Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 722
Filtrar
1.
Phytomedicine ; 134: 155937, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39255723

RESUMO

BACKGROUND: Chronic myeloid leukemia (CML) is driven primarily by the constitutively active BCR-ABL fusion oncoprotein. Although the development of tyrosine kinase inhibitors has markedly improved the prognosis of CML patients, it remains a significant challenge to overcome drug-resistant mutations, such as the T315I mutation of BCR-ABL, and achieve treatment-free remission in the clinic. PURPOSE: The identification of new intervention targets beyond BCR-ABL could provide new perspectives for future research and therapeutic intervention. A network pharmacology analysis was conducted to identify the most promising natural product with anti-CML activity. Celastrol was selected for further analysis to gain insights into its mechanism of action (MoA), with the aim of identifying potential new intervention targets for BCR-ABL T315I-mutant CML. METHODS: Transcriptomic and proteomic analyses were conducted to systematically investigate the molecular MoA of celastrol in K562T315I cells. To identify the target proteins of celastrol, mass spectrometry-coupled cellular thermal shift assay (MS-CETSA) was carried out, followed by validations with genetic knockdown and overexpression, cell proliferation assay, comet assay, Western blotting, celastrol probe-based in situ labeling and pull-down assay, molecular docking, and biolayer interferometry. RESULTS: Our multi-omics analyses revealed that celastrol primarily induces DNA damage accumulation and the unfolded protein response in K562T315I cells. Among the twelve most potential celastrol targets, experimental evidence demonstrated that the direct interaction of celastrol with YY1 and HMCES increases the levels of DNA damage, leading to cell death. CONCLUSION: This study represents the first investigation utilizing a proteome-wide label-free target deconvolution approach, MS-CETSA, to identify the protein targets of celastrol. This study also develops a new systems pharmacology strategy. The findings provide new insights into the multifaceted mechanisms of celastrol and, more importantly, highlight the potential of targeting proteins in DNA damage and repair pathways, particularly YY1 and HMCES, to combat drug-resistant CML.


Assuntos
Dano ao DNA , Proteínas de Fusão bcr-abl , Leucemia Mielogênica Crônica BCR-ABL Positiva , Triterpenos Pentacíclicos , Triterpenos , Fator de Transcrição YY1 , Triterpenos Pentacíclicos/farmacologia , Humanos , Dano ao DNA/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Proteínas de Fusão bcr-abl/genética , Fator de Transcrição YY1/metabolismo , Triterpenos/farmacologia , Células K562 , Mutação , Antineoplásicos Fitogênicos/farmacologia , Morte Celular/efeitos dos fármacos , Tripterygium/química
2.
Cancer Rep (Hoboken) ; 7(9): e2128, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39229655

RESUMO

BACKGROUND AND AIMS: CircRNAs and autophagy are closely involved in the physiological and pathological processes of ovarian cancer; however, their exact mechanisms are still undetermined. This investigation aimed to elucidate the function and associated pathways of circFAM188A, which modulates proliferation, autophagy, and invasion in ovarian cancer (EOC). METHODS: The expression of circFAM188A in the tissues of EOC patients was assessed via RT-PCR. To elucidate proliferation, invasion, and autophagy in the tumor cells, Transwell, 5-ethynyl-2'-deoxyuridine (EdU), and mRFP-GFP-LC3 reporter assays were conducted. The binding sites between circ-FAM188A and the miR-670-3p, miR-670-3p and YY1 were predicted using bioinformatics and verified by dual-luciferase reporter assays. Pulldown assays demonstrated binding between ULK1 and circ-FAM188A. ULK1 was found to be crucial in the initial stage of autophagy. Moreover, an in vivo xenograft model was established by subcutaneous injection of nude mice with EOC cells. RESULT: Expression of circ-FAM188A was increased in EOC tissues relative to normal ovarian tissues and circ-FAM188A overexpression promoted proliferation, invasion, and autophagy; these effects were reversed by circ-FAM188A silencing. miR-670-3p and circ-FAM188A co-localized in the cytoplasm. circ-FAM188A enhanced YY1 expression by sponging miR-670-3p and was also shown to interact with ULK1. CONCLUSION: It is thus suggested that circ-FAM188A modulates autophagy by sponging miR-670-3p as well as interacting with ULK1.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Autofagia , Carcinoma Epitelial do Ovário , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos Nus , MicroRNAs , Neoplasias Ovarianas , RNA Circular , Humanos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Feminino , MicroRNAs/genética , Autofagia/genética , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/patologia , Carcinoma Epitelial do Ovário/metabolismo , Animais , Camundongos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Proliferação de Células/genética , RNA Circular/genética , RNA Circular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Linhagem Celular Tumoral , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Movimento Celular/genética , Pessoa de Meia-Idade
3.
Phytomedicine ; 134: 155951, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39182383

RESUMO

BACKGROUND: Psoriasis (PSO) poses a global health threat. The current research challenge in PSO is relapse. Liquiritin (LIQ), a major active compound from Glycyrrhiza inflata Batalin, has multiple pharmacological properties, including anti-inflammatory and anti-proliferative. Nonetheless, the precise mechanisms underlying LIQ's therapeutic actions in PSO and prevention abilities remain elusive. PURPOSE: The present study aimed to delve into the potential to treat and prevent PSO and the mechanism of LIQ. METHODS: The anti-inflammatory and anti-proliferative effects of LIQ were studied in vitro with the HaCaT cell line. Then, Transcriptional analysis and bioinformatic analysis were used to determine the internal associations of the target set. Subsequently, functional experiment, luciferase report assay, ChIP-PCR, and immunohistochemical validation of clinical samples were performed to investigate the mechanism of LIQ. Finally, the anti-psoriatic effects and prevention abilities of LIQ were verified in vivo with imiquimod (IMQ)-induced PSO-like mouse models. RESULTS: Here, we identified differentially expressed genes in LIQ-stimulated HaCaT cells and Retinol-Binding Protein 3 (RBP3) as the core target, whereas YY1 was a predicted upstream transcription factor of RBP3. The YY1/RBP3 axis was obviously altered after administering LIQ at optimal doses of 20 µM in vitro and 100 µg/ml in vivo. LIQ can significantly inhibit the progression of PSO in vivo. Notably, LIQ also prevented the relapse of psoriatic lesions induced by the second round of low-dose IMQ. Mechanistically, we observed that LIQ could increase the promotion of YY1 for RBP3 by enhancing the binding affinity between them. CONCLUSION: These findings revealed that the YY1/RBP3 axis is a potential psoriatic target, and LIQ is a promising and innovative therapeutic candidate for the treatment and prevention of PSO.


Assuntos
Flavanonas , Glucosídeos , Células HaCaT , Imiquimode , Psoríase , Fator de Transcrição YY1 , Psoríase/tratamento farmacológico , Humanos , Fator de Transcrição YY1/metabolismo , Animais , Camundongos , Flavanonas/farmacologia , Glucosídeos/farmacologia , Masculino , Glycyrrhiza/química , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Feminino , Camundongos Endogâmicos BALB C , Proliferação de Células/efeitos dos fármacos , Linhagem Celular
4.
Front Biosci (Landmark Ed) ; 29(8): 285, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39206901

RESUMO

BACKGROUND: Glioblastoma (GBM) is a highly aggressive and fast-growing brain tumor, characterized by rapid progression, a very poor prognosis, and a high likelihood of recurrence. Thus, effective new therapeutic targets are urgently needed. Transmembrane proteins (TMEMs) have pro-cancer effects on multiple cancer types, but the mechanisms underlying the effects of TMEM17, particularly its role in GBM, remain unclear. METHODS: We conducted bioinformatics analyses and immunohistochemistry to evaluate the role of TMEM17 in a variety of cancer types. Functional assays were conducted included the Cell Counting Kit-8 assay, annexin V-FITC/PI double staining, 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay, wound healing assay, transwell invasion assay, and dual luciferase assay. RESULTS: We found that TMEM17 is associated with a poor prognosis in GBM. Prognostic analyses confirmed that high TMEM17 expression predicted poorer survival, establishing its significance as an independent prognostic factor. Functional assays demonstrated that silencing TMEM17 in GBM cell lines inhibited proliferation and invasion, and induced apoptosis, underscoring its role in tumor aggressiveness. From a mechanistic perspective, we discovered that the Ying Yang 1 (YY1) transcription factor can bind to the promoter of TMEM17, regulating its upregulation. Regarding downstream mechanisms, knocking down TMEM17 inhibited the phosphoinositide 3-kinase/AKT pathway. These findings suggest that TMEM17 plays a significant role in GBM and may be a potential therapeutic target for this cancer. CONCLUSION: These data prove that TMEM17 plays a key role in the regulation of GBM and has great potential as a clinical therapeutic target for GBM.


Assuntos
Neoplasias Encefálicas , Progressão da Doença , Glioblastoma , Proteínas de Membrana , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Humanos , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Linhagem Celular Tumoral , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proliferação de Células/genética , Fator de Transcrição YY1/metabolismo , Fator de Transcrição YY1/genética , Apoptose/genética , Masculino , Feminino , Prognóstico , Regulação Neoplásica da Expressão Gênica , Pessoa de Meia-Idade
5.
Nat Genet ; 56(9): 1938-1952, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39210046

RESUMO

Few transcription factors have been examined for their direct roles in physically connecting enhancers and promoters. Here acute degradation of Yin Yang 1 (YY1) in erythroid cells revealed its requirement for the maintenance of numerous enhancer-promoter loops, but not compartments or domains. Despite its reported ability to interact with cohesin, the formation of YY1-dependent enhancer-promoter loops does not involve stalling of cohesin-mediated loop extrusion. Integrating mitosis-to-G1-phase dynamics, we observed partial retention of YY1 on mitotic chromatin, predominantly at gene promoters, followed by rapid rebinding during mitotic exit, coinciding with enhancer-promoter loop establishment. YY1 degradation during the mitosis-to-G1-phase interval revealed a set of enhancer-promoter loops that require YY1 for establishment during G1-phase entry but not for maintenance in interphase, suggesting that cell cycle stage influences YY1's architectural function. Thus, as revealed here for YY1, chromatin architectural functions of transcription factors can vary in their interplay with CTCF and cohesin as well as by cell cycle stage.


Assuntos
Proteínas Cromossômicas não Histona , Coesinas , Regiões Promotoras Genéticas , Transcrição Gênica , Fator de Transcrição YY1 , Animais , Humanos , Camundongos , Fator de Ligação a CCCTC/metabolismo , Fator de Ligação a CCCTC/genética , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Elementos Facilitadores Genéticos , Células Eritroides/metabolismo , Células Eritroides/citologia , Fase G1/genética , Regulação da Expressão Gênica , Mitose/genética , Fator de Transcrição YY1/metabolismo , Fator de Transcrição YY1/genética
6.
Pathol Res Pract ; 260: 155467, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39047662

RESUMO

Yin yang 1 (YY1), a transcription factor, plays crucial roles in cell fate specification, differentiation, and pluripotency during embryonic development. It is also involved in tumorigenesis, drug resistance, metastasis, and relapse caused by cancer stem cells (CSCs), particularly in prostate cancer (PCa). Targeting YY1 could potentially eliminate prostate CSCs (PCSCs) and provide novel therapeutic approaches. PCa tissues often exhibit elevated YY1 expression levels, especially in high-grade cases. Notably, high-grade PCa tissues from 58 PCa patients and CD133high/CD44high PCSCs isolated from DU145 PCa cell line by FACS both showed significantly increased YY1 expression as observed through immunofluorescence staining, respectively. To investigate the embryonic microenvironment impact on YY1 expression in CSC populations, firstly PCSCs were microinjected into the inner cell mass of blastocysts and then PCSCs were co-cultured with blastocysts. Next Generation Sequencing was used to analyze alterations in YY1 and related gene expressions. Interestingly, exposure to the embryonic microenvironment significantly reduced the expressions of YY1, YY2, and other relevant genes in PCSCs. These findings emphasize the tumor-suppressing effects of the embryonic environment by downregulating YY1 and YY1-related genes in PCSCs, thus providing promising strategies for PCa therapy. Through elucidating the mechanisms involved in embryonic reprogramming and its effects on YY1 expression, this research offers opportunities for further investigation into focused therapies directed against PCSCs, therefore enhancing the outcomes of PCa therapy. As a result, PCa tumors may benefit from YY1 and associated genes as a novel therapeutic target.


Assuntos
Células-Tronco Neoplásicas , Neoplasias da Próstata , Fator de Transcrição YY1 , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo , Humanos , Masculino , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Microambiente Tumoral , Linhagem Celular Tumoral , Animais
7.
Nat Neurosci ; 27(7): 1260-1273, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38956165

RESUMO

Direct neuronal reprogramming is a promising approach to regenerate neurons from local glial cells. However, mechanisms of epigenome remodeling and co-factors facilitating this process are unclear. In this study, we combined single-cell multiomics with genome-wide profiling of three-dimensional nuclear architecture and DNA methylation in mouse astrocyte-to-neuron reprogramming mediated by Neurogenin2 (Ngn2) and its phosphorylation-resistant form (PmutNgn2), respectively. We show that Ngn2 drives multilayered chromatin remodeling at dynamic enhancer-gene interaction sites. PmutNgn2 leads to higher reprogramming efficiency and enhances epigenetic remodeling associated with neuronal maturation. However, the differences in binding sites or downstream gene activation cannot fully explain this effect. Instead, we identified Yy1, a transcriptional co-factor recruited by direct interaction with Ngn2 to its target sites. Upon deletion of Yy1, activation of neuronal enhancers, genes and ultimately reprogramming are impaired without affecting Ngn2 binding. Thus, our work highlights the key role of interactors of proneural factors in direct neuronal reprogramming.


Assuntos
Astrócitos , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Reprogramação Celular , Proteínas do Tecido Nervoso , Neurônios , Fator de Transcrição YY1 , Animais , Fator de Transcrição YY1/metabolismo , Fator de Transcrição YY1/genética , Astrócitos/metabolismo , Camundongos , Reprogramação Celular/fisiologia , Neurônios/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Epigenoma , Montagem e Desmontagem da Cromatina , Epigênese Genética , Células Cultivadas
8.
Sci Rep ; 14(1): 16913, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043840

RESUMO

Although circular RNAs (circRNA) have been demonstrated to modulate tumor initiation and progression, their roles in the proliferation of hepatocellular carcinoma (HCC) are still poorly understood. Based on the analysis of GEO data (GSE12174), hsa-circRNA-0015004 (circ-0015004) was screened and validated in 80 sets of HCC specimens. Subcellular fractionation analysis was designed to determine the cellular location of circ-0015004. Colony formation and cell counting kit-8 were performed to investigate the role of circ-0015004 in HCC. Dual-luciferase reporter gene assays, RNA immunoprecipitation and chromatin immunoprecipitation were employed to verify the interaction among circ-0015004, miR-330-3p and regulator of chromatin condensation 2 (RCC2). The expression level of circ-0015004 was significantly upregulated in HCC cell lines and HCC tissues. HCC patients with higher circ-0015004 levels displayed shorter overall survival, and higher tumor size and TNM stage. Moreover, knockdown of circ-0015004 significantly reduced HCC cell proliferation in vitro and inhibited the growth of HCC in nude mice. Mechanistic studies revealed that circ-0015004 could upregulate the expression of RCC2 by sponging miR-330-3p, thereby promoting HCC cell proliferation. Furthermore, we identified that Ying Yang 1 (YY1) could function as an important regulator of circ-0015004 transcription. This study systematically demonstrated the novel regulatory signaling of circ-0015004/miR-330-3p/RCC2 axis in promoting HCC progression, providing insight into HCC diagnosis and treatment from bench to clinic.


Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina , Neoplasias Hepáticas , MicroRNAs , RNA Circular , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Camundongos , Linhagem Celular Tumoral , Masculino , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Camundongos Nus , Pessoa de Meia-Idade , Fator de Transcrição YY1/metabolismo , Fator de Transcrição YY1/genética , Regulação para Cima , RNA Endógeno Competitivo , Proteínas Cromossômicas não Histona
9.
Eur J Histochem ; 68(3)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037153

RESUMO

Papillary thyroid carcinoma (PTC) is the most prevalent malignancy of the thyroid. Fibroblast growth factor receptor 1 (FGFR1) is highly expressed in PTC and works as an oncogenic protein in this disease. In this report, we wanted to uncover a new mechanism that drives overexpression of FGFR1 in PTC. Analysis of FGFR1 expression in clinical specimens and PTC cells revealed that FGFR1 expression was enhanced in PTC. Using siRNA/shRNA silencing experiments, we found that FGFR1 downregulation impeded PTC cell growth, invasion, and migration and promoted apoptosis in vitro, as well as suppressed tumor growth in vivo. Bioinformatic analyses predicted the potential USP7-FGFR1 interplay and the potential binding between YY1 and the FGFR1 promoter. The mechanism study found that USP7 stabilized FGFR1 protein via deubiquitination, and YY1 could promote the transcription of FGFR1. Our rescue experiments showed that FGFR1 re-expression had a counteracting effect on USP7 downregulation-imposed in vitro alterations of cell functions and in vivo suppression of xenograft growth. In conclusion, our study identifies the deubiquitinating enzyme USP7 and the oncogenic transcription factor YY1 as potent inducers of FGFR1 overexpression. Designing inhibitors targeting FGFR1 or its upstream inducers USP7 and YY1 may be foreseen as a promising strategy to control PTC development.


Assuntos
Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Fator de Transcrição YY1 , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Humanos , Câncer Papilífero da Tireoide/metabolismo , Câncer Papilífero da Tireoide/patologia , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Fator de Transcrição YY1/metabolismo , Fator de Transcrição YY1/genética , Animais , Linhagem Celular Tumoral , Peptidase 7 Específica de Ubiquitina/metabolismo , Peptidase 7 Específica de Ubiquitina/genética , Camundongos , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Proliferação de Células/fisiologia , Feminino , Apoptose , Movimento Celular , Masculino
10.
Cell Rep ; 43(7): 114456, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38990722

RESUMO

The rearrangement and expression of the immunoglobulin µ heavy chain (Igh) gene require communication of the intragenic Eµ and 3' regulatory region (RR) enhancers with the variable (VH) gene promoter. Eµ binding of the transcription factor YY1 has been implicated in enhancer-promoter communication, but the YY1 protein network remains obscure. By analyzing the comprehensive proteome of the 1-kb Eµ wild-type enhancer and that of Eµ lacking the YY1 binding site, we identified the male-specific lethal (MSL)/MOF complex as a component of the YY1 protein network. We found that MSL2 recruitment depends on YY1 and that gene knockout of Msl2 in primary pre-B cells reduces µ gene expression and chromatin looping of Eµ to the 3' RR enhancer and VH promoter. Moreover, Mof heterozygosity in mice impaired µ expression and early B cell differentiation. Together, these data suggest that the MSL/MOF complex regulates Igh gene expression by augmenting YY1-mediated enhancer-promoter communication.


Assuntos
Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , Fator de Transcrição YY1 , Animais , Masculino , Camundongos , Diferenciação Celular , Elementos Facilitadores Genéticos/genética , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/metabolismo , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fator de Transcrição YY1/metabolismo , Fator de Transcrição YY1/genética , Feminino
11.
Chem Biol Interact ; 400: 111157, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39059604

RESUMO

Non-alcoholic fatty liver disease (NAFLD) was a chronic complication of type 2 diabetes mellitus (T2DM), and this comorbid disease lacked therapeutic drugs. Semen Ziziphi Spinosae (SZS) was the seed of Ziziphus jujuba var. Spinosa (Bunge) Hu ex H.F. Chow, and it could alleviate the symptoms of T2DM patients. As a triterpene saponin, Jujuboside A (Ju A) was the main active substance isolated from SZS and could improve hyperglycemia of diabetic mice. However, it was still unknown whether Ju A has protective effects on T2DM-associated NAFLD. Our study showed that Ju A attenuated T2DM-associated liver damage by alleviating hepatic lipid accumulation, inflammatory response, and oxidative stress in the liver of db/db mice, and high glucose (HG) and free fatty acid (FFA) co-stimulated human hepatocellular carcinomas (HepG2) cells. Along with the improved hyperglycemia and liver injury, Ju A restrained Yin Yang 1 (YY1)/cytochrome P450 2E1 (CYP2E1) signaling in vivo and in vitro. YY1 overexpression intercepted the protective effects of Ju A on T2DM-induced liver injury via promoting hepatic lipid accumulation, inflammatory response, and oxidative stress. While, the blocking effect of YY1 overexpression on Ju A's hepatoprotective effect was counteracted by further treatment of CYP2E1 specific inhibitor diethyldithiocarbamate (DDC) in vitro. In-depth mechanism research showed that Ju A through YY1/CYP2E1 signaling promoted hepatic fatty acid ß-oxidation, and inhibited inflammatory response and oxidative stress by activating peroxisome proliferator-activated receptor alpha (PPARα), leading to the improvement of T2DM-associated NAFLD. Ju A might be a potential agent in the treatment and health care of T2DM-associated liver disease, especially NAFLD.


Assuntos
Citocromo P-450 CYP2E1 , Diabetes Mellitus Tipo 2 , Inflamação , Metabolismo dos Lipídeos , Fígado , Hepatopatia Gordurosa não Alcoólica , Estresse Oxidativo , Transdução de Sinais , Fator de Transcrição YY1 , Estresse Oxidativo/efeitos dos fármacos , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Transdução de Sinais/efeitos dos fármacos , Camundongos , Masculino , Citocromo P-450 CYP2E1/metabolismo , Células Hep G2 , Metabolismo dos Lipídeos/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fator de Transcrição YY1/metabolismo , Camundongos Endogâmicos C57BL , Saponinas/farmacologia , Saponinas/uso terapêutico
12.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39063014

RESUMO

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Current chemotherapy treatment regimens have improved survival rates to approximately 80%; however, resistance development remains the primary cause of treatment failure, affecting around 20% of cases. Some studies indicate that loss of the phosphatase and tensin homolog (PTEN) leads to deregulation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, increasing the expression of proteins involved in chemoresistance. PTEN loss results in deregulation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and induces hypoxia-inducible factor 1-alpha (HIF-1α) expression in various cancers. Additionally, it triggers upregulation of the Yin Yang 1 (YY1) transcription factor, leading to chemoresistance mediated by glycoprotein p-170 (Gp-170). The aim of this study was to investigate the role of the PTEN/NF-κB axis in YY1 regulation via HIF-1α and its involvement in ALL. A PTEN inhibitor was administered in RS4;11 cells, followed by the evaluation of PTEN, NF-κB, HIF-1α, YY1, and Gp-170 expression, along with chemoresistance assessment. PTEN, HIF-1α, and YY1 expression levels were assessed in the peripheral blood mononuclear cells (PBMC) from pediatric ALL patients. The results reveal that the inhibition of PTEN activity significantly increases the expression of pAkt and NF-κB, which is consistent with the increase in the expression of HIF-1α and YY1 in RS4;11 cells. In turn, this inhibition increases the expression of the glycoprotein Gp-170, affecting doxorubicin accumulation in the cells treated with the inhibitor. Samples from pediatric ALL patients exhibit PTEN expression and higher HIF-1α and YY1 expression compared to controls. PTEN/Akt/NF-κB axis plays a critical role in the regulation of YY1 through HIF-1α, and this mechanism contributes to Gp-170-mediated chemoresistance in pediatric ALL.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Subunidade alfa do Fator 1 Induzível por Hipóxia , PTEN Fosfo-Hidrolase , Leucemia-Linfoma Linfoblástico de Células Precursoras , Fator de Transcrição YY1 , Humanos , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Fator de Transcrição YY1/metabolismo , Fator de Transcrição YY1/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Criança , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Masculino , Feminino
13.
PLoS Pathog ; 20(7): e1011950, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39083560

RESUMO

Epstein-Barr Virus (EBV) is associated with numerous cancers including B cell lymphomas. In vitro, EBV transforms primary B cells into immortalized Lymphoblastoid Cell Lines (LCLs) which serves as a model to study the role of viral proteins in EBV malignancies. EBV induced cellular transformation is driven by viral proteins including EBV-Nuclear Antigens (EBNAs). EBNA-LP is important for the transformation of naïve but not memory B cells. While EBNA-LP was thought to promote gene activation by EBNA2, EBNA-LP Knockout (LPKO) virus-infected cells express EBNA2-activated cellular genes efficiently. Therefore, a gap in knowledge exists as to what roles EBNA-LP plays in naïve B cell transformation. We developed a trans-complementation assay wherein transfection with wild-type EBNA-LP rescues the transformation of peripheral blood- and cord blood-derived naïve B cells by LPKO virus. Despite EBNA-LP phosphorylation sites being important in EBNA2 co-activation; neither phospho-mutant nor phospho-mimetic EBNA-LP was defective in rescuing naïve B cell outgrowth. However, we identified conserved leucine-rich motifs in EBNA-LP that were required for transformation of adult naïve and cord blood B cells. Because cellular PPAR-g coactivator (PGC) proteins use leucine-rich motifs to engage transcription factors including YY1, a key regulator of DNA looping and metabolism, we examined the role of EBNA-LP in engaging transcription factors. We found a significant overlap between EBNA-LP and YY1 in ChIP-Seq data. By Cut&Run, YY1 peaks unique to WT compared to LPKO LCLs occur at more highly expressed genes. Moreover, Cas9 knockout of YY1 in primary B cells prior to EBV infection indicated YY1 to be important for EBV-mediated transformation. We confirmed EBNA-LP and YY1 biochemical association in LCLs by endogenous co-immunoprecipitation and found that the EBNA-LP leucine-rich motifs were required for YY1 interaction in LCLs. We propose that EBNA-LP engages YY1 through conserved leucine-rich motifs to promote EBV transformation of naïve B cells.


Assuntos
Linfócitos B , Transformação Celular Viral , Herpesvirus Humano 4 , Proteínas Virais , Fator de Transcrição YY1 , Humanos , Linfócitos B/virologia , Linfócitos B/metabolismo , Linfócitos B/imunologia , Fator de Transcrição YY1/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/genética , Infecções por Vírus Epstein-Barr/virologia , Infecções por Vírus Epstein-Barr/metabolismo , Infecções por Vírus Epstein-Barr/imunologia , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/genética , Motivos de Aminoácidos , Leucina/metabolismo
14.
Acta Neuropathol Commun ; 12(1): 111, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956662

RESUMO

The genetic architecture of Parkinson's disease (PD) is complex and multiple brain cell subtypes are involved in the neuropathological progression of the disease. Here we aimed to advance our understanding of PD genetic complexity at a cell subtype precision level. Using parallel single-nucleus (sn)RNA-seq and snATAC-seq analyses we simultaneously profiled the transcriptomic and chromatin accessibility landscapes in temporal cortex tissues from 12 PD compared to 12 control subjects at a granular single cell resolution. An integrative bioinformatic pipeline was developed and applied for the analyses of these snMulti-omics datasets. The results identified a subpopulation of cortical glutamatergic excitatory neurons with remarkably altered gene expression in PD, including differentially-expressed genes within PD risk loci identified in genome-wide association studies (GWAS). This was the only neuronal subtype showing significant and robust overexpression of SNCA. Further characterization of this neuronal-subpopulation showed upregulation of specific pathways related to axon guidance, neurite outgrowth and post-synaptic structure, and downregulated pathways involved in presynaptic organization and calcium response. Additionally, we characterized the roles of three molecular mechanisms in governing PD-associated cell subtype-specific dysregulation of gene expression: (1) changes in cis-regulatory element accessibility to transcriptional machinery; (2) changes in the abundance of master transcriptional regulators, including YY1, SP3, and KLF16; (3) candidate regulatory variants in high linkage disequilibrium with PD-GWAS genomic variants impacting transcription factor binding affinities. To our knowledge, this study is the first and the most comprehensive interrogation of the multi-omics landscape of PD at a cell-subtype resolution. Our findings provide new insights into a precise glutamatergic neuronal cell subtype, causal genes, and non-coding regulatory variants underlying the neuropathological progression of PD, paving the way for the development of cell- and gene-targeted therapeutics to halt disease progression as well as genetic biomarkers for early preclinical diagnosis.


Assuntos
Redes Reguladoras de Genes , Neurônios , Doença de Parkinson , Humanos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Neurônios/metabolismo , Neurônios/patologia , Masculino , Feminino , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Idoso , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo , Estudo de Associação Genômica Ampla , Transcriptoma , Análise de Célula Única , Lobo Temporal/metabolismo , Lobo Temporal/patologia , Pessoa de Meia-Idade , Regulação da Expressão Gênica/genética , Multiômica
15.
Biochem Pharmacol ; 227: 116422, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38996932

RESUMO

Carnitine palmitoyltransferase 1C (CPT1C) is an enzyme that regulates tumor cell proliferation and metabolism by modulating mitochondrial function and lipid metabolism. Hypoxia, commonly observed in solid tumors, promotes the proliferation and progression of pancreatic cancer by regulating the metabolic reprogramming of tumor cells. So far, the metabolic regulation of hypoxic tumor cells by CPT1C and the upstream mechanisms of CPT1C remain poorly understood. Yin Yang 1 (YY1) is a crucial oncogene for pancreatic tumorigenesis and acts as a transcription factor that is involved in multiple metabolic processes. This study aimed to elucidate the relationship between YY1 and CPT1C under hypoxic conditions and explore their roles in hypoxia-induced proliferation and metabolic alterations of tumor cells. The results showed enhancements in the proliferation and metabolism of PANC-1 cells under hypoxia, as evidenced by increased cell growth, cellular ATP levels, up-regulation of mitochondrial membrane potential, and decreased lipid content. Interestingly, knockdown of YY1 or CPT1C inhibited hypoxia-induced rapid cell proliferation and vigorous cell metabolism. Importantly, for the first time, we reported that YY1 directly activated the transcription of CPT1C and clarified that CPT1C was a novel target gene of YY1. Moreover, the YY1 and CPT1C were found to synergistically regulate the proliferation and metabolism of hypoxic cells through transfection with YY1 siRNA to CRISPR/Cas9-CPT1C knockout PANC-1 cells. Taken together, these results indicated that the YY1-CPT1C axis could be a new target for the intervention of pancreatic cancer proliferation and metabolism.


Assuntos
Carnitina O-Palmitoiltransferase , Proliferação de Células , Neoplasias Pancreáticas , Transdução de Sinais , Fator de Transcrição YY1 , Fator de Transcrição YY1/metabolismo , Fator de Transcrição YY1/genética , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina O-Palmitoiltransferase/genética , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Proliferação de Células/fisiologia , Linhagem Celular Tumoral , Transdução de Sinais/fisiologia , Hipóxia Celular/fisiologia
16.
mBio ; 15(8): e0154924, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38953350

RESUMO

Metabolism in host cells can be modulated after viral infection, favoring viral survival or clearance. Here, we report that lipid droplet (LD) synthesis in host cells can be modulated by yin yang 1 (YY1) after porcine reproductive and respiratory syndrome virus (PRRSV) infection, resulting in active antiviral activity. As a ubiquitously distributed transcription factor, there was increased expression of YY1 upon PRRSV infection both in vitro and in vivo. YY1 silencing promoted the replication of PRRSV, whereas YY1 overexpression inhibited PRRSV replication. PRRSV infection led to a marked increase in LDs, while YY1 knockout inhibited LD synthesis, and YY1 overexpression enhanced LD accumulation, indicating that YY1 reprograms PRRSV infection-induced intracellular LD synthesis. We also showed that the viral components do not colocalize with LDs during PRRSV infection, and the effect of exogenously induced LD synthesis on PRRSV replication is nearly lethal. Moreover, we demonstrated that YY1 affects the synthesis of LDs by regulating the expression of lipid metabolism genes. YY1 negatively regulates the expression of fatty acid synthase (FASN) to weaken the fatty acid synthesis pathway and positively regulates the expression of peroxisome proliferator-activated receptor gamma (PPARγ) to promote the synthesis of LDs, thus inhibiting PRRSV replication. These novel findings indicate that YY1 plays a crucial role in regulating PRRSV replication by reprogramming LD synthesis. Therefore, our study provides a novel mechanism of host resistance to PRRSV and suggests potential new antiviral strategies against PRRSV infection.IMPORTANCEPorcine reproductive and respiratory virus (PRRSV) has caused incalculable economic damage to the global pig industry since it was first discovered in the 1980s. However, conventional vaccines do not provide satisfactory protection. It is well known that viruses are parasitic pathogens, and the completion of their replication life cycle is highly dependent on host cells. A better understanding of host resistance to PRRSV infection is essential for developing safe and effective strategies to control PRRSV. Here, we report a crucial host antiviral molecule, yin yang 1 (YY1), which is induced to be expressed upon PRRSV infection and subsequently inhibits virus replication by reprogramming lipid droplet (LD) synthesis through transcriptional regulation. Our work provides a novel antiviral mechanism against PRRSV infection and suggests that targeting YY1 could be a new strategy for controlling PRRSV.


Assuntos
Gotículas Lipídicas , Vírus da Síndrome Respiratória e Reprodutiva Suína , Replicação Viral , Fator de Transcrição YY1 , Fator de Transcrição YY1/metabolismo , Fator de Transcrição YY1/genética , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Suínos , Gotículas Lipídicas/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Síndrome Respiratória e Reprodutiva Suína/genética , Linhagem Celular , Metabolismo dos Lipídeos , Interações Hospedeiro-Patógeno
17.
Epigenetics ; 19(1): 2369006, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38913848

RESUMO

Lung cancer is one familiar cancer that threatens the lives of humans. circCTNNB1 has been disclosed to have regulatory functions in some diseases. However, the functions and related regulatory mechanisms of circCTNNB1 in lung cancer remain largely indistinct. The mRNA and protein expression levels were examined through real-time polymerase chain reaction (RT-qPCR) and western blot. The cell proliferation was tested through CCK-8 assay. The cell migration and invasion were confirmed through Transwell assays. The cell senescence was evaluated through SA-ß-gal assay. The binding ability between miR-186-5p and circCTNNB1 (or YY1) was verified through luciferase reporter and RIP assays. In this study, the higher expression of circCTNNB1 was discovered in lung cancer tissues and cell lines and resulted in poor prognosis. In addition, circCTNNB1 facilitated lung cancer cell proliferation, migration, invasion, and suppressed cell senescence. Knockdown of circCTNNB1 retarded the Wnt pathway. Mechanism-related experiments revealed that circCTNNB1 combined with miR-186-5p to target YY1. Through rescue assays, YY1 overexpression could rescue decreased cell proliferation, migration, invasion, increased cell senescence, and retarded Wnt pathway mediated by circCTNNB1 suppression. Furthermore, YY1 acts as a transcription factor that can transcriptionally activate circCTNNB1 to form YY1/circCTNNB1/miR-186-5p/YY1 positive loop. Through in vivo assays, circCTNNB1 accelerated tumour growth in vivo. All findings revealed that a positive loop YY1/circCTNNB1/miR-186-5p/YY1 aggravated lung cancer progression by modulating the Wnt pathway.


Assuntos
Proliferação de Células , Neoplasias Pulmonares , MicroRNAs , RNA Circular , Via de Sinalização Wnt , Fator de Transcrição YY1 , Animais , Feminino , Humanos , Masculino , Camundongos , Células A549 , Linhagem Celular Tumoral , Movimento Celular , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Fator de Transcrição YY1/metabolismo , Fator de Transcrição YY1/genética
18.
FEBS Lett ; 598(14): 1715-1729, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38825601

RESUMO

Mitochondrial biogenesis requires precise regulation of both mitochondrial-encoded and nuclear-encoded genes. Nuclear receptor Nur77 is known to regulate mitochondrial metabolism in macrophages and skeletal muscle. Here, we compared genome-wide Nur77 binding site and target gene expression in these two cell types, which revealed conserved regulation of mitochondrial genes and enrichment of motifs for the transcription factor Yin-Yang 1 (YY1). We show that Nur77 and YY1 interact, that YY1 increases Nur77 activity, and that their binding sites are co-enriched at mitochondrial ribosomal protein gene loci in macrophages. Nur77 and YY1 co-expression synergistically increases Mrpl1 expression as well as mitochondrial abundance and activity in macrophages but not skeletal muscle. As such, we identify a macrophage-specific Nur77-YY1 interaction that enhances mitochondrial metabolism.


Assuntos
Macrófagos , Mitocôndrias , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Fator de Transcrição YY1 , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Macrófagos/metabolismo , Animais , Mitocôndrias/metabolismo , Mitocôndrias/genética , Camundongos , Fator de Transcrição YY1/metabolismo , Fator de Transcrição YY1/genética , Humanos , Sítios de Ligação , Regulação da Expressão Gênica , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Ligação Proteica , Músculo Esquelético/metabolismo , Músculo Esquelético/citologia , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/genética
19.
Toxicol In Vitro ; 99: 105875, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38857852

RESUMO

OBJECTIVE: This study aims to investigate the functional interplay between transcription factor YY1 and nucleoporin 93 (NUP93) in regulating the malignancy of bladder cancer cells. METHODS: NUP93 expressions in bladder cancer tissues and normal counterparts were analyzed using a public dataset and clinical samples. NUP93 and Yin Yang 1 (YY1) mRNA expression and protein levels in T24 and RT4 cells were determined by Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. The effect of NUP93 knockdown on the proliferation, migration, and invasion capabilities of cells was evaluated. Concurrently, transcriptional regulation of NUP93 by YY1 was confirmed using a dual luciferase assay. The effect of NUP93 knockdown on tumorigenesis was evaluate in a subcutaneous xenograft mouse model. RESULTS: Elevated levels of NUP93 in bladder cancer tissues and cell lines were observed. Silencing NUP93 significantly suppressed glycolysis, impeded the growth, migration, invasion and tumor formation of bladder cancer cells. The transcription factor YY1 acted as a positive regulator to upregulate NUP93 expression. YY1 overexpression partially rescued the effects of NUP93 silencing on bladder cancer cells. CONCLUSION: Our results uncovered transcription factor YY1 as a positive regulator of NUP93 expression, and NUP93 serves as an oncogenic factor to sustain the malignancy of bladder cancer cells. These findings suggest that targeting the YY1-NUP93 axis could offer novel therapeutic strategies for bladder cancer treatment.


Assuntos
Movimento Celular , Proliferação de Células , Camundongos Nus , Complexo de Proteínas Formadoras de Poros Nucleares , Neoplasias da Bexiga Urinária , Fator de Transcrição YY1 , Animais , Feminino , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Camundongos Endogâmicos BALB C , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
20.
Nucleic Acids Res ; 52(13): 7401-7413, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38869071

RESUMO

Homologous recombination (HR) is a key process for repairing DNA double strand breaks and for promoting genetic diversity. However, HR occurs unevenly across the genome, and certain genomic features can influence its activity. One such feature is the presence of guanine quadruplexes (G4s), stable secondary structures widely distributed throughout the genome. These G4s play essential roles in gene transcription and genome stability regulation. Especially, elevated G4 levels in cells deficient in the Bloom syndrome helicase (BLM) significantly enhance HR at G4 sites, potentially threatening genome stability. Here, we investigated the role of G4-binding protein Yin Yang-1 (YY1) in modulating HR at G4 sites in human cells. Our results show that YY1's binding to G4 structures suppresses sister chromatid exchange after BLM knockdown, and YY1's chromatin occupancy negatively correlates with the overall HR rate observed across the genome. By limiting RAD51 homolog 1 (RAD51) access, YY1 preferentially binds to essential genomic regions, shielding them from excessive HR. Our findings unveil a novel role of YY1-G4 interaction, revealing novel insights into cellular mechanisms involved in HR regulation.


Assuntos
Quadruplex G , Recombinação Homóloga , Rad51 Recombinase , Troca de Cromátide Irmã , Fator de Transcrição YY1 , Humanos , Fator de Transcrição YY1/metabolismo , Fator de Transcrição YY1/genética , Recombinação Homóloga/genética , Rad51 Recombinase/metabolismo , Rad51 Recombinase/genética , Troca de Cromátide Irmã/genética , RecQ Helicases/metabolismo , RecQ Helicases/genética , Cromatina/metabolismo , Cromatina/genética , Quebras de DNA de Cadeia Dupla , Instabilidade Genômica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA