IL­1ß­induced chondrocyte injury by reducing ADAMTS5 expression. The SP1/ADAMTS5 axis activated the Wnt/ß­catenin pathway, and the Wnt/ß­catenin pathway agonist, SKL2001, reversed the protective effect of ADAMTS5 knockdown on chondrocyte injury induced by IL­1ß. To the best of our knowledge, the present study was the first to reveal the interaction between SP1 and ADAMTS5 in OA progression and indicated that the SP1/ADAMTS5 axis mediates OA progression by regulating the Wnt/ß­catenin pathway.


Assuntos
Proteína ADAMTS5 , Condrócitos , Interleucina-1beta , Osteoartrite , Fator de Transcrição Sp1 , Via de Sinalização Wnt , Condrócitos/metabolismo , Condrócitos/patologia , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp1/genética , Proteína ADAMTS5/metabolismo , Proteína ADAMTS5/genética , Interleucina-1beta/metabolismo , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/genética , Humanos , Proliferação de Células , Apoptose , Estresse Oxidativo , beta Catenina/metabolismo
2.
Cancer Biol Ther ; 25(1): 2361594, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38857058

RESUMO

P4HA2 has been implicated in various malignant tumors; however, its expression and functional role in colorectal cancer (CRC) remain poorly elucidated. This study aims to investigate the involvement of P4HA2 in CRC metastasis and progression, uncovering the underlying mechanisms. In colorectal cancer (CRC), P4HA2 exhibited overexpression, and elevated levels of P4HA2 expression were associated with an unfavorable prognosis. Functional assays demonstrated P4HA2's regulation of cell proliferation, and epithelial-mesenchymal transition (EMT) both in vitro and in vivo. Additionally, the AGO1 expression was correlated with P4HA2, and depletion of AGO1 reversed the proliferation and EMT function induced by P4HA2. Chromatin immunoprecipitation (ChIP) and luciferase assays suggested that the transcription factor SP1 binds to the promoter sequence of P4HA2, activating its expression in CRC. This study unveiled SP1 as a transcriptional regulator of P4HA2 in CRC and AGO1 is a probable target of P4HA2. In conclusion, P4HA2 emerges as a potential prognostic biomarker and promising therapeutic target in colorectal cancer.


Assuntos
Neoplasias Colorretais , Progressão da Doença , Transição Epitelial-Mesenquimal , Fator de Transcrição Sp1 , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp1/genética , Camundongos , Animais , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Prognóstico , Masculino , Feminino , Linhagem Celular Tumoral , Camundongos Nus
3.
Cancer Lett ; 595: 217025, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-38844063

RESUMO

Despite the confirmed role of LKB1 in suppressing lung cancer progression, its precise effect on cellular senescence is unknown. The aim of this research was to clarify the role and mechanism of LKB1 in restraining telomerase activity in lung adenocarcinoma. The results showed that LKB1 induced cellular senescence and apoptosis either in vitro or in vivo. Overexpression of LKB1 in LKB1-deficient A549 cells led to the inhibition of telomerase activity and the induction of telomere dysfunction by regulating telomerase reverse transcriptase (TERT) expression in terms of transcription. As a transcription factor, Sp1 mediated TERT inhibition after LKB1 overexpression. LKB1 induced lactate production and inhibited histone H4 (Lys8) and H4 (Lys16) lactylation, which further altered Sp1-related transcriptional activity. The telomerase inhibitor BIBR1532 was beneficial for achieving the optimum curative effect of traditional chemotherapeutic drugs accompanied by the glycolysis inhibitor 2DG. These data reveal a new mechanism by which LKB1 regulates telomerase activity through lactylation-dependent transcriptional inhibition, and therefore, provide new insights into the effects of LKB1-mediated senescence in lung adenocarcinoma. Our research has opened up new possibilities for the creation of new cancer treatments.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP , Adenocarcinoma de Pulmão , Senescência Celular , Histonas , Neoplasias Pulmonares , Proteínas Serina-Treonina Quinases , Fator de Transcrição Sp1 , Telomerase , Animais , Humanos , Camundongos , Células A549 , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/tratamento farmacológico , Quinases Proteína-Quinases Ativadas por AMP/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Camundongos Nus , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp1/genética , Telomerase/metabolismo , Telomerase/genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Virol ; 98(6): e0170523, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38742902

RESUMO

Long non-coding RNAs (lncRNAs) represent a new group of host factors involved in viral infection. Current study identified an intergenic lncRNA, LINC08148, as a proviral factor of Zika virus (ZIKV) and Dengue virus 2 (DENV2). Knockout (KO) or silencing of LINC08148 decreases the replication of ZIKV and DENV2. LINC08148 mainly acts at the endocytosis step of ZIKV but at a later stage of DENV2. RNA-seq analysis reveals that LINC08148 knockout downregulates the transcription levels of five endocytosis-related genes including AP2B1, CHMP4C, DNM1, FCHO1, and Src. Among them, loss of Src significantly decreases the uptake of ZIKV. Trans-complementation of Src in the LINC08148KO cells largely restores the caveola-mediated endocytosis of ZIKV, indicating that the proviral effect of LINC08148 is exerted through Src. Finally, LINC08148 upregulates the Src transcription through associating with its transcription factor SP1. This work establishes an essential role of LINC08148 in the ZIKV entry, underscoring a significance of lncRNAs in the viral infection. IMPORTANCE: Long non-coding RNAs (lncRNAs), like proteins, participate in viral infection. However, functions of most lncRNAs remain unknown. In this study, we performed a functional screen based on microarray data and identified a new proviral lncRNA, LINC08148. Then, we uncovered that LINC08148 is involved in the caveola-mediated endocytosis of ZIKV, rather than the classical clathrin-mediated endocytosis. Mechanistically, LINC08148 upregulates the transcription of Src, an initiator of caveola-mediated endocytosis, through binding to its transcription factor SP1. This study identifies a new lncRNA involved in the ZIKV infection, suggesting lncRNAs and cellular proteins are closely linked and cooperate to regulate viral infection.


Assuntos
Endocitose , RNA Longo não Codificante , Internalização do Vírus , Infecção por Zika virus , Zika virus , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , Zika virus/genética , Zika virus/fisiologia , Humanos , Infecção por Zika virus/virologia , Infecção por Zika virus/metabolismo , Infecção por Zika virus/genética , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp1/genética , Cavéolas/metabolismo , Animais , Replicação Viral , Regulação para Cima , Vírus da Dengue/fisiologia , Vírus da Dengue/genética , Chlorocebus aethiops , Células HEK293 , Células Vero , Quinases da Família src/metabolismo , Quinases da Família src/genética
5.
Pathol Res Pract ; 259: 155369, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38820928

RESUMO

Bladder cancer is a common malignancy with a poor prognosis worldwide. Positive cofactor 4 (PC4) is widely reported to promote malignant phenotypes in various tumors. Nonetheless, the biological function and mechanism of PC4 in bladder cancer remain unclear. Here, for the first time, we report that PC4 is elevated in bladder cancer and is associated with patient survival. Moreover, PC4 deficiency obviously inhibited bladder cancer cell proliferation and metastasis by reducing the expression of genes related to cancer stemness (CD44, CD47, KLF4 and c-Myc). Through RNA-seq and experimental verification, we found that activation of the Wnt5a/ß-catenin pathway is involved in the malignant function of PC4. Mechanistically, PC4 directly interacts with Sp1 to promote Wnt5a transcription. Thus, our study furthers our understanding of the role of PC4 in cancer stemness regulation and provides a promising strategy for bladder cancer therapy.


Assuntos
Regulação Neoplásica da Expressão Gênica , Fator 4 Semelhante a Kruppel , Células-Tronco Neoplásicas , Neoplasias da Bexiga Urinária , Proteína Wnt-5a , Animais , Humanos , Camundongos , beta Catenina/metabolismo , beta Catenina/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Progressão da Doença , Fator 4 Semelhante a Kruppel/metabolismo , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp1/genética , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Via de Sinalização Wnt/fisiologia , Via de Sinalização Wnt/genética , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genética
6.
Sci China Life Sci ; 67(7): 1468-1478, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38703348

RESUMO

Dietary exposure to aflatoxin B1 (AFB1) is harmful to the health and performance of domestic animals. The hepatic cytochrome P450s (CYPs), CYP1A1 and CYP2A6, are the primary enzymes responsible for the bioactivation of AFB1 to the highly toxic exo-AFB1-8,9-epoxide (AFBO) in chicks. However, the transcriptional regulation mechanism of these CYP genes in the liver of chicks in AFB1 metabolism remains unknown. Dual-luciferase reporter assay, bioinformatics and site-directed mutation results indicated that specificity protein 1 (SP1) and activator protein-1 (AP-1) motifs were located in the core region -1,063/-948, -606/-541 of the CYP1A1 promoter as well as -636/-595, -503/-462, -147/-1 of the CYP2A6 promoter. Furthermore, overexpression and decoy oligodeoxynucleotide technologies demonstrated that SP1 and AP-1 were pivotal transcriptional activators regulating the promoter activity of CYP1A1 and CYP2A6. Moreover, bioactivation of AFB1 to AFBO could be increased by upregulation of CYP1A1 and CYP2A6 expression, which was trans-activated owing to the upregulalion of AP-1, rather than SP1, stimulated by AFB1-induced reactive oxygen species. Additionally, nano-selenium could reduce ROS, downregulate AP-1 expression and then decrease the expression of CYP1A1 and CYP2A6, thus alleviating the toxicity of AFB1. In conclusion, AP-1 and SP1 played important roles in the transactivation of CYP1A1 and CYP2A6 expression and further bioactivated AFB1 to AFBO in chicken liver, which could provide novel targets for the remediation of aflatoxicosis in chicks.


Assuntos
Aflatoxina B1 , Galinhas , Citocromo P-450 CYP1A1 , Citocromo P-450 CYP2A6 , Fígado , Regiões Promotoras Genéticas , Fator de Transcrição Sp1 , Fator de Transcrição AP-1 , Animais , Aflatoxina B1/metabolismo , Galinhas/metabolismo , Fígado/metabolismo , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp1/genética , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição AP-1/genética , Citocromo P-450 CYP2A6/metabolismo , Citocromo P-450 CYP2A6/genética , Ativação Transcricional
7.
Exp Cell Res ; 438(2): 114050, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38663474

RESUMO

Myocardial infarction (MI) is a potentially fatal disease that causes a significant number of deaths worldwide. The strategy of increasing fatty acid oxidation in myocytes is considered a therapeutic avenue to accelerate metabolism to meet energy demands. We conducted the study aiming to investigate the effect of KN-93, which induces histone deacetylase (HDAC)4 shuttling to the nucleus, on fatty acid oxidation and the expression of related genes. A mouse model of myocardial infarction was induced by isoprenaline administration. Heart damage was assessed by the detection of cardiac injury markers. The level of fatty acid oxidation level was evaluated by testing the expression of related genes. Both immunofluorescence and immunoblotting in the cytosol or nucleus were utilized to observe the distribution of HDAC4. The interaction between HDAC4 and specificity protein (SP)1 was confirmed by co-immunoprecipitation. The acetylation level of SP1 was tested after KN-93 treatment and HDAC4 inhibitor. Oxygen consumption rate and immunoblotting experiments were used to determine whether the effect of KN-93 on increasing fatty acid oxidation is through HDAC4 and SP1. Administration of KN-93 significantly reduced cardiac injury in myocardial infarction and promoted fatty acid oxidation both in vitro and in vivo. KN-93 was shown to mediate nuclear translocation of HDAC4. HDAC4 was found to interact with SP1 and reduce SP1 acetylation. HDAC4 or SP1 inhibitors attenuated the effect of KN-93 on fatty acid oxidation. In conclusion, KN-93 promotes HDAC4 translocation to the nucleus, thereby potentially enhancing fatty acid oxidation by SP1.


Assuntos
Núcleo Celular , Ácidos Graxos , Histona Desacetilases , Infarto do Miocárdio , Oxirredução , Animais , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Ácidos Graxos/metabolismo , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Camundongos , Oxirredução/efeitos dos fármacos , Núcleo Celular/metabolismo , Masculino , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Camundongos Endogâmicos C57BL , Humanos , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp1/genética , Acetilação/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/efeitos dos fármacos
8.
Fish Shellfish Immunol ; 149: 109561, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636738

RESUMO

Toll-interacting protein (Tollip) serves as a crucial inhibitory factor in the modulation of Toll-like receptor (TLR)-mediated innate immunological responses. The structure and function of Tollip have been well documented in mammals, yet the information in teleost remained limited. This work employed in vitro overexpression and RNA interference in vivo and in vitro to comprehensively examine the regulatory effects of AjTollip on NF-κB and MAPK signaling pathways. The levels of p65, c-Fos, c-Jun, IL-1, IL-6, and TNF-α were dramatically reduced following overexpression of AjTollip, whereas knocking down AjTollip in vivo and in vitro enhanced those genes' expression. Protein molecular docking simulations showed AjTollip interacts with AjTLR2, AjIRAK4a, and AjIRAK4b. A better understanding of the transcriptional regulation of AjTollip is crucial to elucidating the role of Tollip in fish antibacterial response. Herein, we cloned and characterized a 2.2 kb AjTollip gene promoter sequence. The transcription factors GATA1 and Sp1 were determined to be associated with the activation of AjTollip expression by using promoter truncation and targeted mutagenesis techniques. Collectively, our results indicate that AjTollip suppresses the NF-κB and MAPK signaling pathways, leading to the decreased expression of the downstream inflammatory factors, and GATA1 and Sp1 play a vital role in regulating AjTollip expression.


Assuntos
Anguilla , Proteínas de Peixes , Fator de Transcrição GATA1 , NF-kappa B , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , NF-kappa B/metabolismo , NF-kappa B/genética , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Anguilla/genética , Anguilla/imunologia , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/química , Transdução de Sinais
9.
Int Immunopharmacol ; 132: 112002, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608473

RESUMO

BACKGROUND: Renal ischemia-reperfusion is the primary cause of acute kidney injury (AKI). Clinically, most patients who experience ischemia-reperfusion injury eventually progress gradually to renal fibrosis and chronic kidney disease (CKD). However, the underlying mechanism for AKI to CKD transition remain absent. Our study demonstrated that the downregulation of sirtuin 1 (Sirt1)-mediated fatty acid oxidation (FAO) facilitates IRI-induced renal fibrosis. METHODS: The IRI animal model was established, and ribonucleic acid (RNA) sequencing was used to explore potential differentially expressed genes (DEGs) and pathways. The SIRT1 knockout mice were generated, and a recombinant adeno-associated virus that overexpresses SIRT1 was injected into mice to explore the function of SIRT1 in renal fibrosis induced by renal IRI. In vitro, hypoxia/reoxygenation (H/R) was used to establish the classical model of renal IRI and overexpression or knockdown of SIRT1 to investigate the SIRT1 function through lentiviral plasmids. The underlying molecular mechanism was explored through RNA sequencing, bioinformatics analysis, and chromatin immunoprecipitation assay. RESULTS: RNA sequencing analysis and western blot demonstrated that the expression of SIRT1 was significantly decreased in IRI mice. Overexpression of SIRT1 improved renal function and reduced lipid deposition and renal fibrosis. On the contrary, knockout of SIRT1 aggravated kidney injury and renal fibrosis. RNA sequencing, bioinformatics analysis, and chromatin immunoprecipitation assay mechanistically revealed that SIRT1 impairs the acetylation of histone H3K27 on the promoter region of ACLY, thereby impeding FAO activity and promoting renal fibrosis. Additionally, SP1 regulated FAO by directly modulating SIRT1 expression. CONCLUSION: Our findings highlight that downregulation of SIRT1-modulated FAO facilitated by the SP1/SIRT1/ACLY axis in the kidney increases IRI, suggesting SIRT1 to be a potential therapeutic target for renal fibrosis induced by renal IRI.


Assuntos
Ácidos Graxos , Fibrose , Rim , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Traumatismo por Reperfusão , Transdução de Sinais , Sirtuína 1 , Fator de Transcrição Sp1 , Animais , Sirtuína 1/metabolismo , Sirtuína 1/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Ácidos Graxos/metabolismo , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp1/genética , Camundongos , Rim/patologia , Rim/metabolismo , Masculino , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/genética , Humanos , Modelos Animais de Doenças
10.
Parasit Vectors ; 17(1): 189, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632598

RESUMO

BACKGROUND: Toxoplasma gondii, an obligate intracellular parasitic protozoa, infects approximately 30% of the global population. Contracting T. gondii at the primary infection of the mother can result in neonatal microcephaly, chorioretinitis, hydrocephalus, or mortality. Our previous study indicated that pregnant mice infected with T. gondii displayed a decrease in both the number and the suppressive ability of regulatory T cells, accompanied by the reduced Forkhead box P3 (Foxp3). Numerous studies have proved that microRNAs (miRNAs) are implicated in T. gondii infection, but there is meager evidence on the relationship between alterations of miRNAs and downregulation of Foxp3 induced by T. gondii. METHODS: Quantitative reverse transcription polymerase chain reaction was utilized to detect the transcriptions of miRNAs and Foxp3. Protein blotting and immunofluorescence were used to detect the expressions of Foxp3 and related transcription factors. The structure of mouse placenta was observed by hematoxylin and eosin (HE) staining. To examine the activity of miR-7b promoter and whether miR-7b-5p targets Sp1 to suppress Foxp3 expression, we constructed recombinant plasmids containing the full-length/truncated/mutant miR-7b promoter sequence or wildtype/mutant of Sp1 3' untranslated region (3' UTR) to detect the fluorescence activity in EL4 cells. RESULTS: In T. gondii-infected mice, miR-7b transcription was significantly elevated, while Foxp3 expression was decreased in the placenta. In vitro, miR-7b mimics downregulated Foxp3 expression, whereas its inhibitors significantly upregulated Foxp3 expression. miR-7b promoter activity was elevated upon the stimulation of T. gondii antigens, which was mitigated by co-transfection of mutant miR-7b promoter lacking peroxisome proliferator-activated receptor γ (PPARγ) target sites. Additionally, miR-7b mimics diminished Sp1 expression, while miR-7b inhibitors elevated its expression. miR-7b mimics deceased the fluorescence activity of Sp1 3' untranslated region (3' UTR), but it failed to impact the fluorescence activity upon the co-transfection of mutant Sp1 3' UTR lacking miR-7b target site. CONCLUSIONS: T. gondii infection and antigens promote miR-7b transcription but inhibit Foxp3 protein and gene levels. T. gondii antigens promote miR-7b promoter activity by a PPARγ-dependent mechanism. miR-7b directly binds to Sp1 3' UTR to repress Sp1 expression. Understanding the regulatory functions by which T. gondii-induced miR-7b suppresses Foxp3 expression can provide new perspectives for the possible therapeutic avenue of T. gondii-induced adverse pregnancy outcomes.


Assuntos
Fatores de Transcrição Forkhead , MicroRNAs , Toxoplasma , Animais , Feminino , Camundongos , Gravidez , Regiões 3' não Traduzidas , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , MicroRNAs/genética , Placenta/metabolismo , Placenta/parasitologia , Placenta/patologia , PPAR gama/genética , PPAR gama/metabolismo , Transdução de Sinais , Toxoplasma/patogenicidade , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Toxoplasmose/genética , Toxoplasmose/metabolismo , Toxoplasmose/parasitologia
11.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167140, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38548092

RESUMO

Heart failure (HF) is one of the major causes of death among diabetic patients. Although studies have shown that curcumin analog C66 can remarkably relieve diabetes-associated cardiovascular and kidney complications, the role of SJ-12, SJ-12, a novel curcumin analog, in diabetic cardiomyopathy and its molecular targets are unknown. 7-week-old male C57BL/6 mice were intraperitoneally injected with single streptozotocin (STZ) (160 mg/kg) to develop diabetic cardiomyopathy (DCM). The diabetic mice were then treated with SJ-12 via gavage for two months. Body weight, fast blood glucose, cardiac utrasonography, myocardial injury markers, pathological morphology of the heart, hypertrophic and fibrotic markers were assessed. The potential target of SJ-12 was evaluated via RNA-sequencing analysis. The O-GlcNAcylation levels of SP1 were detected via immunoprecipitation. SJ-12 effectively suppressed myocardial hypertrophy and fibrosis, thereby preventing heart dysfunction in mice with STZ-induced heart failure. RNA-sequencing analysis revealed that SJ-12 exerted its therapeutic effects through the modulation of the calcium signaling pathway. Furthermore, SJ-12 reduced the O-GlcNAcylation levels of SP1 by inhibiting O-linked N-acetylglucosamine transferase (OGT). Also, SJ-12 stabilized Sarcoplasmic/Endoplasmic Reticulum Calcium ATPase 2a (SERCA2a), a crucial regulator of calcium homeostasis, thus reducing hypertrophy and fibrosis in mouse hearts and cultured cardiomyocytes. However, the anti-fibrotic effects of SJ-12 were not detected in SERCA2a or OGT-silenced cardiomyocytes, indicating that SJ-12 can prevent DCM by targeting OGT-dependent O-GlcNAcylation of SP1.These findings indicate that SJ-12 can exert cardioprotective effects in STZ-induced mice by reducing the O-GlcNAcylation levels of SP1, thus stabilizing SERCA2a and reducing myocardial fibrosis and hypertrophy. Therefore, SJ-12 can be used for the treatment of diabetic cardiomyopathy.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Camundongos Endogâmicos C57BL , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Animais , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/tratamento farmacológico , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Masculino , Camundongos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/tratamento farmacológico , Estreptozocina , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fibrose , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp1/genética , Sinalização do Cálcio/efeitos dos fármacos
12.
Oncogene ; 43(18): 1386-1396, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467852

RESUMO

Clear cell renal cell carcinoma (ccRCC) presents a unique profile characterized by high levels of angiogenesis and robust vascularization. Understanding the underlying mechanisms driving this heterogeneity is essential for developing effective therapeutic strategies. This study revealed that ubiquitin B (UBB) is downregulated in ccRCC, which adversely affects the survival of ccRCC patients. UBB exerts regulatory control over vascular endothelial growth factor A (VEGFA) by directly interacting with specificity protein 1 (SP1), consequently exerting significant influence on angiogenic processes. Subsequently, we validated that DNA methyltransferase 3 alpha (DNMT3A) is located in the promoter of UBB to epigenetically inhibit UBB transcription. Additionally, we found that an unharmonious UBB/VEGFA ratio mediates pazopanib resistance in ccRCC. These findings underscore the critical involvement of UBB in antiangiogenic therapy and unveil a novel therapeutic strategy for ccRCC.


Assuntos
Carcinoma de Células Renais , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais , Neovascularização Patológica , Fator de Transcrição Sp1 , Fator A de Crescimento do Endotélio Vascular , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/irrigação sanguínea , Carcinoma de Células Renais/tratamento farmacológico , Humanos , Neoplasias Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/irrigação sanguínea , Neoplasias Renais/metabolismo , Neoplasias Renais/tratamento farmacológico , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp1/genética , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Linhagem Celular Tumoral , Animais , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Indazóis/farmacologia , Indazóis/uso terapêutico , DNA Metiltransferase 3A/metabolismo , Sulfonamidas/farmacologia , Camundongos , Ubiquitina/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regiões Promotoras Genéticas , Feminino , Masculino , Angiogênese
13.
Neuroscience ; 544: 50-63, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38387733

RESUMO

The M1 polarization of microglia, followed by the production of pro-inflammatory mediators, hinders functional recovery after spinal cord injury (SCI). Our previous study has illuminated that specificity protein 1 (Sp1) expression is increased following SCI, whereas the function and regulatory mechanism of Sp1 during M1 polarization of microglia following SCI remain unknown. RNA binding protein, HuR, has been shown to be up-regulated in the injured spinal cord through analysis of the GEO database. Further investigation using Chip-Atlas data suggests a binding between Sp1 and HuR. Emerging evidence indicates that HuR plays a pivotal role in neuroinflammation after SCI. In this research, Sp1 and HuR levels in mice with SCI and BV2 cells treated with lipopolysaccharide (LPS) was determined by using quantitative real-time polymerase chain reaction and Western blotting techniques. A series of in vitro assays were performed to investigate the function of Sp1 during M1 polarization of microglia. The association between Sp1 and its target gene HuR was confirmed through gene transfection and luciferase reporter assay. Enhanced expression of HuR was observed in both SCI mice and LPS-treated BV2 cells, while Sp1 knockdown restrained M1 polarization of microglia and its associated inflammation by inhibiting the NF-κB signaling pathway. Silencing Sp1 also suppressed microglia activation and its mediated inflammatory response, which could be reversed by overexpression of HuR. In conclusion, silencing Sp1 restrains M1 polarization of microglia through the HuR/NF-κB axis, leading to neuroprotection, and thus promotes functional restoration following SCI.


Assuntos
NF-kappa B , Fator de Transcrição Sp1 , Traumatismos da Medula Espinal , Animais , Camundongos , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Microglia/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo
14.
Clin Respir J ; 18(1): e13734, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38286742

RESUMO

OBJECTIVE: Non-small cell lung cancer (NSCLC) occupies 85% of lung cancer. Long non-coding RNAs (LncRNAs) can regulate the radiosensitivity of cancers. This study explored the mechanism of lncRNA TRERNA1 in the radiosensitivity of NSCLC cells. METHODS: LncRNA TRERNA1 level in NSCLC cell lines was determined. NSCLC cell radiation tolerance was measured. TRERNA1 expression was silenced or overexpressed in A549/HCC827 cells with the highest/lowest radiation tolerance, respectively. The contents of γ-H2AX and SA-ß-gal in NSCLC cells after radiation induction were detected. The targeted binding of TRERNA1 to miR-22-3p and miR-22-3p to SP1 were verified by dual-luciferase assay. SP1 expression were detected. Functional rescue experiments were implemented to confirm the roles of miR-22-3p and SP1 in the regulatory mechanism of TRERNA1. RESULTS: TRERNA1 was upregulated in NSCLC cells. TRERNA1 silencing enhanced radiosensitivity of NSCLC cells. TRERNA1 silencing elevated the contents of γ-H2AX and SA-ß-gal in A549 cells after radiation induction, while TRERNA1 overexpression showed an opposite trend in HCC827 cells. There were targeting relationships between TRERNA1 and miR-22-3p, and miR-22-3p and SP1. miR-22-3p repression or SP1 overexpression abolished the effects of TRERNA1 silencing. CONCLUSION: TRERNA1 silencing enhanced radiosensitivity of NSCLC cells via the miR-22-3p/SP1 axis. This study may offer new targets for NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/metabolismo , MicroRNAs/genética , Tolerância a Radiação/genética , RNA Longo não Codificante/genética , Fator de Transcrição Sp1/genética
15.
J Mol Biol ; 436(2): 168359, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37952768

RESUMO

Nucleic acid sequences containing guanine tracts are able to form non-canonical DNA or RNA structures known as G-quadruplexes (or G4s). These structures, based on the stacking of G-tetrads, are involved in various biological processes such as gene expression regulation. Here, we investigated a G4 forming sequence, HIVpro2, derived from the HIV-1 promoter. This motif is located 60 nucleotides upstream of the proviral Transcription Starting Site (TSS) and overlaps with two SP1 transcription factor binding sites. Using NMR spectroscopy, we determined that HIVpro2 forms a hybrid type G4 structure with a core that is interrupted by a single nucleotide bulge. An additional reverse-Hoogsteen AT base pair is stacked on top of the tetrad. SP1 transcription factor is known to regulate transcription activity of many genes through the recognition of Guanine-rich duplex motifs. Here, the formation of HIVpro2 G4 may modulate SP1 binding sites architecture by competing with the formation of the canonical duplex structure. Such DNA structural switch potentially participates to the regulation of viral transcription and may also interfere with HIV-1 reactivation or viral latency.


Assuntos
Quadruplex G , HIV-1 , Fator de Transcrição Sp1 , Sítios de Ligação , DNA/química , Guanina/química , HIV-1/genética , HIV-1/metabolismo , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Humanos , Regulação Viral da Expressão Gênica
16.
J Biol Chem ; 300(2): 105605, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159857

RESUMO

Prolidase (PEPD) is the only hydrolase that cleaves the dipeptides containing C-terminal proline or hydroxyproline-the rate-limiting step in collagen biosynthesis. However, the molecular regulation of prolidase expression remains largely unknown. In this study, we have identified overlapping binding sites for the transcription factors Krüppel-like factor 6 (KLF6) and Specificity protein 1 (Sp1) in the PEPD promoter and demonstrate that KLF6/Sp1 transcriptionally regulate prolidase expression. By cloning the PEPD promoter into a luciferase reporter and through site-directed deletion, we pinpointed the minimal sequences required for KLF6 and Sp1-mediated PEPD promoter-driven transcription. Interestingly, Sp1 inhibition abrogated KLF6-mediated PEPD promoter activity, suggesting that Sp1 is required for the basal expression of prolidase. We further studied the regulation of PEPD by KLF6 and Sp1 during transforming growth factor ß1 (TGF-ß1) signaling, since both KLF6 and Sp1 are key players in TGF-ß1 mediated collagen biosynthesis. Mouse and human fibroblasts exposed to TGF-ß1 resulted in the induction of PEPD transcription and prolidase expression. Inhibition of TGF-ß1 signaling abrogated PEPD promoter-driven transcriptional activity of KLF6 and Sp1. Knock-down of KLF6 as well as Sp1 inhibition also reduced prolidase expression. Chromatin immunoprecipitation assay supported direct binding of KLF6 and Sp1 to the PEPD promoter and this binding was enriched by TGF-ß1 treatment. Finally, immunofluorescence studies showed that KLF6 co-operates with Sp1 in the nucleus to activate prolidase expression and enhance collagen biosynthesis. Collectively, our results identify functional elements of the PEPD promoter for KLF6 and Sp1-mediated transcriptional activation and describe the molecular mechanism of prolidase expression.


Assuntos
Dipeptidases , Fator 6 Semelhante a Kruppel , Transdução de Sinais , Fator de Transcrição Sp1 , Animais , Humanos , Camundongos , Colágeno/metabolismo , Fator 6 Semelhante a Kruppel/genética , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
17.
Transl Vis Sci Technol ; 12(12): 5, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38051266

RESUMO

Purpose: To investigate the function and mechanism of tumor protein p53 in pathological scarring after glaucoma filtration surgery (GFS) using human Tenon's fibroblasts (HTFs) and a rabbit GFS model. Methods: The expression of p53 in bleb scarring after GFS and transforming growth factor-ß (TGF-ß)-induced HTFs (myofibroblasts [MFs]) was examined by western blot and immunochemical analysis. The interaction between p53 and specificity protein 1 (Sp1) was investigated by immunoprecipitation. The role of p53 and Sp1 in the accumulation of collagen type I alpha 1 chain (COL1A1) and the migration of MFs was evaluated by western blot, quantitative real-time polymerase chain reaction (qRT-PCR), wound healing, and Transwell assay. The regulatory mechanisms among p53/Sp1 and miR-29b were detected via qRT-PCR, western blot, luciferase reporter assay, and chromatin immunoprecipitation assay. The therapeutic effect of mithramycin A, a specific inhibitor of Sp1, on scarring formation was evaluated in a rabbit GFS model. Results: p53 was upregulated in bleb scar tissue and MFs. p53 and Sp1 form a transcription factor complex that induces the accumulation of COL1A1 and promotes the migration of MFs through downregulation of miR-29b, a known suppressor of COL1A1. The p53/Sp1 axis inhibits miR-29b expression by the direct binding promoter of the miR-29b gene. Mithramycin A treatment attenuated bleb scar formation in vivo. Conclusions: The p53/Sp1/miR-29b signaling pathway plays a critical role in bleb scar formation after GFS. This pathway could be targeted for therapeutic intervention of pathological scarring after GFS. Translational Relevance: Our research indicates that inhibition of p53/Sp1/miR-29b is a promising therapeutic strategy for preventing post-GFS pathological scarring.


Assuntos
Cirurgia Filtrante , Glaucoma , MicroRNAs , Animais , Humanos , Coelhos , Cicatriz/genética , Regulação para Baixo , MicroRNAs/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Glaucoma/cirurgia , Glaucoma/genética , Cirurgia Filtrante/efeitos adversos , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo
18.
Anticancer Res ; 43(11): 4897-4904, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37909980

RESUMO

BACKGROUND/AIM: The transcription factors NFATc2 and Sp1 play a key role in the progression of pancreatic cancer because they interact inside the cells and exert their carcinogenic effect through transcriptional modification. Drugs can also induce a variety of oncogenic signalling cascades. The risk of tumour progression and metastasis seems to be significantly increased in the perioperative period. Our research group has previously demonstrated the function of the interaction between NFATc2 and Sp1 in pancreatic cancer and has identified the proto-oncogene cFos as a target gene. We also found that the anaesthetic drug propofol has anti-tumour properties. The aim of the present study was to investigate the effect of propofol on the expression of the transcription factors NFATc2, Sp1 and cFos in the pancreatic cancer cell lines PaTu 8988t and PANC-1 and to analyse the relevance of this effect for the cells. MATERIALS AND METHODS: Stimulation with propofol and its effects on the expression of NFATc2, Sp1 and cFos were assessed by immunoblot. Cell cycle distribution was analysed by flow cytometry, and cell proliferation was measured with the ELISA BrdU assay. Propofol and siRNA against cFos were used for stimulation. RESULTS: Propofol regulated the expression of NFATc2, Sp1 and cFos. Stimulation with 250 µM or 500 µM propofol decreased NFATc2, Sp1 and cFos signalling in the Western blot analysis. At the same time, propofol significantly inhibited proliferation and activated cell cycle. The same proliferation behaviour was observed after transient cFos inhibition. These effects were potentiated by simultaneous stimulation with propofol and transient inhibition of cFos, further inhibiting cell proliferation. Interestingly, the cell cycle activation observed after stimulation with propofol alone was reversed in both cell lines. CONCLUSION: Anaesthetists only see oncological patients in a short time window. However, the perioperative period is increasingly recognised as a very vulnerable time with a major impact on tumour progression. Further studies are needed to identify the underlying mechanisms and to verify their clinical relevance, especially in anaesthesia.


Assuntos
Neoplasias Pancreáticas , Propofol , Humanos , Pâncreas , Neoplasias Pancreáticas/genética , Propofol/farmacologia , Fator de Transcrição Sp1/genética , Fatores de Transcrição , Neoplasias Pancreáticas
19.
Cancer Genomics Proteomics ; 20(6suppl): 706-711, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38035702

RESUMO

BACKGROUND/AIM: One in two people will develop a tumor during their lifetime. Adenocarcinoma of the pancreas is one of the most aggressive types of cancer in humans with very poor long-term survival. A central role in the carcinogenesis of pancreatic cancer has been attributed to NFAT transcription factors. Previous studies have identified the transcription factor Sp1 as a binding partner of NFATc2 in pancreatic cancer. Using expression profile analysis, our group was able to identify the tumor necrosis factor TNFalpha as a target gene of the interaction between NFATc2 and Sp1. The present study investigated the effect of TNFalpha over-expression via the transcription factors NFATc2 and Sp1 on the pancreatic cancer cell lines PaTu 8988t and PANC-1. MATERIALS AND METHODS: Transient transfection of NFATc2, Sp1, and TNFalpha siRNAs and their effects on the expression were investigated with immunoblot. Cell proliferation was measured with the ELISA BrdU assay. Cell migration was assayed with a Cell Migration Assay Kit using a Boyden chamber. RESULTS: Inhibition of the transfection factors NFATc2, Sp1, or TNFalpha by siRNA significantly inhibited proliferation, which was exacerbated when using the combination of NFATc2 and Sp1. TNFalpha was able to counterbalance this effect. In contrast to proliferation, migration of pancreatic cancer cells was increased by inhibiting these transfection factors. CONCLUSION: Tumor progression is strongly influenced by transcriptional changes in signaling cascades and oncogene mutations as well as by changes in tumor suppressor genes. Further studies are needed to understand the underlying mechanisms of these processes.


Assuntos
Neoplasias Pancreáticas , Fator de Transcrição Sp1 , Fator de Necrose Tumoral alfa , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Pâncreas/metabolismo , Pâncreas/patologia , Neoplasias Pancreáticas/patologia , Fator de Transcrição Sp1/genética , Fator de Necrose Tumoral alfa/genética , Fatores de Transcrição NFATC/genética , Neoplasias Pancreáticas
20.
Endokrynol Pol ; 74(5): 553-560, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37902017

RESUMO

INTRODUCTION: Apolipoprotein C3 (APOC3) is known for its important functions in metabolism-related diseases. However, the function and molecular mechanism of APOC3 in polycystic ovarian syndrome (PCOS) have not been reported. MATERIAL AND METHODS: Quantitative polymerase chain reaction and western blot assays were used to detect the expression of APOC3 in KGN cells. Small interference APOC3 (siAPOC3) was applied to reduce APOC3 expression, and the proliferation ability of human granulosa cell line (KGN cells) was measured by cell counting kit-8 and colony formation assays. The protein levels of key genes related to apoptosis were detected by western blot assay. The transcriptional regulator of APOC3 was predicted by the UCSC and PROMO website, and verified by dual luciferase assay. siAPOC3 and pcDNA3.1-specific protein 1 (SP1) vector were co-transfected into KGN cells to detect the function of SP1 and APOC3 in KGN cells. RESULTS: APOC3 was overexpressed in KGN cells, and siAPOC3 transfection significantly reduced the growth ability of KGN cells and increased the apoptosis ability of KGN cells. SP1 directly bound to the promoter of APOC3 and transcriptional regulated APOC3 expression. Overexpression of SP1 increased the growth ability of KGN cells and decreased the apoptosis ability of KGN cells, which were reversed after siAPOC3 transfection. The increased levels of toll-like receptor 2 (TLR2) and p65 phosphorylation (p-P65) nuclear factor kappa B (NF-κB) caused by SP1 overexpression were inhibited by siAPOC3 transfection. APOC3, transcriptionally regulated by SP1, promoted the growth of KGN cells, and inhibited the apoptosis by regulating TLR2/NF-κB signalling pathway.


Assuntos
Apolipoproteína C-III , Síndrome do Ovário Policístico , Fator de Transcrição Sp1 , Humanos , Apolipoproteína C-III/genética , Progressão da Doença , NF-kappa B , Transdução de Sinais , Receptor 2 Toll-Like , Fator de Transcrição Sp1/genética , Síndrome do Ovário Policístico/genética , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...