Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 11(17): 8172-8184, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34373735

RESUMO

Chromosome translocations involving mixed lineage leukemia (MLL) gene cause acute leukemia with a poor prognosis. MLL is frequently fused with transcription cofactors AF4 (~35%), AF9 (25%) or its paralog ENL (10%). The AHD domain of AF9/ENL binds to AF4, its paralog AFF4, or histone-H3 lysine-79 (H3K79) methyltransferase DOT1L. Formation of AF9/ENL/AF4/AFF4-containing super elongation complexes (SEC) and the catalytic activity of DOT1L are essential for MLL-rearranged leukemia. Protein-protein interactions (PPI) between AF9/ENL and DOT1L/AF4/AFF4 are therefore a potential drug target. Methods: Compound screening followed by medicinal chemistry was used to find inhibitors of such PPIs, which were examined for their biological activities against MLL-rearranged leukemia and other cancer cells. Results: Compound-1 was identified to be a novel small-molecule inhibitor of the AF9/ENL-DOT1L/AF4/AFF4 interaction with IC50s of 0.9-3.5 µM. Pharmacological inhibition of the PPIs significantly reduced SEC and DOT1L-mediated H3K79 methylation in the leukemia cells. Gene profiling shows compound-1 significantly suppressed the gene signatures related to onco-MLL, DOT1L, HoxA9 and Myc. It selectively inhibited proliferation of onco-MLL- or Myc-driven cancer cells and induced cell differentiation and apoptosis. Compound-1 exhibited strong antitumor activity in a mouse model of MLL-rearranged leukemia. Conclusions: The AF9/ENL-DOT1L/AF4/AFF4 interactions are validated to be an anticancer target and compound-1 is a useful in vivo probe for biological studies as well as a pharmacological lead for further drug development.


Assuntos
Antineoplásicos/farmacologia , Leucemia Mieloide Aguda , Proteínas de Fusão Oncogênica , Animais , Expressão Gênica/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Camundongos , Proteínas de Fusão Oncogênica/química , Proteínas de Fusão Oncogênica/efeitos dos fármacos , Proteínas de Fusão Oncogênica/genética , Oncogenes/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/efeitos dos fármacos , Fatores de Elongação da Transcrição/genética
2.
Cancer Res ; 76(8): 2432-42, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-26921329

RESUMO

The nearly universal recurrence of glioblastoma (GBM) is driven in part by a treatment-resistant subpopulation of GBM stem cells (GSC). To identify improved therapeutic possibilities, we combined the EGFR/HER2 inhibitor lapatinib with a novel small molecule, CBL0137, which inhibits FACT (facilitates chromatin transcription), a histone chaperone complex predominantly expressed in undifferentiated cells. Lapatinib and CBL0137 synergistically inhibited the proliferation of patient-derived GBM cells. Compared with non-stem tumor cells (NSTC) enriched from the same specimens, the GSCs were extremely sensitive to CBL0137 monotherapy or FACT knockdown. FACT expression was elevated in GSCs compared with matched NSTCs and decreased in GSCs upon differentiation. Acute exposure of GSCs to CBL0137 increased asymmetric cell division, decreased GSC marker expression, and decreased the capacity of GSCs to form tumor spheres in vitro and to initiate tumors in vivo Oral administration of CBL0137 to mice bearing orthotopic GBM prolonged their survival. Knockdown of FACT reduced the expression of genes encoding several core stem cell transcription factors (SOX2, OCT4, NANOG, and OLIG2), and FACT occupied the promoters of these genes. FACT expression was elevated in GBM tumors compared with non-neoplastic brain tissues, portended a worse prognosis, and positively correlated with GSC markers and stem cell gene expression signatures. Preferential targeting of GSCs by CBL0137 and synergy with EGFR inhibitors support the development of clinical trials combining these two agents in GBM. Cancer Res; 76(8); 2432-42. ©2016 AACR.


Assuntos
Neoplasias Encefálicas/patologia , Proteínas de Ligação a DNA/efeitos dos fármacos , Glioblastoma/patologia , Proteínas de Grupo de Alta Mobilidade/efeitos dos fármacos , Fatores de Elongação da Transcrição/efeitos dos fármacos , Animais , Neoplasias Encefálicas/metabolismo , Carbazóis/farmacologia , Glioblastoma/metabolismo , Humanos , Lapatinib , Camundongos , Quinazolinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...