Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 431
Filtrar
1.
Mol Cell ; 84(13): 2553-2572.e19, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38917794

RESUMO

CRISPR-Cas technology has transformed functional genomics, yet understanding of how individual exons differentially shape cellular phenotypes remains limited. Here, we optimized and conducted massively parallel exon deletion and splice-site mutation screens in human cell lines to identify exons that regulate cellular fitness. Fitness-promoting exons are prevalent in essential and highly expressed genes and commonly overlap with protein domains and interaction interfaces. Conversely, fitness-suppressing exons are enriched in nonessential genes, exhibiting lower inclusion levels, and overlap with intrinsically disordered regions and disease-associated mutations. In-depth mechanistic investigation of the screen-hit TAF5 alternative exon-8 revealed that its inclusion is required for assembly of the TFIID general transcription initiation complex, thereby regulating global gene expression output. Collectively, our orthogonal exon perturbation screens established a comprehensive repository of phenotypically important exons and uncovered regulatory mechanisms governing cellular fitness and gene expression.


Assuntos
Éxons , Humanos , Éxons/genética , Sistemas CRISPR-Cas , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo , Aptidão Genética , Células HEK293 , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Sítios de Splice de RNA , Mutação , Regulação da Expressão Gênica , Processamento Alternativo
2.
Nat Commun ; 15(1): 5335, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914563

RESUMO

The NuA3 complex is a major regulator of gene transcription and the cell cycle in yeast. Five core subunits are required for complex assembly and function, but it remains unclear how these subunits interact to form the complex. Here, we report that the Taf14 subunit of the NuA3 complex binds to two other subunits of the complex, Yng1 and Sas3, and describe the molecular mechanism by which the extra-terminal domain of Taf14 recognizes the conserved motif present in Yng1 and Sas3. Structural, biochemical, and mutational analyses show that two motifs are sandwiched between the two extra-terminal domains of Taf14. The head-to-toe dimeric complex enhances the DNA binding activity of Taf14, and the formation of the hetero-dimer involving the motifs of Yng1 and Sas3 is driven by sequence complementarity. In vivo assays in yeast demonstrate that the interactions of Taf14 with both Sas3 and Yng1 are required for proper function of the NuA3 complex in gene transcription and DNA repair. Our findings suggest a potential basis for the assembly of three core subunits of the NuA3 complex, Taf14, Yng1 and Sas3.


Assuntos
Ligação Proteica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIID/metabolismo , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/química , Subunidades Proteicas/metabolismo , Subunidades Proteicas/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/química , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Multimerização Proteica , Modelos Moleculares , Transcrição Gênica , Sequência de Aminoácidos
3.
Int J Biol Sci ; 20(8): 3008-3027, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38904013

RESUMO

SET domain containing 7(SETD7), a member of histone methyltransferases, is abnormally expressed in multiple tumor types. However, the biological function and underlying molecular mechanism of SETD7 in clear cell renal cell carcinoma (ccRCC) remain unclear. Here, we explored the biological effects of SETD7-TAF7-CCNA2 axis on proliferation and metastasis in ccRCC. We identified both SETD7 and TAF7 were up-regulated and significantly promoted the proliferation and migration of ccRCC cells. Concurrently, there was a significant positive correlation between the expression of SETD7 and TAF7, and the two were colocalized in the nucleus. Mechanistically, SETD7 methylates TAF7 at K5 and K300 sites, resulting in the deubiquitination and stabilization of TAF7. Furthermore, re-expression of TAF7 could partially restore SETD7 knockdown inhibited ccRCC cells proliferation and migration. In addition, TAF7 transcriptionally activated to drive the expression of cyclin A2 (CCNA2). And more importantly, the methylation of TAF7 at K5 and K300 sites exhibited higher transcriptional activity of CCNA2, which promotes formation and progression of ccRCC. Our findings reveal a unique mechanism that SETD7 mediated TAF7 methylation in regulating transcriptional activation of CCNA2 in ccRCC progression and provide a basis for developing effective therapeutic strategies by targeting members of SETD7-TAF7-CCNA2 axis.


Assuntos
Carcinoma de Células Renais , Movimento Celular , Proliferação de Células , Histona-Lisina N-Metiltransferase , Neoplasias Renais , Humanos , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Proliferação de Células/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Movimento Celular/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/patologia , Linhagem Celular Tumoral , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fatores Associados à Proteína de Ligação a TATA/genética , Metilação , Fator de Transcrição TFIID/metabolismo , Fator de Transcrição TFIID/genética , Regulação Neoplásica da Expressão Gênica
4.
Dis Model Mech ; 17(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38804708

RESUMO

The TATA box-binding protein-associated factor 1 (TAF1) is a ubiquitously expressed protein and the largest subunit of the basal transcription factor TFIID, which plays a key role in initiation of RNA polymerase II-dependent transcription. TAF1 missense variants in human males cause X-linked intellectual disability, a neurodevelopmental disorder, and TAF1 is dysregulated in X-linked dystonia-parkinsonism, a neurodegenerative disorder. However, this field has lacked a genetic mouse model of TAF1 disease to explore its mechanism in mammals and treatments. Here, we generated and validated a conditional cre-lox allele and the first ubiquitous Taf1 knockout mouse. We discovered that Taf1 deletion in male mice was embryonically lethal, which may explain why no null variants have been identified in humans. In the brains of Taf1 heterozygous female mice, no differences were found in gross structure, overall expression and protein localisation, suggesting extreme skewed X inactivation towards the non-mutant chromosome. Nevertheless, these female mice exhibited a significant increase in weight, weight with age, and reduced movement, suggesting that a small subset of neurons was negatively impacted by Taf1 loss. Finally, this new mouse model may be a future platform for the development of TAF1 disease therapeutics.


Assuntos
Peso Corporal , Heterozigoto , Histona Acetiltransferases , Camundongos Knockout , Transtornos dos Movimentos , Fatores Associados à Proteína de Ligação a TATA , Fator de Transcrição TFIID , Animais , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo , Fator de Transcrição TFIID/deficiência , Feminino , Masculino , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/patologia , Embrião de Mamíferos/metabolismo , Camundongos , Encéfalo/patologia , Encéfalo/metabolismo , Genes Letais , Camundongos Endogâmicos C57BL
5.
Endocr J ; 71(7): 675-686, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38811189

RESUMO

Endothelial-to-mesenchymal transition (EndMT) is a pivotal event in diabetic retinopathy (DR). This study explored the role of circRNA zinc finger protein 532 (circZNF532) in regulating EndMT in DR progression. Human retinal microvascular endothelial cells (HRMECs) were exposed to high glucose (HG) to induce the DR cell model. Actinomycin D-treated HRMECs were used to confirm the mRNA stability of phosphoinositide-3 kinase catalytic subunit δ (PIK3CD). The interaction between TATA-box-binding protein-associated factor 15 (TAF15) and circZNF532/PIK3CD was subsequently analyzed using RNA immunoprecipitation (RIP), RNA pull-down. It was found that HG treatment accelerated EndMT process, facilitated cell migration and angiogenesis, and enhanced PIK3CD and p-AKT levels in HRMECs, whereas si-circZNF532 transfection neutralized these effects. Further data showed that circZNF532 recruited TAF15 to stabilize PIK3CD, thus elevating PIK3CD expression. Following rescue experiments suggested that PIK3CD overexpression partially negated the inhibitory effect of circZNF532 silencing on EndMT, migration, and angiogenesis of HG-treated HRMECs. In conclusion, our results suggest that circZNF532 recruits TAF15 to stabilize PIK3CD, thereby facilitating EndMT in DR.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases , Retinopatia Diabética , Células Endoteliais , Transição Epitelial-Mesenquimal , Humanos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/genética , Retinopatia Diabética/metabolismo , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , RNA Circular/metabolismo , RNA Circular/genética , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo
6.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(5): 533-539, 2024 May 10.
Artigo em Chinês | MEDLINE | ID: mdl-38684296

RESUMO

OBJECTIVE: To analyze the clinical features and genetic etiology of 17 Chinese pedigrees affected with X-linked intellectual disability (XLID). METHODS: Seventeen pedigrees affected with unexplained intellectual disability which had presented at Henan Provincial People's Hospital from May 2021 to May 2023 were selected as the study subjects. Clinical data of the probands and their pedigree members were collected. Trio-whole exome sequencing (Trio-WES), Sanger sequencing and X chromosome inactivation (XCI) analysis were carried out. Pathogenicity of candidate variants was predicted based on the guidelines from the American College of Medical Genetics and Genomics and co-segregation analysis. RESULTS: The 17 probands, including 9 males and 8 females with an age ranging from 0.6 to 8 years old, had all shown mental retardation and developmental delay. Fourteen variants were detected by genetic testing, which included 4 pathogenic variants (MECP2: c.502C>T, MECP2: c.916C>T/c.806delG, IQSEC2: c.1417G>T), 4 likely pathogenic variants (MECP2: c.1157_1197del/c.925C>T, KDM5C: c.2128A>T, SLC6A8: c.1631C>T) and 6 variants of uncertain significance (KLHL15: c.26G>C, PAK3: c.970A>G/c.1520G>A, GRIA3: c.2153C>G, TAF1: c.2233T>G, HUWE1: c.10301T>A). The PAK3: c.970A>G, GRIA3: c.2153C>G and TAF1: c.2233T>G variants were considered as the genetic etiology for pedigrees 12, 14 and 15 by co-segregation analysis, respectively. The proband of pedigree 13 was found to have non-random XCI (81:19). Therefore, the PAK3: c.1520G>A variant may underlie its pathogenesis. CONCLUSION: Trio-WES has attained genetic diagnosis for the 17 XLID pedigrees. Sanger sequencing and XCI assay can provide auxiliary tests for the diagnosis of XLID.


Assuntos
Deficiência Intelectual Ligada ao Cromossomo X , Linhagem , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , China , População do Leste Asiático/genética , Sequenciamento do Exoma , Testes Genéticos/métodos , Fatores de Troca do Nucleotídeo Guanina/genética , Histona Acetiltransferases , Deficiência Intelectual/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Proteína 2 de Ligação a Metil-CpG/genética , Mutação , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética , Inativação do Cromossomo X
7.
Am J Physiol Endocrinol Metab ; 326(6): E832-E841, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38656129

RESUMO

Thyroid dysgenesis (TD) is the common pathogenic mechanism of congenital hypothyroidism (CH). In addition, known pathogenic genes are limited to those that are directly involved in thyroid development. To identify additional candidate pathogenetic genes, we performed forward genetic screening for TD in zebrafish, followed by positional cloning. The candidate gene was confirmed in vitro using the Nthy-ori 3.1 cell line and in vivo using a zebrafish model organism. We obtained a novel zebrafish line with thyroid dysgenesis and identified the candidate pathogenetic mutation TATA-box binding protein associated Factor 1 (taf1) by positional cloning. Further molecular studies revealed that taf1 was needed for the proliferation of thyroid follicular cells by binding to the NOTCH1 promoter region. Knockdown of TAF1 impaired the proliferation and maturation of thyroid cells, thereby leading to thyroid dysplasia. This study showed that TAF1 promoted Notch signaling and that this association played a pivotal role in thyroid development.NEW & NOTEWORTHY In our study, we obtained a novel zebrafish line with thyroid dysgenesis (TD) and identified the candidate pathogenetic mutation TATA-box binding protein associated Factor 1 (taf1). Further researches revealed that taf1 was required for thyroid follicular cells by binding to the NOTCH1 promoter region. Our findings revealed a novel role of TAF1 in thyroid morphogenesis.


Assuntos
Proliferação de Células , Transdução de Sinais , Fatores Associados à Proteína de Ligação a TATA , Glândula Tireoide , Fator de Transcrição TFIID , Peixe-Zebra , Animais , Peixe-Zebra/genética , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo , Transdução de Sinais/genética , Proliferação de Células/genética , Glândula Tireoide/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Disgenesia da Tireoide/genética , Disgenesia da Tireoide/metabolismo , Humanos , Histona Acetiltransferases
8.
Curr Opin Genet Dev ; 86: 102181, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38564841

RESUMO

Development of cancer therapies targeting chromatin modifiers and transcriptional regulatory factors is rapidly expanding to include new targets and novel targeting strategies. At the same time, basic molecular research continues to refine our understanding of the epigenetic mechanisms regulating transcription, gene expression, and oncogenesis. This mini-review focuses on cancer therapies targeting the chromatin-associated factors that recognize histone lysine acetylation. Recently reported safety and efficacy are discussed for inhibitors targeting the bromodomains of bromodomain and extraterminal domain (BET) family proteins. In light of recent results indicating that the transcriptional regulator BRD4-PTEFb can function independently of BRD4's bromodomains, the clinical trial performance of these BET inhibitors is placed in a broader context of existing and potential strategies for targeting BRD4-PTEFb. Recently developed therapies targeting bromodomain-containing factors within the SWI/SNF (BAF) family of chromatin remodeling complexes are discussed, as is the potential for targeting the bromodomain-containing transcription factor TAF1 and the YEATS acetylrecognition domain-containing factor GAS41. Recent findings regarding the selectivity and combinatorial specificity of acetylrecognition are highlighted. In conclusion, the potential for further development is discussed with a focus on proximity-based therapies targeting this class of epigenetic factors.


Assuntos
Proteínas de Ciclo Celular , Epigênese Genética , Neoplasias , Proteínas Nucleares , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Acetilação , Domínios Proteicos , Terapia de Alvo Molecular , Histonas/metabolismo , Histonas/genética , Cromatina/genética , Cromatina/metabolismo , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fatores Associados à Proteína de Ligação a TATA/antagonistas & inibidores , Fator de Transcrição TFIID/metabolismo , Fator de Transcrição TFIID/genética , Montagem e Desmontagem da Cromatina , Animais , Proteínas que Contêm Bromodomínio , Proteínas , Histona Acetiltransferases
9.
Dev Biol ; 511: 53-62, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38593904

RESUMO

Early embryonic development is a finely orchestrated process that requires precise regulation of gene expression coordinated with morphogenetic events. TATA-box binding protein-associated factors (TAFs), integral components of transcription initiation coactivators like TFIID and SAGA, play a crucial role in this intricate process. Here we show that disruptions in TAF5, TAF12 and TAF13 individually lead to embryonic lethality in the mouse, resulting in overlapping yet distinct phenotypes. Taf5 and Taf12 mutant embryos exhibited a failure to implant post-blastocyst formation, and Taf5 mutants have aberrant lineage specification within the inner cell mass. In contrast, Taf13 mutant embryos successfully implant and form egg-cylinder stages but fail to initiate gastrulation. Strikingly, we observed a depletion of pluripotency factors in TAF13-deficient embryos, including OCT4, NANOG and SOX2, highlighting an indispensable role of TAF13 in maintaining pluripotency. Transcriptomic analysis revealed distinct gene targets affected by the loss of TAF5, TAF12 and TAF13. Thus, we propose that TAF5, TAF12 and TAF13 convey locus specificity to the TFIID complex throughout the mouse genome.


Assuntos
Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Fatores Associados à Proteína de Ligação a TATA , Animais , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fatores Associados à Proteína de Ligação a TATA/genética , Camundongos , Desenvolvimento Embrionário/genética , Fator de Transcrição TFIID/metabolismo , Fator de Transcrição TFIID/genética , Feminino , Blastocisto/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Gastrulação/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição SOXB1/genética , Proteína Homeobox Nanog/metabolismo , Proteína Homeobox Nanog/genética , Embrião de Mamíferos/metabolismo
10.
J Am Chem Soc ; 146(12): 8071-8085, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38492239

RESUMO

The FET protein family, comprising FUS, EWS, and TAF15, plays crucial roles in mRNA maturation, transcriptional regulation, and DNA damage response. Clinically, they are linked to Ewing family tumors and neurodegenerative diseases such as amyotrophic lateral sclerosis. The fusion protein EWS::FLI1, the causative mutation of Ewing sarcoma, arises from a genomic translocation that fuses a portion of the low-complexity domain (LCD) of EWS (EWSLCD) with the DNA binding domain of the ETS transcription factor FLI1. This fusion protein modifies transcriptional programs and disrupts native EWS functions, such as splicing. The exact role of the intrinsically disordered EWSLCD remains a topic of active investigation, but its ability to phase separate and form biomolecular condensates is believed to be central to EWS::FLI1's oncogenic properties. Here, we used paramagnetic relaxation enhancement NMR, microscopy, and all-atom molecular dynamics (MD) simulations to better understand the self-association and phase separation tendencies of the EWSLCD. Our NMR data and mutational analysis suggest that a higher density and proximity of tyrosine residues amplify the likelihood of condensate formation. MD simulations revealed that the tyrosine-rich termini exhibit compact conformations with unique contact networks and provided critical input on the relationship between contacts formed within a single molecule (intramolecular) and inside the condensed phase (intermolecular). These findings enhance our understanding of FET proteins' condensate-forming capabilities and underline differences between EWS, FUS, and TAF15.


Assuntos
Sarcoma de Ewing , Fatores Associados à Proteína de Ligação a TATA , Humanos , Proteína EWS de Ligação a RNA/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Separação de Fases , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patologia , Proteínas/metabolismo , Tirosina , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo
11.
FASEB J ; 38(1): e23376, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38112167

RESUMO

Male germ cell development is dependent on the orchestrated regulation of gene networks. TATA-box binding protein associated factors (TAFs) facilitate interactions of TATA-binding protein with the TATA element, which is known to coordinate gene transcription during organogenesis. TAF7 like (Taf7l) is situated on the X chromosome and has been implicated in testis development. We examined the biology of TAF7L in testis development using the rat. Taf7l was prominently expressed in preleptotene to leptotene spermatocytes. To study the impact of TAF7L on the testis we generated a global loss-of-function rat model using CRISPR/Cas9 genome editing. Exon 3 of the Taf7l gene was targeted. A founder was generated possessing a 110 bp deletion within the Taf7l locus, which resulted in a frameshift and the premature appearance of a stop codon. The mutation was effectively transmitted through the germline. Deficits in TAF7L did not adversely affect pregnancy or postnatal survival. However, the Taf7l disruption resulted in male infertility due to compromised testis development and failed sperm production. Mutant germ cells suffer meiotic arrest at late zygotene/early pachynema stages, with defects in sex body formation. This testis phenotype was more pronounced than previously described for the subfertile Taf7l null mouse. We conclude that TAF7L is essential for male germ cell development in the rat.


Assuntos
Sêmen , Espermatogênese , Fatores Associados à Proteína de Ligação a TATA , Fator de Transcrição TFIID , Animais , Feminino , Masculino , Gravidez , Ratos , Diferenciação Celular , Meiose , Sêmen/metabolismo , Espermatócitos/metabolismo , Espermatogênese/fisiologia , Espermatozoides/metabolismo , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Testículo/metabolismo , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo
12.
J Cell Physiol ; 239(2): e31167, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38126142

RESUMO

The understanding of the mechanisms that regulate gene expression to establish differentiation programs and determine cell lineages, is one of the major challenges in Developmental Biology. Besides the participation of tissue-specific transcription factors and epigenetic processes, the role of general transcription factors has been ignored. Only in recent years, there have been scarce studies that address this issue. Here, we review the studies on the biological activity of some TATA-box binding protein (TBP)-associated factors (TAFs) during the proliferation of stem/progenitor cells and their involvement in cell differentiation. Particularly, the accumulated evidence suggests that TAF4, TAF4b, TAF7L, TAF8, TAF9, and TAF10, among others, participate in nervous system development, adipogenesis, myogenesis, and epidermal differentiation; while TAF1, TAF7, TAF15 may be involved in the regulation of stem cell proliferative abilities and cell cycle progression. On the other hand, evidence suggests that TBP variants such as TBPL1 and TBPL2 might be regulating some developmental processes such as germ cell maturation and differentiation, myogenesis, or ventral specification during development. Our analysis shows that it is necessary to study in greater depth the biological function of these factors and its participation in the assembly of specific transcription complexes that contribute to the differential gene expression that gives rise to the great diversity of cell types existing in an organism. The understanding of TAFs' regulation might lead to the development of new therapies for patients which suffer from mutations, alterations, and dysregulation of these essential elements of the transcriptional machinery.


Assuntos
Proteína de Ligação a TATA-Box , Humanos , Diferenciação Celular/genética , Mutação , Proteínas Nucleares/genética , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/química , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/genética , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Proteína de Ligação a TATA-Box/genética , Animais
13.
Biol Open ; 12(7)2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37746814

RESUMO

Intellectual disability is a neurodevelopmental disorder that affects 2-3% of the general population. Syndromic forms of intellectual disability frequently have a genetic basis and are often accompanied by additional developmental anomalies. Pathogenic variants in components of TATA-binding protein associated factors (TAFs) have recently been identified in a subset of patients with intellectual disability, craniofacial hypoplasia, and congenital heart disease. This syndrome has been termed as a TAFopathy and includes mutations in TATA binding protein (TBP), TAF1, TAF2, and TAF6. The underlying mechanism by which TAFopathies give rise to neurodevelopmental, craniofacial, and cardiac abnormalities remains to be defined. Through a forward genetic screen in zebrafish, we have recovered a recessive mutant phenotype characterized by craniofacial hypoplasia, ventricular hypoplasia, heart failure at 96 h post-fertilization and lethality, and show it is caused by a nonsense mutation in taf5. CRISPR/CAS9 mediated gene editing revealed that these defects where phenocopied by mutations in taf1 and taf5. Mechanistically, taf5-/- zebrafish displayed misregulation in metabolic gene expression and metabolism as evidenced by RNA sequencing, respiration assays, and metabolite studies. Collectively, these findings suggest that the TAF complex may contribute to neurologic, craniofacial, and cardiac development through regulation of metabolism.


Assuntos
Anormalidades Craniofaciais , Fatores Associados à Proteína de Ligação a TATA , Proteínas de Peixe-Zebra , Animais , Anormalidades Craniofaciais/genética , Coração , Deficiência Intelectual , Mutação , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
14.
J Biol Chem ; 299(7): 104873, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37257820

RESUMO

Dysregulation of long noncoding RNAs (lncRNAs) contributes to tumorigenesis by modulating specific cancer-related pathways, but the roles of N6-methyladenosine (m6A)-enriched lncRNAs and underlying mechanisms remain elusive in nasopharyngeal carcinoma (NPC). Here, we reanalyzed the previous genome-wide analysis of lncRNA profiles in 18 pairs of NPC and normal tissues as well as in ten paired samples from NPC with or without post-treatment metastases. We discerned that an oncogenic m6A-enriched lncRNA, LINC00839, which was substantially upregulated in NPC and correlated with poor clinical prognosis, promoted NPC growth and metastasis both in vitro and in vivo. Mechanistically, by using RNA pull-down assay combined with mass spectrometry, we found that LINC00839 interacted directly with the transcription factor, TATA-box binding protein associated factor (TAF15). Besides, chromatin immunoprecipitation and dual-luciferase report assays demonstrated that LINC00839 coordinated the recruitment of TAF15 to the promoter region of amine oxidase copper-containing 1 (AOC1), which encodes a secreted glycoprotein playing vital roles in various cancers, thereby activating AOC1 transcription in trans. In this study, potential effects of AOC1 in NPC progression were first proposed. Moreover, ectopic expression of AOC1 partially rescued the inhibitory effect of downregulation of LINC00839 in NPC. Furthermore, we showed that silencing vir-like m6A methyltransferase-associated (VIRMA) and insulin-like growth factor 2 mRNA-binding proteins 1 (IGF2BP1) attenuated the expression level and RNA stability of LINC00839 in an m6A-dependent manner. Taken together, our study unveils a novel oncogenic VIRMA/IGF2BP1-LINC00839-TAF15-AOC1 axis and highlights the significance and prognostic value of LINC00839 expression in NPC carcinogenesis.


Assuntos
Neoplasias Nasofaríngeas , RNA Longo não Codificante , Fatores Associados à Proteína de Ligação a TATA , Humanos , Aminas , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/patologia , Oxirredutases/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo
15.
Mol Plant Pathol ; 24(8): 849-865, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37026690

RESUMO

TATA box-binding protein (TBP)-associated factor 14 (Taf14), a transcription-associated factor containing a conserved YEATS domain and an extra-terminal (ET) domain, is a multifunctional protein in Saccharomyces cerevisiae. However, the role of Taf14 in filamentous phytopathogenic fungi is not well understood. In this study, the homologue of ScTaf14 in Botrytis cinerea (named BcTaf14), a destructive phytopathogen causing grey mould, was investigated. The BcTaf14 deletion strain (ΔBcTaf14) showed pleiotropic defects, including slow growth, abnormal colony morphology, reduced conidiation, abnormal conidial morphology, reduced virulence, and altered responses to various stresses. The ΔBcTaf14 strain also exhibited differential expression of numerous genes compared to the wild-type strain. BcTaf14 could interact with the crotonylated H3K9 peptide, and mutation of two key sites (G80 and W81) in the YEATS domain disrupted this interaction. The mutation of G80 and W81 affected the regulatory effect of BcTaf14 on mycelial growth and virulence but did not affect the production and morphology of conidia. The absence of the ET domain at the C-terminus rendered BcTaf14 unable to localize to the nucleus, and the defects of ΔBcTaf14 were not recovered to wild-type levels when BcTaf14 without the ET domain was expressed. Our results provide insight into the regulatory roles of BcTaf14 and its two conserved domains in B. cinerea and will be helpful for understanding the function of the Taf14 protein in plant-pathogenic fungi.


Assuntos
Botrytis , Proteínas Fúngicas , Fatores Associados à Proteína de Ligação a TATA , Botrytis/crescimento & desenvolvimento , Botrytis/patogenicidade , Proteínas Fúngicas/genética , Doenças das Plantas/microbiologia , Virulência , Fatores Associados à Proteína de Ligação a TATA/genética , Filogenia , Regulação Fúngica da Expressão Gênica
16.
Exp Biol Med (Maywood) ; 248(11): 948-958, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37021545

RESUMO

Replication-dependent histones have a stem-loop structure at the 3' end of messenger RNA (mRNA) and are stabilized by stem-loop binding protein (SLBP). Moreover, loss of SLBP and imbalance in the level of ARE (adenylate-uridylate-rich elements)-binding proteins, HuR, and BRF1 are associated with the polyadenylation of canonical histone mRNAs under different physiological conditions. Previous studies from the lab have shown increased protein levels of H2A1H and H3.2 in N-nitrosodiethylamine (NDEA)-induced hepatocellular carcinoma (HCC). In this study, we report that increase in the polyadenylation of histone mRNA contributes to increased levels of H2A1H and H3.2 in NDEA-induced HCC. The persistent exposure to carcinogen with polyadenylation of histone mRNA increases the total histone pool resulting in aneuploidy. The embryonic liver has also shown increased polyadenylated histone isoforms, Hist1h2ah and Hist2h3c2, primarily contributing to their increased protein levels. The increase in polyadenylation of histone mRNA in HCC and e15 are in coherence with the decrease in SLBP and BRF1 with an increase in HuR. Our studies in neoplastic CL38 cell line showed that direct stress on the cells induces downregulation of SLBP with enhanced histone isoform polyadenylation. Moreover, the polyadenylation is related to increase in activated MAP kinases, p38, ERK, and JNK in HCC liver tumor tissues and CL38 cells treated with arsenic. Our data suggest that SLBP degrades under stress, destabilizing the stem-loop, elongating histone isoforms mRNA with 3' polyadenylated tail with increase of HuR and decrease of BRF1. Overall, our results indicate that SLBP may play an essential part in cell proliferation, at least in persistent exposure to stress, by mediating the stabilization of histone isoforms throughout the cell cycle.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Fatores Associados à Proteína de Ligação a TATA , Humanos , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Poliadenilação , Carcinoma Hepatocelular/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Neoplasias Hepáticas/genética , Isoformas de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas , Hepatócitos/metabolismo , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo
17.
Mod Pathol ; 36(7): 100161, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36948401

RESUMO

Extraskeletal myxoid chondrosarcoma (EMC) is an ultrarare sarcoma typically exhibiting myxoid/reticular histology and NR4A3 translocation. However, morphologic variants and the relevance of non-EWSR1::NR4A3 fusions remain underexplored. Three challenging pan-Trk-expressing cases, featuring cellular to solid histology, were subjected to RNA exome sequencing (RES), unveiling different NR4A3-associated fusions. Alongside RES-analyzed cases, fluorescence in situ hybridization was performed to confirm 58 EMCs, with 48 available for pan-Trk immunostaining and KIT sequencing. Except for 1 (2%) NR4A3-rearranged EMC without identifiable partners, 46 (79%), 9 (16%), and 2 (3%) cases harbored EWSR1::NR4A3, TAF15::NR4A3, and TCF12::NR4A3 fusions, respectively. Five EWSR1::NR4A3-positive EMCs occurred in the subcutis (3) and bone (2). Besides 43 classical cases, there were 8 cellular, 4 rhabdoid/anaplastic, 2 solid, and 1 mixed tumor-like variants. Tumor cells were oval/spindle to pleomorphic and formed loose myxoid/reticular to compact sheet-like or fascicular patterns, imparting broad diagnostic considerations. RES showed upregulation of NTRK2/3, KIT, and INSM1. Moderate-to-strong immunoreactivities of pan-Trk, CD117, and INSM1 were present in 35.4%, 52.6%, and 54.6% of EMCs, respectively. KIT p. E554K mutation was detected in 2/48 cases. TAF15::NR4A3 was significantly associated with size >10 cm (78%, P = .025). Size >10 cm, moderate-to-severe nuclear pleomorphism, metastasis at presentation, TAF15::NR4A3 fusion, and the administration of chemotherapy portended shorter univariate disease-specific survival, whereas only size >10 cm (P = .004) and metastasis at presentation (P = .032) remained prognostically independent. Conclusively, EMC may manifest superficial or osseous lesions harboring EWSR1::NR4A3, underrecognized solid or anaplastic histology, and pan-Trk expression, posing tremendous challenges. Most TAF15::NR4A3-positive cases were >10 cm in size, ie, a crucial independent prognosticator, whereas pathogenic KIT mutation rarely occurred.


Assuntos
Condrossarcoma , Receptores de Esteroides , Sarcoma , Fatores Associados à Proteína de Ligação a TATA , Humanos , Hibridização in Situ Fluorescente , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Condrossarcoma/genética , Condrossarcoma/diagnóstico , Sarcoma/genética , Fatores Associados à Proteína de Ligação a TATA/genética , Proteínas Repressoras/genética , Proteínas de Ligação a DNA/genética , Receptores de Esteroides/genética , Receptores dos Hormônios Tireóideos/genética
18.
J Transl Med ; 21(1): 186, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36895010

RESUMO

BACKGROUND: Breast cancer (BC) is a common malignant tumor in women worldwide. Circular RNA (circRNA) has been proven to play a critical role in BC progression. However, the exact biological functions and underlying mechanisms of circRNAs in BC remain largely unknown. METHODS: Here, we first screened for differentially expressed circRNAs in 4 pairs of BC tissues and adjacent non-tumor tissues using a circRNA microarray. Functionally, gain- and loss-of-function experiments in vitro and in vivo showed that circDNAJC11 promoted BC cell proliferation, migration, invasion, and tumor growth. Mechanistically, RNA pull-down, mass spectrum, RNA immunoprecipitation, fluorescence in situ hybridization assays, and rescue experiments were executed. RESULTS: We found that circDNAJC11 was significantly upregulated in triple-negative breast cancer tissues and cells. Clinical data revealed that the high expression of circDNAJC11 was closely correlated with a poor prognosis of BC patients and could be an independent risk factor for BC prognosis. Functionally, gain- and loss-of-function experiments in vitro and in vivo showed that circDNAJC11 promoted BC cell proliferation, migration, invasion, and tumor growth. Mechanistically, RNA pull-down, mass spectrum, RNA immunoprecipitation, fluorescence in situ hybridization assays, and rescue experiments were executed. We demonstrated that circDNAJC11 combined with TAF15 to promote BC progression via stabilizing MAPK6 mRNA and activating the MAPK signaling pathway. CONCLUSIONS: The circDNAJC11/TAF15/MAPK6 axis played a crucial role in the progression and development of BC, suggesting that circDNAJC11 might be a novel biomarker and therapeutical target for BC.


Assuntos
Neoplasias da Mama , MicroRNAs , Fatores Associados à Proteína de Ligação a TATA , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Hibridização in Situ Fluorescente , MicroRNAs/genética , RNA Circular/genética , Transdução de Sinais/genética , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Proteína Quinase 6 Ativada por Mitógeno/metabolismo
19.
Mol Genet Genomic Med ; 11(6): e2160, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36849876

RESUMO

BACKGROUND: Congenital anomalies (CAs) with or without intellectual disability (ID)/developmental delay (DD) comprise a heterogeneous spectrum of diseases that affect approximately 3% of live births worldwide. Recently, whole-exome sequencing (WES) demonstrated the highly heterogeneous genetic causes of CAs. The purpose of this study was to evaluate a referral system to increase the yield of WES for CAs. METHODS: From August 2018 to July 2019, patients with CAs, with or without ID/DD, after excluding gross chromosomal aberrations, were referred to geneticists in two medical centers. Variant prioritization was conducted with an AI-assisted tool for whole exomes or a CA-related gene panel. RESULTS: Forty patients (27 males and 13 females) with CAs were enrolled in the study with a mean age of 4.71 years (range, 0.01-18.2). Pathogenic variants in 14 genes were discovered in 16 patients (three patients with CHD7 and 13 patients with one gene each of ATP6V1B2, TAF6, COL4A3BP, ANKH, BMP2, SMARCA4, CUL4B, PGAP3, SOX11, FBN2, PTPN11, SOS1, or PROKR2), with a positive diagnostic rate of 40%. Among the 16 positive cases, 13 (81%) also had ID/DD. The inheritance was autosomal dominant in 13 (81%), autosomal recessive in two (13%), and X-linked in one (6%). Only five patients received a correct clinical diagnosis before WES. The analyses of patients with a negative genetic diagnosis revealed a phenotype and gene mutation load similar to those of the positive-finding patients but with a lower percentage of ID/DD. CONCLUSIONS: The careful selection of patients by experienced geneticists and the exclusion of chromosomal aberrations raises the positive rate of the molecular diagnosis for CAs to 40%. However, more than half of the patients with CAs still do not have a genetic diagnosis by current technologies.


Assuntos
Anormalidades Múltiplas , Deficiência Intelectual , Fatores Associados à Proteína de Ligação a TATA , Criança , Humanos , Masculino , Feminino , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/diagnóstico , Sequenciamento do Exoma , Anormalidades Múltiplas/genética , Aberrações Cromossômicas , Ásia Oriental , DNA Helicases/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Fatores Associados à Proteína de Ligação a TATA/genética , Proteínas Culina/genética
20.
PLoS One ; 18(2): e0281233, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36757926

RESUMO

In Saccharomyces cerevisiae, class II gene promoters have been divided into two subclasses, TFIID- and SAGA-dominated promoters or TFIID-dependent and coactivator-redundant promoters, depending on the experimental methods used to measure mRNA levels. A prior study demonstrated that Spt3, a TBP-delivering subunit of SAGA, functionally regulates the PGK1 promoter via two mechanisms: by stimulating TATA box-dependent transcriptional activity and conferring Taf1/TFIID independence. However, only the former could be restored by plasmid-borne SPT3. In the present study, we sought to determine why ectopically expressed SPT3 is unable to restore Taf1/TFIID independence to the PGK1 promoter, identifying that this function was dependent on the construction protocol for the SPT3 taf1 strain. Specifically, simultaneous functional loss of Spt3 and Taf1 during strain construction was a prerequisite to render the PGK1 promoter Taf1/TFIID-dependent in this strain. Intriguingly, genetic approaches revealed that an as-yet unidentified trans-acting factor reprogrammed the transcriptional mode of the PGK1 promoter from the Taf1/TFIID-independent state to the Taf1/TFIID-dependent state. This factor was generated in the haploid SPT3 taf1 strain in an Hsp104-dependent manner and inherited meiotically in a non-Mendelian fashion. Furthermore, RNA-seq analyses demonstrated that this factor likely affects the transcription mode of not only the PGK1 promoter, but also of many other class II gene promoters. Collectively, these findings suggest that a prion or biomolecular condensate is generated in a Hsp104-dependent manner upon simultaneous functional loss of TFIID and SAGA, and could alter the roles of these transcription complexes on a wide variety of class II gene promoters without altering their primary sequences. Therefore, these findings could provide the first evidence that TFIID dependence of class II gene transcription can be altered epigenetically, at least in Saccharomyces cerevisiae.


Assuntos
Proteínas de Saccharomyces cerevisiae , Fatores Associados à Proteína de Ligação a TATA , Fator de Transcrição TFIID/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , RNA Mensageiro/genética , Fatores Associados à Proteína de Ligação a TATA/genética , Proteína de Ligação a TATA-Box/genética , Proteínas de Choque Térmico/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...