Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 15737, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978410

RESUMO

The mammalian Target of Rapamycin complex 1 (mTORC1) nutrient-sensing pathway is a central regulator of cell growth and metabolism and is dysregulated in diabetes. The eukaryotic translation initiation factor 4E (EIF-4E) protein, a key regulator of gene translation and protein function, is controlled by mTORC1 and EIF-4E Binding Proteins (EIF4EBPs). Both EIF4EBPs and ribosomal protein S6K kinase (RP-S6K) are downstream effectors regulated by mTORC1 but converge to regulate two independent pathways. We investigated whether the risk of type 2 diabetes varied with genetically predicted EIF-4E, EIF-4A, EIF-4G, EIF4EBP, and RP-S6K circulating levels using Mendelian Randomization. We estimated the causal role of EIF-4F complex, EIF4EBP, and S6K in the circulation on type 2 diabetes, based on independent single nucleotide polymorphisms strongly associated (p = 5 × 10-6) with EIF-4E (16 SNPs), EIF-4A (11 SNPs), EIF-4G (6 SNPs), EIF4EBP2 (12 SNPs), and RP-S6K (16 SNPs). The exposure data were obtained from the INTERVAL study. We applied these SNPs for each exposure to publically available genetic associations with diabetes from the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) case (n = 26,676) and control (n = 132,532) study (mean age 57.4 years). We meta-analyzed SNP-specific Wald-estimates using inverse variance weighting with multiplicative random effects and conducted sensitivity analysis. Mendelian Randomization (MR-Base) R package was used in the analysis. The PhenoScanner curated database was used to identify disease associations with SNP gene variants. EIF-4E is associated with a lowered risk of type 2 diabetes with an odds ratio (OR) 0.94, 95% confidence interval (0.88, 0.99, p = 0.03) with similar estimates from the weighted median and MR-Egger. Similarly, EIF-4A was associated with lower risk of type 2 diabetes with odds ratio (OR) 0.90, 95% confidence interval (0.85, 0.97, p = 0.0003). Sensitivity analysis using MR-Egger and weighed median analysis does not indicate that there is a pleiotropic effect. This unbiased Mendelian Randomization estimate is consistent with a protective causal association of EIF-4E and EIF-4A on type 2 diabetes. EIF-4E and EIF-4A may be targeted for intervention by repurposing existing therapeutics to reduce the risk of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/genética , Polimorfismo de Nucleotídeo Único , Bases de Dados Genéticas , Diabetes Mellitus Tipo 2/genética , Fator de Iniciação 4A em Eucariotos/sangue , Fator de Iniciação 4E em Eucariotos/sangue , Fator de Iniciação Eucariótico 4G/sangue , Fator de Iniciação Eucariótico 4G/genética , Fatores de Iniciação em Eucariotos/sangue , Fatores de Iniciação em Eucariotos/genética , Estudos de Associação Genética , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Análise da Randomização Mendeliana , Transdução de Sinais
2.
PLoS One ; 14(10): e0223209, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31665133

RESUMO

Friedreich's ataxia (FA) is a neurodegenerative disease with no approved therapy that is the result of frataxin deficiency. The identification of human FA blood biomarkers related to disease severity and neuro-pathomechanism could support clinical trials of drug efficacy. To try to identify human biomarkers of neuro-pathomechanistic relevance, we compared the overlapping gene expression changes of primary blood and skin cells of FA patients with changes in the Dorsal Root Ganglion (DRG) of the KIKO FA mouse model. As DRG is the primary site of neurodegeneration in FA, our goal was to identify which changes in blood and skin of FA patients provide a 'window' into the FA neuropathomechanism inside the nervous system. In addition, gene expression in frataxin-deficient neuroglial cells and FA mouse hearts were compared for a total of 5 data sets. The overlap of these changes strongly supports mitochondrial changes, apoptosis and alterations of selenium metabolism. Consistent biomarkers were observed, including three genes of mitochondrial stress (MTIF2, ENO2), apoptosis (DDIT3/CHOP), oxidative stress (PREX1), and selenometabolism (SEPW1). These results prompted our investigation of the GPX1 activity as a marker of selenium and oxidative stress, in which we observed a significant change in FA patients. We believe these lead biomarkers that could be assayed in FA patient blood as indicators of disease severity and progression, and also support the involvement of mitochondria, apoptosis and selenium in the neurodegenerative process.


Assuntos
Biomarcadores/sangue , Ataxia de Friedreich/sangue , Gânglios Espinais/metabolismo , Estresse Oxidativo/genética , Animais , Antioxidantes/metabolismo , Apoptose/genética , Modelos Animais de Doenças , Fatores de Iniciação em Eucariotos/sangue , Ataxia de Friedreich/genética , Ataxia de Friedreich/patologia , Gânglios Espinais/patologia , Regulação da Expressão Gênica/genética , Fatores de Troca do Nucleotídeo Guanina/sangue , Humanos , Proteínas de Ligação ao Ferro/genética , Camundongos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/sangue , Miocárdio/metabolismo , Selênio/metabolismo , Fator de Transcrição CHOP/sangue , Frataxina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...