Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 543(7644): 265-269, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28241141

RESUMO

Cancer cells are characterized by aberrant epigenetic landscapes and often exploit chromatin machinery to activate oncogenic gene expression programs. Recognition of modified histones by 'reader' proteins constitutes a key mechanism underlying these processes; therefore, targeting such pathways holds clinical promise, as exemplified by the development of bromodomain and extra-terminal (BET) inhibitors. We recently identified the YEATS domain as an acetyl-lysine-binding module, but its functional importance in human cancer remains unknown. Here we show that the YEATS domain-containing protein ENL, but not its paralogue AF9, is required for disease maintenance in acute myeloid leukaemia. CRISPR-Cas9-mediated depletion of ENL led to anti-leukaemic effects, including increased terminal myeloid differentiation and suppression of leukaemia growth in vitro and in vivo. Biochemical and crystal structural studies and chromatin-immunoprecipitation followed by sequencing analyses revealed that ENL binds to acetylated histone H3, and co-localizes with H3K27ac and H3K9ac on the promoters of actively transcribed genes that are essential for leukaemia. Disrupting the interaction between the YEATS domain and histone acetylation via structure-based mutagenesis reduced the recruitment of RNA polymerase II to ENL-target genes, leading to the suppression of oncogenic gene expression programs. Notably, disrupting the functionality of ENL further sensitized leukaemia cells to BET inhibitors. Together, our data identify ENL as a histone acetylation reader that regulates oncogenic transcriptional programs in acute myeloid leukaemia, and suggest that displacement of ENL from chromatin may be a promising epigenetic therapy, alone or in combination with BET inhibitors, for aggressive leukaemia.


Assuntos
Acetilação , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Oncogenes/genética , Fatores de Elongação da Transcrição/metabolismo , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Epigênese Genética , Feminino , Edição de Genes , Histonas/química , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Lisina/metabolismo , Camundongos , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , RNA Polimerase II/metabolismo , Transcrição Gênica , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/deficiência , Fatores de Elongação da Transcrição/genética
2.
Mol Neurobiol ; 54(10): 7808-7823, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27844289

RESUMO

TCERG1 is a highly conserved human protein implicated in interactions with the transcriptional and splicing machinery that is associated with neurodegenerative disorders. Biochemical, neuropathological, and genetic evidence suggests an important role for TCERG1 in Huntington's disease (HD) pathogenesis. At present, the molecular mechanism underlying TCERG1-mediated neuronal effects is unknown. Here, we show that TCERG1 depletion led to widespread alterations in mRNA processing that affected different types of alternative transcriptional or splicing events, indicating that TCERG1 plays a broad role in the regulation of alternative splicing. We observed considerable changes in the transcription and alternative splicing patterns of genes involved in cytoskeleton dynamics and neurite outgrowth. Accordingly, TCERG1 depletion in the neuroblastoma SH-SY5Y cell line and primary mouse neurons affected morphogenesis and resulted in reduced dendritic outgrowth, with a major effect on dendrite ramification and branching complexity. These defects could be rescued by ectopic expression of TCERG1. Our results indicate that TCERG1 affects expression of multiple mRNAs involved in neuron projection development, whose misregulation may be involved in TCERG1-linked neurological disorders.


Assuntos
Citoesqueleto/metabolismo , Neuroblastoma/metabolismo , Crescimento Neuronal/fisiologia , Neurônios/metabolismo , Fatores de Elongação da Transcrição/biossíntese , Processamento Alternativo/fisiologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Citoesqueleto/genética , Citoesqueleto/patologia , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Neuroblastoma/genética , Neuroblastoma/patologia , Neurônios/patologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Fatores de Elongação da Transcrição/deficiência , Fatores de Elongação da Transcrição/genética
3.
J Immunol ; 193(9): 4663-74, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25238757

RESUMO

Differentiation of B cells into Ab-secreting cells induces changes in gene transcription, IgH RNA processing, the unfolded protein response (UPR), and cell architecture. The transcription elongation factor eleven nineteen lysine-rich leukemia gene (ELL2) stimulates the processing of the secreted form of the IgH mRNA from the H chain gene. Mice (mus musculus) with the ELL2 gene floxed in either exon 1 or exon 3 were constructed and crossed to CD19-driven cre/CD19(+). The B cell-specific ELL2 conditional knockouts (cKOs; ell2(loxp/loxp) CD19(cre/+)) exhibit curtailed humoral responses both in 4-hydroxy-3-nitrophenyl acetyl-Ficoll and in 4-hydroxy-3-nitrophenyl acetyl-keyhole limpet hemocyanin immunized animals; recall responses were also diminished. The number of immature and recirculating B cells in the bone marrow is increased in the cKOs, whereas plasma cells in spleen are reduced relative to control animals. There are fewer IgG1 Ab-producing cells in the bone marrow of cKOs. LPS ex vivo-stimulated B220(lo)CD138(+) cells from ELL2-deficient mouse spleens are 4-fold less abundant than from control splenic B cells; have a paucity of secreted IgH; and have distended, abnormal-appearing endoplasmic reticulum. IRE1α is efficiently phosphorylated, but the amounts of Ig κ, ATF6, BiP, Cyclin B2, OcaB (BOB1, Pou2af1), and XBP1 mRNAs, unspliced and spliced, are severely reduced in ELL2-deficient cells. ELL2 enhances the expression of BCMA (also known as Tnfrsf17), which is important for long-term survival. Transcription yields from the cyclin B2 and the canonical UPR promoter elements are upregulated by ELL2 cDNA. Thus, ELL2 is important for many aspects of Ab secretion, XBP1 expression, and the UPR.


Assuntos
Imunoglobulinas/genética , RNA Mensageiro/genética , Fatores de Elongação da Transcrição/metabolismo , Resposta a Proteínas não Dobradas , Animais , Antígenos CD19/genética , Antígenos CD19/metabolismo , Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Subpopulações de Linfócitos B/ultraestrutura , Diferenciação Celular , Deleção de Genes , Expressão Gênica , Ordem dos Genes , Marcação de Genes , Loci Gênicos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/metabolismo , Imunoglobulinas/metabolismo , Imunofenotipagem , Camundongos , Camundongos Knockout , Fenótipo , Transcrição Gênica , Fatores de Elongação da Transcrição/deficiência , Fatores de Elongação da Transcrição/genética
4.
Biochim Biophys Acta ; 1824(5): 759-68, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22446411

RESUMO

The Ctr9 protein is a member of the Paf1 complex implicated in multiple functions: transcription initiation and elongation by RNA pol II, RNA processing and histone modifications. It has also been described as a triple-helical DNA binding protein. Loss of Ctr9 results in severe phenotypes similar to the loss of Paf1p, a Paf1 complex subunit. However, the exact role of Ctr9 is not entirely established. To study the biological role of the protein Ctr9 in yeast, we used 2-D gel electrophoresis and characterized proteome alterations in a ctr9Δ mutant strain. Here we present results suggesting that Ctr9 has function distinct from its established role in the Paf1 complex. This role could be linked to its ability to bind to DNA complex structures as triplexes that may have function in regulation of gene expression.


Assuntos
Proteínas de Ciclo Celular/genética , DNA Fúngico/genética , Regulação Fúngica da Expressão Gênica , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Elongação da Transcrição/genética , Proteínas de Ciclo Celular/deficiência , DNA , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Eletroforese em Gel Bidimensional , Deleção de Genes , Proteínas Nucleares/metabolismo , Proteoma , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Coloração e Rotulagem , Radioisótopos de Enxofre , Transcrição Gênica , Fatores de Elongação da Transcrição/deficiência
5.
FEBS Lett ; 585(12): 1929-33, 2011 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-21569772

RESUMO

TFIIS is a transcript elongation factor that facilitates transcription by RNA polymerase II through blocks to elongation. Arabidopsis plants lacking TFIIS are affected in seed dormancy, which represents a block to complete germination under favourable conditions. We have comparatively profiled the transcript levels of seeds of tfIIs mutants and control plants. Among the differentially expressed genes, the DOG1 gene was identified that is a QTL for seed dormancy. The reduced expression of DOG1 in tfIIs seeds was confirmed by quantitative RT-PCR and Northern analyses, suggesting that down-regulation of DOG1 expression is involved in the seed dormancy phenotype of tfIIs mutants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Fatores de Elongação da Transcrição/deficiência , Proteínas de Arabidopsis/análise , Perfilação da Expressão Gênica , Dormência de Plantas/genética , Locos de Características Quantitativas , Sementes/genética
6.
DNA Repair (Amst) ; 9(11): 1142-50, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-20729154

RESUMO

Inhibition of transcription elongation can cause severe developmental and neurological abnormalities notably manifested by the rare recessive progeroid disorder Cockayne syndrome (CS). DNA alterations can cause permanent blocks to an elongating RNA polymerase II (RNAPII) leading to transcriptional arrest. Abrogation of transcription arrest requires removal of transcription blocking lesions through transcription-coupled nucleotide excision repair (TC-NER) a process defective in CS. Transcription elongation factor IIS (TFIIS) has been found to localize with the TC-NER complex after cellular exposure to UV-C light and in vitro addition of TFIIS to a damage arrested RNAPII causes transcript shortening. Hence default TFIIS activity might mimic or contribute to the severe phenotype of Cockayne syndrome. Here we show that down regulation of TFIIS by siRNA treatment of human cells lead to impaired RNA synthesis recovery and elevated levels of hyper-phosphorylated RNAPII after UV-irradiation. TFIIS knock down does not affect TC-NER, the reappearance of hypo-phosphorylated RNAPII post-UV-irradiation, UV sensitivity or the p53 damage response. These findings reveal a role for TFIIS in transcription recovery and re-establishment of the balance between hypo- and hyper-phosphorylated RNAPII after DNA damage repair.


Assuntos
Transcrição Gênica/efeitos da radiação , Fatores de Elongação da Transcrição/metabolismo , Raios Ultravioleta , Linhagem Celular , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Regulação para Baixo , Técnicas de Silenciamento de Genes , Humanos , Fosforilação/efeitos da radiação , RNA/biossíntese , RNA Polimerase II/metabolismo , RNA Interferente Pequeno/genética , Fatores de Elongação da Transcrição/deficiência , Fatores de Elongação da Transcrição/genética
7.
Fungal Genet Biol ; 47(4): 288-96, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20060921

RESUMO

As a means to study surface proteins involved in the yeast to hypha transition, human monoclonal antibody fragments (single-chain variable fragments, scFv) have been generated that bind to antigens expressed on the surface of Candida albicans yeast and/or hyphae. A cDNA expression library was constructed from hyphae, and screened for immunoreactivity with scFv5 as a means to identify its cognate antigen. A reactive clone contained the 3' end of the C. albicans gene, orf 19.7136, designated SPT6 based on homology to Saccharomyces cerevisiae, where its product functions as a transcription elongation factor. A mutant containing a homozygous deletion of SPT6 was isolated, demonstrating that unlike S. cerevisiae, deletion of this gene in C. albicans is not lethal. Growth of this strain was severely impaired, however, as was its capacity to undergo filamentous growth. Reactivity with scFv5 was not detected in the mutant strain, although its impaired growth complicates the interpretation of this finding. To assess C. albicansSPT6 function, expression of the C. albicans gene was induced in a defined S. cerevisiaespt6 mutant. Partial complementation was seen, confirming that the C. albicans and S. cerevisiae genes are functionally related in these species.


Assuntos
Candida albicans/crescimento & desenvolvimento , Candida albicans/genética , Proteínas Fúngicas/genética , Deleção de Genes , Hifas/crescimento & desenvolvimento , Fatores de Elongação da Transcrição/genética , Sequência de Aminoácidos , DNA Fúngico/química , DNA Fúngico/genética , Expressão Gênica , Biblioteca Gênica , Humanos , Dados de Sequência Molecular , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Fatores de Elongação da Transcrição/deficiência
8.
Biochimie ; 92(2): 157-63, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19925844

RESUMO

LepA is a translational GTPase highly conserved in bacterial lineages. While it has been shown that LepA can catalyze reverse ribosomal translocation in vitro, the role of LepA in the cell remains unclear. Here, we show that deletion of the lepA gene (DeltalepA) in Escherichia coli causes hypersensitivity to potassium tellurite and penicillin G, but has no appreciable effect on growth under many other conditions. DeltalepA does not increase miscoding or frameshifting errors under normal or stress conditions, indicating that LepA does not contribute to the fidelity of translation. Overexpression of LepA interferes with tmRNA-mediated peptide tagging and A-site mRNA cleavage, suggesting that LepA is a bona fide translation factor that can act on stalled ribosomes with a vacant A site in vivo. Together these results lead us to hypothesize that LepA is involved in co-translational folding of proteins that are otherwise vulnerable to tellurite oxidation.


Assuntos
Farmacorresistência Bacteriana , Proteínas de Escherichia coli/biossíntese , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Biossíntese de Proteínas/fisiologia , Telúrio/farmacologia , Fatores de Elongação da Transcrição/metabolismo , Escherichia coli/citologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , GTP Fosfo-Hidrolases/deficiência , GTP Fosfo-Hidrolases/genética , Deleção de Genes , Oxidantes/farmacologia , Fatores de Iniciação de Peptídeos , Fosfoproteínas/deficiência , Fosfoproteínas/genética , RNA Mensageiro/genética , Fatores de Elongação da Transcrição/deficiência , Fatores de Elongação da Transcrição/genética
9.
J Cell Biochem ; 108(2): 508-18, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19639603

RESUMO

A possible role for structure-specific recognition protein 1 (SSRP1) in replication-associated repair processes has previously been suggested based on its interaction with several DNA repair factors and the replication defects observed in SSRP1 mutants. In this study, we investigated the potential role of SSRP1 in association with DNA repair mediated by homologous recombination (HR), one of the pathways involved in repairing replication-associated DNA damage, in mammalian cells. Surprisingly, over-expression of SSRP1 reduced the number of hprt(+) recombinants generated via HR both spontaneously and upon hydroxyurea (HU) treatment, whereas knockdown of SSRP1 resulted in an increase of HR events in response to DNA double-strand break formation. In correlation, we found that the depletion of SSRP1 in HU-treated human cells elevated the number of Rad51 and H2AX foci, while over-expression of the wild-type SSRP1 markedly reduced HU-induced Rad51 foci formation. We also found that SSRP1 physically interacts with a key HR repair protein, Rad54 both in vitro and in vivo. Further, branch migration studies demonstrated that SSRP1 inhibits Rad54-promoted branch migration of Holliday junctions in vitro. Taken together, our data suggest a functional role for SSRP1 in spontaneous and replication-associated DNA damage response by suppressing avoidable HR repair events.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/fisiologia , Proteínas de Grupo de Alta Mobilidade/fisiologia , Recombinação Genética , Fatores de Elongação da Transcrição/fisiologia , Animais , Western Blotting , Cricetinae , Cricetulus , Quebras de DNA de Cadeia Dupla , Dano ao DNA , DNA Helicases , DNA Cruciforme/metabolismo , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Técnicas de Silenciamento de Genes , Genes Reporter , Proteínas de Grupo de Alta Mobilidade/biossíntese , Proteínas de Grupo de Alta Mobilidade/deficiência , Proteínas de Grupo de Alta Mobilidade/genética , Histonas/metabolismo , Humanos , Hidroxiureia , Proteínas Mutantes/isolamento & purificação , Proteínas Mutantes/metabolismo , Proteínas Nucleares/metabolismo , Fragmentos de Peptídeos , Plasmídeos , Ligação Proteica , RNA Interferente Pequeno , Rad51 Recombinase/metabolismo , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Elongação da Transcrição/biossíntese , Fatores de Elongação da Transcrição/deficiência , Fatores de Elongação da Transcrição/genética , Transfecção
10.
Mol Biol Cell ; 20(8): 2229-41, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19225160

RESUMO

The yeast [PSI+] prion is an epigenetic modifier of translation termination fidelity that causes nonsense suppression. The prion [PSI+] forms when the translation termination factor Sup35p adopts a self-propagating conformation. The presence of the [PSI+] prion modulates survivability in a variety of growth conditions. Nonsense suppression is essential for many [PSI+]-mediated phenotypes, but many do not appear to be due to read-through of a single stop codon, but instead are multigenic traits. We hypothesized that other global mechanisms act in concert with [PSI+] to influence [PSI+]-mediated phenotypes. We have identified one such global regulator, the Paf1 complex (Paf1C). Paf1C is conserved in eukaryotes and has been implicated in several aspects of transcriptional and posttranscriptional regulation. Mutations in Ctr9p and other Paf1C components reduced [PSI+]-mediated nonsense suppression. The CTR9 deletion also alters nonsense suppression afforded by other genetic mutations but not always to the same extent as the effects on [PSI+]-mediated read-through. Our data suggest that the Paf1 complex influences mRNA translatability but not solely through changes in transcript stability or abundance. Finally, we demonstrate that the CTR9 deletion alters several [PSI+]-dependent phenotypes. This provides one example of how [PSI+] and genetic modifiers can interact to uncover and regulate phenotypic variability.


Assuntos
Complexos Multiproteicos/metabolismo , Mutação/genética , Proteínas Nucleares/genética , Príons/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alelos , Proteínas de Ciclo Celular/metabolismo , Códon sem Sentido/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Genes Recessivos , Teste de Complementação Genética , Fatores de Terminação de Peptídeos , Fenótipo , Príons/química , Biossíntese de Proteínas , Estrutura Quaternária de Proteína , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/química , Supressão Genética , Proteína de Ligação a TATA-Box/metabolismo , Fatores de Elongação da Transcrição/deficiência , Fatores de Elongação da Transcrição/metabolismo
11.
J Mol Biol ; 386(3): 598-611, 2009 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-19150360

RESUMO

Transcript elongation factor TFIIS promotes efficient transcription by RNA polymerase II, since it assists in bypassing blocks during mRNA synthesis. While yeast cells lacking TFIIS are viable, inactivation of mouse TFIIS causes embryonic lethality. Here, we have identified a protein encoded in the Arabidopsis genome that displays a marked sequence similarity to TFIIS of other organisms, primarily within domains II and III in the C-terminal part of the protein. TFIIS is widely expressed in Arabidopsis, and a green fluorescent protein-TFIIS fusion protein localises specifically to the cell nucleus. When expressed in yeast cells lacking the endogenous TFIIS, Arabidopsis TFIIS partially complements the sensitivity of mutant cells to the nucleotide analog 6-azauridine, which is a typical characteristic of transcript elongation factors. We have characterised Arabidopsis lines harbouring T-DNA insertions in the coding sequence of TFIIS. Plants homozygous for T-DNA insertions are viable, and genomewide transcript profiling revealed that compared to control plants, a relatively small number of genes are differentially expressed in mutant plants. TFIIS(-/-) plants display essentially normal development, but they flower slightly earlier than control plants and show clearly reduced seed dormancy. Plants with RNAi-mediated knockdown of TFIIS expression also are affected in seed dormancy. Therefore, TFIIS plays a critical role in Arabidopsis seed development.


Assuntos
Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Sementes/fisiologia , Fatores de Elongação da Transcrição/metabolismo , Sequência de Aminoácidos , Arabidopsis/enzimologia , Núcleo Celular/química , Sobrevivência Celular , DNA Bacteriano/genética , Deleção de Genes , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Genes Reporter , Teste de Complementação Genética , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Homozigoto , Dados de Sequência Molecular , Mutagênese Insercional , Filogenia , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética , Recombinação Genética , Saccharomyces cerevisiae/genética , Sementes/enzimologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Fatores de Elongação da Transcrição/deficiência , Fatores de Elongação da Transcrição/genética
12.
Mol Cell Biol ; 26(8): 3194-203, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16581793

RESUMO

Transcription elongation factor S-II/TFIIS promotes readthrough of transcriptional blocks by stimulating nascent RNA cleavage activity of RNA polymerase II in vitro. The biologic significance of S-II function in higher eukaryotes, however, remains unclear. To determine its role in mammalian development, we generated S-II-deficient mice through targeted gene disruption. Homozygous null mutants died at midgestation with marked pallor, suggesting severe anemia. S-II(-/-) embryos had a decreased number of definitive erythrocytes in the peripheral blood and disturbed erythroblast differentiation in fetal liver. There was a dramatic increase in apoptotic cells in S-II(-/-) fetal liver, which was consistent with a reduction in Bcl-x(L) gene expression. The presence of phenotypically defined hematopoietic stem cells and in vitro colony-forming hematopoietic progenitors in S-II(-/-) fetal liver indicates that S-II is dispensable for the generation and differentiation of hematopoietic stem cells. S-II-deficient fetal liver cells, however, exhibited a loss of long-term repopulating potential when transplanted into lethally irradiated adult mice, indicating that S-II deficiency causes an intrinsic defect in the self-renewal of hematopoietic stem cells. Thus, S-II has critical and nonredundant roles in definitive hematopoiesis.


Assuntos
Hematopoese/genética , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/fisiologia , Animais , Apoptose , Western Blotting , Diferenciação Celular , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Cruzamentos Genéticos , Feminino , Citometria de Fluxo , Regulação da Expressão Gênica no Desenvolvimento , Marcação de Genes , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Hematopoese/efeitos da radiação , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/patologia , Fígado/citologia , Fígado/embriologia , Fígado/patologia , Luciferases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Quimera por Radiação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Elongação da Transcrição/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...