Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Neurosci ; 35(38): 13233-43, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26400951

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) promotes PNS development and kidney morphogenesis via a receptor complex consisting of the glycerophosphatidylinositol (GPI)-anchored, ligand binding receptor GDNF family receptor α1 (GFRα1) and the receptor tyrosine kinase Ret. Although Ret signal transduction in vitro is augmented by translocation into lipid rafts via GFRα1, the existence and importance of lipid rafts in GDNF-Ret signaling under physiologic conditions is unresolved. A knock-in mouse was produced that replaced GFRα1 with GFRα1-TM, which contains a transmembrane (TM) domain instead of the GPI anchor. GFRα1-TM still binds GDNF and promotes Ret activation but does not translocate into rafts. In Gfrα1(TM/TM) mice, GFRα1-TM is expressed, trafficked, and processed at levels identical to GFRα1. Although Gfrα1(+/TM) mice are viable, Gfrα1(TM/TM) mice display bilateral renal agenesis, lack enteric neurons in the intestines, and have motor axon guidance deficits, similar to Gfrα1(-/-) mice. Therefore, the recruitment of Ret into lipid rafts by GFRα1 is required for the physiologic functions of GDNF in vertebrates. Significance statement: Membrane microdomains known as lipid rafts have been proposed to be unique subdomains in the plasma membrane that are critical for the signaling functions of multiple receptor complexes. Their existence and physiologic relevance has been debated. Based on in vitro studies, lipid rafts have been reported to be necessary for the function of the Glial cell line-derived neurotrophic factor (GDNF) family of neurotrophic factors. The receptor for GDNF comprises the lipid raft-resident, glycerophosphatidylinositol-anchored receptor GDNF family receptor α1 (GFRα1) and the receptor tyrosine kinase Ret. Here we demonstrate, using a knock-in mouse model in which GFRα1 is no longer located in lipid rafts, that the developmental functions of GDNF in the periphery require the translocation of the GDNF receptor complex into lipid rafts.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Fatores Neurotróficos Derivados de Linhagem de Célula Glial/metabolismo , Microdomínios da Membrana/fisiologia , Morfogênese/fisiologia , Neurônios/citologia , Acetilcolinesterase/metabolismo , Animais , Células Cultivadas , Dipeptídeos/farmacologia , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Estrenos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fatores Neurotróficos Derivados de Linhagem de Célula Glial/genética , Humanos , Ácidos Hidroxâmicos/farmacologia , Microdomínios da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Morfogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Pirrolidinonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Medula Espinal/citologia , Gânglio Cervical Superior/citologia , Tirosina 3-Mono-Oxigenase/metabolismo
2.
Yi Chuan ; 35(4): 495-501, 2013 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-23659940

RESUMO

Recently, it is unclear about the mechanism of notable regenerated ability of adult zebrafish after spinal cord injury. To investigate the effects of brain on restoration from spinal cord injury, adult zebrafish spinal cord injury model was built and brain samples were dissected at different time points after the injury. Real-time quantitative PCR and in situ hybridization were applied to reveal the dynamics of glial cell line-derived neurotrophic factor (gdnf) and nitric oxide synthases (nos) mRNA expression in various regions of zebrafish brain. The results showed that, compared to sham group at each time points separately, the expression of gdnf mRNA in adult zebrafish brain during both acute phase (4 h and 12 h) and chronic phase of neuroregeneration (6 d and 11 d) increased significantly (P<0.05). The expression of nos mRNA in zebrafish brain enhanced during acute phase, and then reduced to the level lower than the sham group during the chronic phase of neuroregeneration (11 d) (P<0.05). This suggests that brain may promote neural axons regeneration in spinal cord via a more beneficial microenvironment which retains higher level of gdnf and lower level of nos.


Assuntos
Encéfalo/metabolismo , Regulação Enzimológica da Expressão Gênica , Fatores Neurotróficos Derivados de Linhagem de Célula Glial/genética , Óxido Nítrico Sintase Tipo I/genética , Regeneração/genética , Traumatismos da Medula Espinal/fisiopatologia , Peixe-Zebra/genética , Animais , Encéfalo/citologia , Núcleo Celular/metabolismo , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia , Fatores de Tempo , Regulação para Cima , Peixe-Zebra/fisiologia
3.
Cell Transplant ; 22(9): 1529-39, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23051605

RESUMO

Degeneration of midbrain dopamine neurons causes the striatal dopamine deficiency responsible for the hallmark motor symptoms of Parkinson's disease (PD). Intraparenchymal delivery of neurotrophic factors, such as glial cell line-derived neurotrophic factor (GDNF), is a possible future therapeutic approach. In animal PD models, GDNF can both ameliorate neurodegeneration and promote recovery of the dopamine system following a toxic insult. However, clinical studies have generated mixed results, and GDNF has not been efficacious in genetic animal models based on α-synuclein overexpression. We have tested the response to GDNF in a genetic mouse PD model with progressive degeneration of dopamine neurons caused by mitochondrial impairment. We find that GDNF, delivered to the striatum by either an adeno-associated virus or via miniosmotic pumps, partially alleviates the progressive motor symptoms without modifying the rate of neurodegeneration. These behavioral changes are accompanied by increased levels of dopamine in the midbrain, but not in striatum. At high levels, GDNF may instead reduce striatal dopamine levels. These results demonstrate the therapeutic potential of GDNF in a progressively impaired dopamine system.


Assuntos
Terapia Genética/métodos , Fatores Neurotróficos Derivados de Linhagem de Célula Glial/administração & dosagem , Fatores Neurotróficos Derivados de Linhagem de Célula Glial/genética , Doença de Parkinson/terapia , Adenoviridae/genética , Animais , Modelos Animais de Doenças , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/biossíntese , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Imuno-Histoquímica , Masculino , Camundongos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Distribuição Aleatória
4.
Biochim Biophys Acta ; 1834(10): 2205-12, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23085183

RESUMO

RET is the receptor for glial cell line-derived neurotrophic factor family of ligands (GFLs). It is different from most other members in the receptor tyrosine kinase (RTK) family with the requirement of a co-receptor, GFRα, for ligand recognition and activation. Through the common signal transducer RET, GFLs are crucial for the development and maintenance of distinct sets of central and peripheral neurons, which has led to a series of studies towards understanding the structure, function and signaling mechanisms of GFLs with GFRα and RET receptors. Here I summarize our current understanding of the molecular basis underlying ligand recognition and activation of RET, focusing on the interactions of GFLs with their respective GFRα receptors, the recently determined crystal structure of RET extracellular region and a proposed GFL-GFRα-RET ternary complex model based on extensive structural, biochemical and functional data. This article is part of a Special Issue entitled: Emerging recognition and activation mechanisms of receptor tyrosine kinases.


Assuntos
Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/química , Fatores Neurotróficos Derivados de Linhagem de Célula Glial/química , Neuroglia/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-ret/química , Animais , Sítios de Ligação , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fatores Neurotróficos Derivados de Linhagem de Célula Glial/genética , Fatores Neurotróficos Derivados de Linhagem de Célula Glial/metabolismo , Humanos , Ligantes , Modelos Moleculares , Neuroglia/citologia , Neurônios/citologia , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Transdução de Sinais
5.
Brain Res ; 1482: 91-100, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-22982731

RESUMO

In a previous study, we developed newly synthesized arylthio derivatives of cyclopentenone prostaglandins (GIF-0642, GIF-0643, GIF-0644, GIF-0745 and GIF-0747), which are neuroprotective against both manganese toxicity in PC12 cells and glutamate toxicity in HT22 cells. In the present study, we showed that these compounds and their lead compound, NEPP11, are potent inducers of glial cell line-derived neurotrophic factor (GDNF) expression in C6 glioma cells and primary astrocytes. These neuroprotective cyclopentenone prostaglandins also induced the gene expression of nerve growth factor and, to a lesser extent, brain-derived neurotrophic factor. The induction of GDNF mRNA was transcription-dependent, and the overexpression of dominant-negative Nrf2 attenuated the ability of the (arylthio)cyclopentenone prostaglandins to stimulate GDNF gene expression. These results suggest that (arylthio)cyclopentenone prostaglandins increase GDNF gene expression partly via the Keap1/Nrf2 pathway. A growing number of reports demonstrate the importance of increasing the amounts of neurotrophic factors, especially GDNF, in neuropathological states. Although the precise mechanisms by which the GIF compounds inhibit cell death are under investigation, an increase in neurotrophic factors may contribute to the diverse pharmacological properties of (arylthio)cyclopentenone prostaglandins in vivo and will make them potentially valuable in the treatment of neurodegenerative disorders.


Assuntos
Fatores de Crescimento Neural/metabolismo , Fármacos Neuroprotetores/farmacologia , Prostaglandinas/farmacologia , Regulação para Cima/efeitos dos fármacos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Fatores Neurotróficos Derivados de Linhagem de Célula Glial/genética , Fatores Neurotróficos Derivados de Linhagem de Célula Glial/metabolismo , Glioma/patologia , Camundongos , Fatores de Crescimento Neural/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
6.
J Appl Physiol (1985) ; 112(3): 490-500, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22074716

RESUMO

We have previously shown that the adult DBA/2J and A/J strains of mice differ in carotid body volume and morphology. The question has arisen whether these differences develop during the prenatal or postnatal period. Investigating morphological development of the carotid body and contributing genes in these mice can provide further understanding of the appropriate formation of the carotid body. We examined the carotid body of these mice from 1 day to 4 wk old for differences in volume, morphology, and gene expression of Gdnf family, Dlx2, Msx2, and Phox2b. The two strains showed divergent morphology starting at 1 wk old. The volume of the carotid body increased from 1 wk up to 2 wk old to the level of 4 wk old in the DBA/2J mice but not in the A/J mice. This corresponds with immunoreactivity of LC3, an autophagy marker, in A/J tissues at 10 days and 2 wk. The differences in gene expression were examined at 1 wk, 10 days, and 2 wk old, because divergent growth occurred during this period. The DBA/2J's carotid body at 1 wk old showed a greater expression of Msx2 than the A/J's carotid body. No other candidate genes showed consistent differences between the ages and strains. The difference was not seen in sympathetic cervical ganglia of 1 wk old, suggesting that the difference is carotid body specific. The current study indicates the critical postnatal period for developing distinctive morphology of the carotid body in these mice. Further studies are required to further elucidate a role of Msx2 and other uninvestigated genes.


Assuntos
Corpo Carotídeo/crescimento & desenvolvimento , Corpo Carotídeo/metabolismo , Animais , Gânglios Simpáticos/metabolismo , Expressão Gênica/genética , Fatores Neurotróficos Derivados de Linhagem de Célula Glial/genética , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Camundongos Endogâmicos DBA , Proteínas Associadas aos Microtúbulos/metabolismo , Gânglio Cervical Superior/metabolismo , Fatores de Transcrição/genética
7.
CNS Neurol Disord Drug Targets ; 10(6): 703-11, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21838676

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor dysfunction that occurs secondary to loss of dopaminergic neurons in the nigrostriatal pathway. Current pharmacotherapies focus on the replacement of lost dopamine to alleviate disease symptoms. However, over time this method of therapy loses effectiveness due to the continued death of dopaminergic neurons. Alternative strategies for the treatment of PD are aimed at modifying the disease state through the preservation of remaining dopamine neurons or even the regeneration of dopamine innervation through the use of neurotrophic factors. Neurotrophic factors are specialized proteins that can promote neuronal development, maintain neuronal health and modulate neuronal function in the ventral midbrain, making them candidates for the treatment of PD. Preclinial studies indicate that members of the glial cell line-derived neurotrophic factor family of ligands are capable of preserving the degenerating dopamine neurons. These promising results moved neurotrophic factor therapy to clinical trials in PD patients. To date, neurotrophic factor therapy is proven to be safe and well-tolerated in humans, but conclusive evidence of efficacy in the clinic remains to be determined. This review will discuss the preclinical and clinical experiments of glial cell line-derived neurotrophic factor family ligands for the treatment of PD.


Assuntos
Terapia Genética/métodos , Terapia Genética/tendências , Fatores Neurotróficos Derivados de Linhagem de Célula Glial/genética , Fatores Neurotróficos Derivados de Linhagem de Célula Glial/uso terapêutico , Degeneração Neural/terapia , Doença de Parkinson/terapia , Animais , Fatores Neurotróficos Derivados de Linhagem de Célula Glial/metabolismo , Humanos , Degeneração Neural/genética , Degeneração Neural/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo
8.
Exp Eye Res ; 93(2): 196-203, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20685205

RESUMO

Glaucoma is a progressive optic neuropathy and a major cause of visual impairment worldwide. Neuroprotective therapies for glaucoma aim to ameliorate retinal ganglion cell degeneration through direct or indirect action on these neurons. Neurotrophic factor (NTF) delivery is a key target for the development of potential neuroprotective glaucoma treatments. This article will critically summarize the evidence that NTF deprivation and/or dysfunction plays a role in the pathogenesis of glaucoma. Experimental support for the neuroprotective potential of NTF supplementation in animal models of glaucoma will be reviewed, in particular for brain-derived neurotrophic factor, ciliary neurotrophic factor, and glial cell line-derived neurotrophic factor. Finally, the challenges of clinical translation will be considered with an emphasis on the most promising NTF delivery strategies including slow-release drug delivery, gene therapy, and cell transplantation.


Assuntos
Terapia Genética , Glaucoma/terapia , Fatores de Crescimento Neural/genética , Doenças do Nervo Óptico/terapia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Ciliar/genética , Modelos Animais de Doenças , Glaucoma/etiologia , Fatores Neurotróficos Derivados de Linhagem de Célula Glial/genética , Humanos , Doenças do Nervo Óptico/etiologia
9.
J Neurosci ; 30(49): 16469-74, 2010 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-21147986

RESUMO

Loss of dopaminergic neurons is primarily responsible for the onset and progression of Parkinson's disease (PD); thus, neuroprotective and/or neuroregenerative strategies remain critical to the treatment of this increasingly prevalent disease. Here we explore a novel approach to neurotrophic factor-based therapy by engineering zinc finger protein transcription factors (ZFP TFs) that activate the expression of the endogenous glial cell line-derived neurotrophic factor (GDNF) gene. We show that GDNF activation can be achieved with exquisite genome-wide specificity. Furthermore, in a rat model of PD, striatal delivery of an adeno-associated viral vector serotype 2 encoding the GDNF activator resulted in improvements in forelimb akinesia, sensorimotor neglect, and amphetamine-induced rotations caused by 6-hydroxydopamine (6-OHDA) lesion. Our results suggest that an engineered ZFP TF can drive sufficient GDNF expression in the brain to provide functional neuroprotection against 6-OHDA; therefore, targeted activation of the endogenous gene may provide a method for delivering appropriate levels of GDNF to PD patients.


Assuntos
Terapia Genética/métodos , Fatores Neurotróficos Derivados de Linhagem de Célula Glial/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/terapia , Engenharia de Proteínas/métodos , Anfetamina/administração & dosagem , Animais , Linhagem Celular , Modelos Animais de Doenças , Dopaminérgicos/administração & dosagem , Ensaio de Imunoadsorção Enzimática/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Vetores Genéticos/fisiologia , Fatores Neurotróficos Derivados de Linhagem de Célula Glial/biossíntese , Fatores Neurotróficos Derivados de Linhagem de Célula Glial/genética , Proteínas de Fluorescência Verde/genética , Haplorrinos , Humanos , Lentivirus/fisiologia , Camundongos , Análise em Microsséries/métodos , Atividade Motora/efeitos dos fármacos , Oxidopamina/toxicidade , Doença de Parkinson/complicações , Doença de Parkinson/etiologia , RNA Mensageiro/metabolismo , Ratos , Fatores de Tempo , Transfecção , Tirosina 3-Mono-Oxigenase/metabolismo , Dedos de Zinco/genética
10.
Tissue Eng Part A ; 15(10): 3049-59, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19335061

RESUMO

The aim of this study was to assess the feasibility of transplanting mesenchymal stem cells (MSCs), genetically modified to express glial-derived neurotrophic factor (GDNF), to the contused rat spinal cord, and to subsequently assess their neural differentiation potential. MSCs expressing green fluorescent protein were transduced with a retroviral vector to express the neurotrophin GDNF. The transduction protocol was optimized by using green fluorescent protein-expressing retroviral constructs; approximately 90% of MSCs were transduced successfully after G418 selection. GDNF-transduced MSCs expressed the transgene and secreted growth factor into the media (approximately 12 ng/500,000 cells secreted into the supernatant 2 weeks after transduction). Injuries were established using an impactor device, which applied a given, reproducible force to the exposed spinal cord. GDNF-expressing MSCs were transplanted rostral and caudal to the site of injury. Spinal cord sections were analyzed 2 and 6 weeks after transplantation. We demonstrate that GDNF-transduced MSCs engraft, survive, and express the therapeutic gene up to 6 weeks posttransplantation, while maintaining an undifferentiated phenotype. In conclusion, transplanted MSCs have limited capacity for the replacement of neural cells lost as a result of a spinal cord trauma. However, they provide excellent opportunities for local delivery of neurotrophic factors into the injured tissue. This study underlines the therapeutic benefits associated with cell transplantation and provides a good example of the use of MSCs for gene delivery.


Assuntos
Diferenciação Celular/fisiologia , Fatores Neurotróficos Derivados de Linhagem de Célula Glial/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Neurônios/citologia , Medula Espinal/citologia , Animais , Diferenciação Celular/genética , Células Cultivadas , Feminino , Vetores Genéticos , Fatores Neurotróficos Derivados de Linhagem de Célula Glial/genética , Imuno-Histoquímica , Masculino , Células-Tronco Mesenquimais/metabolismo , Microscopia de Fluorescência , Ratos , Ratos Sprague-Dawley , Medula Espinal/metabolismo
11.
J Pediatr Surg ; 43(11): 2042-7, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18970938

RESUMO

PURPOSE: Hirschsprung disease (HSCR) is a developmental disorder caused by a failure of neural crest cells to migrate, proliferate, and/or differentiate during the enteric nervous system development. It presents a multifactorial, nonmendelian pattern of inheritance, with several genes playing some role in its pathogenesis. Its major susceptibility gene is the RET protooncogene, which encodes a receptor tyrosine kinase activating several key signaling pathways in the enteric nervous system development. Given the pivotal role of RET in HSCR, the genes encoding their ligands (GDNF, NRTN, ARTN, and PSPN) are also good candidates for the disease. METHODS: We have performed a case-control study using Taqman technology to evaluate 10 polymorphisms within these genes, as well as haplotypes comprising them, as susceptibility factors for HSCR. RESULTS: No differences were found in the allelic frequencies of the variants or in the haplotype distribution between patients and controls. In addition, no particular association was detected of the variants/haplotypes to any demographic/clinical parameters within the group of patients. CONCLUSION: These data would be consistent with the lack of association between these polymorphisms and HSCR, although they do not permit to completely discard a possible role of other variants within these genes in the disease. Moreover, because the gene-by-gene approach does not take into account the polygenic nature of HSCR disease, it would be interesting to investigate sets of variants in many other different susceptibility loci described for HSCR, which may permit to consider possible interactions among susceptibility genes.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Fatores Neurotróficos Derivados de Linhagem de Célula Glial/fisiologia , Doença de Hirschsprung/genética , Proteínas Nucleares/fisiologia , Polimorfismo de Nucleotídeo Único , Alelos , Estudos de Casos e Controles , Análise Mutacional de DNA , Feminino , Predisposição Genética para Doença , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/fisiologia , Fatores Neurotróficos Derivados de Linhagem de Célula Glial/genética , Haplótipos/genética , Doença de Hirschsprung/epidemiologia , Humanos , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Neurturina/genética , Neurturina/fisiologia , Fenótipo , Espanha/epidemiologia
12.
Brain Behav Evol ; 68(3): 181-90, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16912471

RESUMO

Four different ligand-receptor binding pairs of the GDNF (glial cell line-derived neurotrophic factor) family exist in mammals, and they all signal via the transmembrane RET receptor tyrosine kinase. In addition, GRAL (GDNF Receptor Alpha-Like) protein of unknown function and Gas1 (growth arrest specific 1) have GDNF family receptor (GFR)-like domains. Orthologs of the four GFRalpha receptors, GRAL and Gas1 are present in all vertebrate classes. In contrast, although bony fishes have orthologs of all four GDNF family ligands (GFLs), one of the ligands, neurturin, is absent in clawed frog and another, persephin, is absent in the chicken genome. Frog GFRalpha2 has selectively evolved possibly to accommodate GDNF as a ligand. The key role of GDNF and its receptor GFRalpha1 in enteric nervous system development is conserved from zebrafish to humans. The role of neurturin, signaling via GFRalpha2, for parasympathetic neuron development is conserved between chicken and mice. The role of artemin and persephin that signal via GFRalpha3 and GFRalpha4, respectively, is unknown in non-mammals. The presence of RET- and GFR-like genes in insects suggests that a ProtoGFR and a ProtoRET arose early in the evolution of bilaterian animals, but when the ProtoGFL diverged from existing transforming growth factor (TGFbeta)-like proteins remains unclear. The four GFLs and GFRalphas were presumably generated by genome duplications at the origin of vertebrates. Loss of neurturin in frog and persephin in chicken suggests functional redundancy in early tetrapods. Functions of non-mammalian GFLs and prechordate RET and GFR-like proteins remain to be explored.


Assuntos
Evolução Molecular , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fatores Neurotróficos Derivados de Linhagem de Célula Glial/genética , Animais , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fatores Neurotróficos Derivados de Linhagem de Célula Glial/metabolismo , Humanos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Relação Estrutura-Atividade
13.
Proc Natl Acad Sci U S A ; 103(24): 9345-50, 2006 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-16751280

RESUMO

Huntington's disease (HD) is a fatal, genetic, neurological disorder resulting from a trinucleotide repeat expansion in the gene that encodes for the protein huntingtin. These excessive repeats confer a toxic gain of function on huntingtin, which leads to the degeneration of striatal and cortical neurons and a devastating motor, cognitive, and psychological disorder. Trophic factor administration has emerged as a compelling potential therapy for a variety of neurodegenerative disorders, including HD. We previously demonstrated that viral delivery of glial cell line-derived neurotrophic factor (GDNF) provides structural and functional neuroprotection in a rat neurotoxin model of HD. In this report we demonstrate that viral delivery of GDNF into the striatum of presymptomatic mice ameliorates behavioral deficits on the accelerating rotorod and hind limb clasping tests in transgenic HD mice. Behavioral neuroprotection was associated with anatomical preservation of the number and size of striatal neurons from cell death and cell atrophy. Additionally, GDNF-treated mice had a lower percentage of neurons containing mutant huntingtin-stained inclusion bodies, a hallmark of HD pathology. These data further support the concept that viral vector delivery of GDNF may be a viable treatment for patients suffering from HD.


Assuntos
Técnicas de Transferência de Genes , Fatores Neurotróficos Derivados de Linhagem de Célula Glial/metabolismo , Doença de Huntington/patologia , Doença de Huntington/fisiopatologia , Fármacos Neuroprotetores/metabolismo , Animais , Comportamento Animal/fisiologia , Morte Celular , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animais de Doenças , Feminino , Terapia Genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fatores Neurotróficos Derivados de Linhagem de Célula Glial/genética , Fatores Neurotróficos Derivados de Linhagem de Célula Glial/uso terapêutico , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/terapia , Corpos de Inclusão/química , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Proteínas Nucleares/metabolismo , Ratos
14.
Pharmacol Res ; 54(1): 39-45, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16600621

RESUMO

Among four herbs of traditional Chinese medicines (TCMs) used in the therapy of dementia, Rehmannia glutinosa (RG) was found to induce the gene expression of glial cell line-derived neurotrophic factor (GDNF) in C6 glioblastoma cells and primary cultured astrocytes. The RG-induced GDNF mRNA up-regulation in C6 glioblastoma cells was completely attenuated by the presence of a pan-specific protein kinase C (PKC) inhibitor (Ro-31-8220) and a MAPK/ERK kinase 1 (MEK1) inhibitor (U0126). A conventional PKC inhibitor (Gö6976) also significantly decreased GDNF gene induction. On the other hand, RG treatment was found to stimulate phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2), which preceded GDNF mRNA induction in C6 glioblastoma cells. However, none of the PKC inhibitors significantly changed RG-stimulated ERK1/2 phosphorylation. Therefore, RG-stimulated GDNF gene expression could be independently up-regulated through cPKC and ERK 1/2 pathways in C6 glioblastoma cells.


Assuntos
Astrócitos/efeitos dos fármacos , Fatores Neurotróficos Derivados de Linhagem de Célula Glial/biossíntese , Rehmannia/química , Doença de Alzheimer , Animais , Astrócitos/metabolismo , Linhagem Celular Tumoral , Medicamentos de Ervas Chinesas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Fatores Neurotróficos Derivados de Linhagem de Célula Glial/genética , Medicina Tradicional Chinesa , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Quinase C/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...