Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 558
Filtrar
1.
Orphanet J Rare Dis ; 19(1): 226, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844942

RESUMO

BACKGROUND: Waardenburg syndrome (WS) is a rare genetic disorder mainly characterized by hearing loss and pigmentary abnormalities. Currently, seven causative genes have been identified for WS, but clinical genetic testing results show that 38.9% of WS patients remain molecularly unexplained. In this study, we performed multi-data integration analysis through protein-protein interaction and phenotype-similarity to comprehensively decipher the potential causative factors of undiagnosed WS. In addition, we explored the association between genotypes and phenotypes in WS with the manually collected 443 cases from published literature. RESULTS: We predicted two possible WS pathogenic genes (KIT, CHD7) through multi-data integration analysis, which were further supported by gene expression profiles in single cells and phenotypes in gene knockout mouse. We also predicted twenty, seven, and five potential WS pathogenic variations in gene PAX3, MITF, and SOX10, respectively. Genotype-phenotype association analysis showed that white forelock and telecanthus were dominantly present in patients with PAX3 variants; skin freckles and premature graying of hair were more frequently observed in cases with MITF variants; while aganglionic megacolon and constipation occurred more often in those with SOX10 variants. Patients with variations of PAX3 and MITF were more likely to have synophrys and broad nasal root. Iris pigmentary abnormality was more common in patients with variations of PAX3 and SOX10. Moreover, we found that patients with variants of SOX10 had a higher risk of suffering from auditory system diseases and nervous system diseases, which were closely associated with the high expression abundance of SOX10 in ear tissues and brain tissues. CONCLUSIONS: Our study provides new insights into the potential causative factors of WS and an alternative way to explore clinically undiagnosed cases, which will promote clinical diagnosis and genetic counseling. However, the two potential disease-causing genes (KIT, CHD7) and 32 potential pathogenic variants (PAX3: 20, MITF: 7, SOX10: 5) predicted by multi-data integration in this study are all computational predictions and need to be further verified through experiments in follow-up research.


Assuntos
Fator de Transcrição Associado à Microftalmia , Fatores de Transcrição SOXE , Síndrome de Waardenburg , Síndrome de Waardenburg/genética , Humanos , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Fator de Transcrição PAX3/genética , Fator de Transcrição PAX3/metabolismo , Camundongos , Animais , Fenótipo , Genótipo , Mutação/genética
2.
Genes Chromosomes Cancer ; 63(6): e23249, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38884173

RESUMO

The widespread use of advanced molecular techniques has led to the identification of several tumor types with PLAG1 gene fusions some of which also affect the skin and soft tissues. Herein, we present a 38-year-old female with a subcutaneous tumor affecting her forearm, which does not seem to fit into any currently recognized entity. It was a well-circumscribed tumor measuring 6 × 4,5 × 4 cm. It had a thick capsule composed of bland spindle cells forming palisades and Verocay body-like structures within a myxocollagenous background. Scattered calcifications were dispersed throughout the lesion. No cytological atypia, mitotic activity, or necrosis were present. Targeted NGS revealed a SOX10::PLAG1 fusion and fluorescent in situ hybridization confirmed the presence of PLAG1 gene rearrangement. The neoplastic cells showed a diffuse immunohistochemical expression of S100, SOX10, and PLAG1, as well as patchy desmin and CD34 positivity. The methylation profile of this tumor did not match any other entity covered by the DKFZ sarcoma classifier and apart from the gain of chromosome 12, the copy number profile was normal. The tumor was completely excised, and the patient has been free of disease for 4 years since the excision. While more cases are needed to confirm this tumor as a distinct entity, we propose a provisional name "SOX10::PLAG1-rearranged calcifying spindle cell tumor."


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição SOXE , Neoplasias de Tecidos Moles , Humanos , Feminino , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Adulto , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/patologia , Neoplasias de Tecidos Moles/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Calcinose/genética , Calcinose/patologia , Calcinose/metabolismo , Sarcoma/genética , Sarcoma/patologia , Sarcoma/metabolismo
3.
Int J Mol Sci ; 25(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38791273

RESUMO

The HMG-domain containing transcription factor Sox10 plays a crucial role in regulating Schwann cell survival and differentiation and is expressed throughout the entire Schwann cell lineage. While its importance in peripheral myelination is well established, little is known about its role in the early stages of Schwann cell development. In a search for direct target genes of Sox10 in Schwann cell precursors, the transcriptional co-repressor Tle4 was identified. At least two regions upstream of the Tle4 gene appear involved in mediating the Sox10-dependent activation. Once induced, Tle4 works in tandem with the bHLH transcriptional repressor Hes1 and exerts a dual inhibitory effect on Sox10 by preventing the Sox10 protein from transcriptionally activating maturation genes and by suppressing Sox10 expression through known enhancers of the gene. This mechanism establishes a regulatory barrier that prevents premature activation of factors involved in differentiation and myelin formation by Sox10 in immature Schwann cells. The identification of Tle4 as a critical downstream target of Sox10 sheds light on the gene regulatory network in the early phases of Schwann cell development. It unravels an elaborate regulatory circuitry that fine-tunes the timing and extent of Schwann cell differentiation and myelin gene expression.


Assuntos
Diferenciação Celular , Fatores de Transcrição SOXE , Células de Schwann , Células de Schwann/metabolismo , Células de Schwann/citologia , Fatores de Transcrição SOXE/metabolismo , Fatores de Transcrição SOXE/genética , Diferenciação Celular/genética , Animais , Proteínas Correpressoras/metabolismo , Proteínas Correpressoras/genética , Ratos , Camundongos , Retroalimentação Fisiológica , Bainha de Mielina/metabolismo , Regulação da Expressão Gênica , Humanos , Fatores de Transcrição HES-1/metabolismo , Fatores de Transcrição HES-1/genética
5.
BMC Med Genomics ; 17(1): 104, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659011

RESUMO

BACKGROUND: Waardenburg syndrome type 2 (WS2) has been reported to be a rare hereditary disorder, which is distinguished by vivid blue eyes, varying degrees of hearing impairment, and abnormal pigment deposition in the skin and hair. Variants in the sex-determining region Y-box containing gene 10 (SOXl0) gene may cause congenital deafness and have been demonstrated to be important during the development of WS2. METHODS: Complete clinical data of the proband and her family members (her parents and 2 sisters) was collected and physical examinations were performed in the hospital. The laboratory examination including hemoglobin, Coomb's test, urine protein, ENA, autoimmune hepatitis-related autoantibodies and ultrasonography were all conducted. We obtained the peripheral blood samples from all the participants and performed whole exome sequencing and sanger sequencing validation. RESULTS: The present study identified a family of 5 members, and only the proband exhibited typical WS2. Beyond the characteristics of WS2, the proband also manifested absence of puberty. The proband and her younger sister manifested systemic lupus erythematosus (SLE). Whole exome sequencing revealed a de novo variant in the SOX10 gene. The variant c.175 C > T was located in exon 2 of the SOX10 gene, which is anticipated to result in early termination of protein translation. CONCLUSION: The present study is the first to report a case of both WS2 and SLE, and the present findings may provide a new insight into WS2.


Assuntos
Linhagem , Fatores de Transcrição SOXE , Síndrome de Waardenburg , Humanos , Síndrome de Waardenburg/genética , Fatores de Transcrição SOXE/genética , Feminino , Masculino , Adulto , Sequenciamento do Exoma , Mutação
6.
Mol Biol Rep ; 51(1): 536, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642155

RESUMO

OBJECTIVES: This study aimed to identify the causative variants in a patient with Waardenburg syndrome (WS) type 2 using whole exome sequencing (WES). METHODS: The clinical features of the patient were collected. WES was performed on the patient and his parents to screen causative genetic variants and Sanger sequencing was performed to validate the candidate mutation. The AlphaFold2 software was used to predict the changes in the 3D structure of the mutant protein. Western blotting and immunocytochemistry were used to determine the SOX10 mutant in vitro. RESULTS: A de novo variant of SOX10 gene, NM_006941.4: c.707_714del (p. H236Pfs*42), was identified, and it was predicted to disrupt the wild-type DIM/HMG conformation in SOX10. In-vitro analysis showed an increased level of expression of the mutant compared to the wild-type. CONCLUSIONS: Our findings helped to understand the genotype-phenotype association in WS2 cases with SOX10 mutations.


Assuntos
Fatores de Transcrição SOXE , Síndrome de Waardenburg , Criança , Humanos , China , Mutação/genética , Linhagem , Fatores de Transcrição SOXE/genética , Síndrome de Waardenburg/genética , População do Leste Asiático/genética
7.
Breast Cancer Res ; 26(1): 70, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654332

RESUMO

BACKGROUND: Basal-like breast cancer (BLBC) is the most aggressive subtype of breast cancer due to its aggressive characteristics and lack of effective therapeutics. However, the mechanism underlying its aggressiveness remains largely unclear. S-adenosylmethionine decarboxylase proenzyme (AMD1) overexpression occurs specifically in BLBC. Here, we explored the potential molecular mechanisms and functions of AMD1 promoting the aggressiveness of BLBC. METHODS: The potential effects of AMD1 on breast cancer cells were tested by western blotting, colony formation, cell proliferation assay, migration and invasion assay. The spermidine level was determined by high performance liquid chromatography. The methylation status of CpG sites within the AMD1 promoter was evaluated by bisulfite sequencing PCR. We elucidated the relationship between AMD1 and Sox10 by ChIP assays and quantitative real-time PCR. The effect of AMD1 expression on breast cancer cells was evaluated by in vitro and in vivo tumorigenesis model. RESULTS: In this study, we showed that AMD1 expression was remarkably elevated in BLBC. AMD1 copy number amplification, hypomethylation of AMD1 promoter and transcription activity of Sox10 contributed to the overexpression of AMD1 in BLBC. AMD1 overexpression enhanced spermidine production, which enhanced eIF5A hypusination, activating translation of TCF4 with multiple conserved Pro-Pro motifs. Our studies showed that AMD1-mediated metabolic system of polyamine in BLBC cells promoted tumor cell proliferation and tumor growth. Clinically, elevated expression of AMD1 was correlated with high grade, metastasis and poor survival, indicating poor prognosis of breast cancer patients. CONCLUSION: Our work reveals the critical association of AMD1-mediated spermidine-eIF5A hypusination-TCF4 axis with BLBC aggressiveness, indicating potential prognostic indicators and therapeutic targets for BLBC.


Assuntos
Neoplasias da Mama , Proliferação de Células , Fator de Iniciação de Tradução Eucariótico 5A , Regulação Neoplásica da Expressão Gênica , Lisina/análogos & derivados , Fatores de Iniciação de Peptídeos , Proteínas de Ligação a RNA , Espermidina , Fator de Transcrição 4 , Humanos , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Fatores de Iniciação de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos/genética , Camundongos , Animais , Espermidina/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Fator de Transcrição 4/metabolismo , Fator de Transcrição 4/genética , Linhagem Celular Tumoral , Regiões Promotoras Genéticas , Adenosilmetionina Descarboxilase/metabolismo , Adenosilmetionina Descarboxilase/genética , Movimento Celular/genética , Metilação de DNA , Prognóstico , Fatores de Transcrição SOXE/metabolismo , Fatores de Transcrição SOXE/genética
8.
Arch Dermatol Res ; 316(5): 134, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662224

RESUMO

Exploration of gene expression variations is a potential source to unravel biological pathways involved in pathological changes in body and understand the mechanism underneath. Vitiligo patients were explored for gene expression changes transcriptionally at perilesional site in comparison to normal site of same patients for melanogenesis pathway (TYR, DCT & TYRP1) cell adhesion (MMPs & TIMP1), cell survival (BCL2 & BAX1) as well as proliferation, migration & development (SOX9, SOX10 & MITF) regulatory system, using skin biopsy samples. Results were also compared with changes in gene expression for melanocytes under stress after hydrogen peroxide treatment in-vitro. Gene amplification was carried out via real time PCR. We found increased expression of proliferation, migration & development regulatory genes as well as melanogenesis pathway genes at perilesional site of patients. In-vitro study also supports induced MITF expression and disturbed melanogenesis in melanocytes under stress. Expression level ratio of cell survival regulatory genes' (BCL2/BAX1) as well as cell adhesion regulatory genes (MMPs/TIMP1) was observed upregulated at patient's perilesional site however downregulated in hydrogen peroxide treated melanocytes in-vitro. Observed upregulated gene expression at perilesional site of patients may be via positive feedback loop in response to stress to increase cell tolerance power to survive against adverse conditions. Gene expression analysis suggests better cell survival and proliferation potential at perilesional site in vitiligo patients. It seems in-vivo conditions/growth factors supports cells to fight for survival to accommodate stressed conditions.


Assuntos
Sobrevivência Celular , Peróxido de Hidrogênio , Melanócitos , Vitiligo , Humanos , Vitiligo/genética , Vitiligo/patologia , Melanócitos/metabolismo , Melanócitos/patologia , Sobrevivência Celular/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Masculino , Adulto , Feminino , Proliferação de Células/genética , Pele/patologia , Pele/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Pessoa de Meia-Idade , Adulto Jovem , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Biópsia , Adolescente , Adesão Celular/genética
9.
Glia ; 72(6): 1165-1182, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38497409

RESUMO

Oligodendrocytes (OLs) are key players in the central nervous system, critical for the formation and maintenance of the myelin sheaths insulating axons, ensuring efficient neuronal communication. In the last decade, the use of human induced pluripotent stem cells (iPSCs) has become essential for recapitulating and understanding the differentiation and role of OLs in vitro. Current methods include overexpression of transcription factors for rapid OL generation, neglecting the complexity of OL lineage development. Alternatively, growth factor-based protocols offer physiological relevance but struggle with efficiency and cell heterogeneity. To address these issues, we created a novel SOX10-P2A-mOrange iPSC reporter line to track and purify oligodendrocyte precursor cells. Using this reporter cell line, we analyzed an existing differentiation protocol and shed light on the origin of glial cell heterogeneity. Additionally, we have modified the differentiation protocol, toward enhancing reproducibility, efficiency, and terminal maturity. Our approach not only advances OL biology but also holds promise to accelerate research and translational work with iPSC-derived OLs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Linhagem da Célula , Reprodutibilidade dos Testes , Neurogênese , Oligodendroglia/metabolismo , Diferenciação Celular/fisiologia , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo
10.
BMC Pediatr ; 24(1): 189, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493096

RESUMO

BACKGROUND: HSCR is a complex genetic disorder characterized by the absence of ganglion cells in the intestine, leading to a functional obstruction. It is due to a disruption of complex signaling pathways within the gene regulatory network (GRN) during the development of the enteric nervous system (ENS), including SRY-Box Transcription Factor 10 (SOX10) and REarranged during Transfection (RET). This study evaluated the expressions of SOX10 and RET in HSCR patients in Indonesia. METHODS: Total RNA of 19 HSCR ganglionic and aganglionic colons and 16 control colons were analyzed using quantitative real-time polymerase chain reaction for SOX10 and RET with GAPDH as the reference gene. Livak's method (2-ΔΔCT) was used to determine the expression levels of SOX10 and RET. RESULTS: Most patients were males (68.4%), in the short aganglionosis segment (78.9%), and had undergone transanal endorectal pull-through (36.6%). There were significant upregulated SOX10 expressions in both ganglionic (2.84-fold) and aganglionic (3.72-fold) colon of HSCR patients compared to controls' colon (ΔCT 5.21 ± 2.04 vs. 6.71 ± 1.90; p = 0.032; and ΔCT 4.82 ± 1.59 vs. 6.71 ± 1.90; p = 0.003; respectively). Interestingly, the RET expressions were significantly downregulated in both ganglionic (11.71-fold) and aganglionic (29.96-fold) colon of HSCR patients compared to controls' colon (ΔCT 12.54 ± 2.21 vs. 8.99 ± 3.13; p = 0.0004; and ΔCT 13.90 ± 2.64 vs. 8.99 ± 3.13; p = 0.0001; respectively). CONCLUSIONS: Our study shows aberrant SOX10 and RET expressions in HSCR patients, implying the critical role of SOX10 and RET in the pathogenesis of HSCR, particularly in the Indonesian population. Our study further confirms the involvement of SOX10-RET within the GNR during the ENS development.


Assuntos
Doença de Hirschsprung , Masculino , Humanos , Feminino , Doença de Hirschsprung/metabolismo , Transdução de Sinais , Indonésia , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Fatores de Transcrição SOXE/genética
11.
Oncogene ; 43(20): 1489-1505, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38519642

RESUMO

Cell plasticity sustains intra-tumor heterogeneity and treatment resistance in melanoma. Deciphering the transcriptional mechanisms governing reversible phenotypic transitions between proliferative/differentiated and invasive/stem-like states is required. Expression of the ZEB1 transcription factor is frequently activated in melanoma, where it fosters adaptive resistance to targeted therapies. Here, we performed a genome-wide characterization of ZEB1 transcriptional targets, by combining ChIP-sequencing and RNA-sequencing, upon phenotype switching in melanoma models. We identified and validated ZEB1 binding peaks in the promoter of key lineage-specific genes crucial for melanoma cell identity. Mechanistically, ZEB1 negatively regulates SOX10-MITF dependent proliferative/melanocytic programs and positively regulates AP-1 driven invasive and stem-like programs. Comparative analyses with breast carcinoma cells revealed lineage-specific ZEB1 binding, leading to the design of a more reliable melanoma-specific ZEB1 regulon. We then developed single-cell spatial multiplexed analyses to characterize melanoma cell states intra-tumoral heterogeneity in human melanoma samples. Combined with scRNA-Seq analyses, our findings confirmed increased ZEB1 expression in Neural-Crest-like cells and mesenchymal cells, underscoring its significance in vivo in both populations. Overall, our results define ZEB1 as a major transcriptional regulator of cell states transitions and provide a better understanding of lineage-specific transcriptional programs sustaining intra-tumor heterogeneity in melanoma.


Assuntos
Regulação Neoplásica da Expressão Gênica , Melanoma , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Melanoma/genética , Melanoma/patologia , Melanoma/metabolismo , Humanos , Linhagem Celular Tumoral , Linhagem da Célula/genética , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Camundongos , Animais , Proliferação de Células/genética , Transcrição Gênica/genética
12.
Glia ; 72(7): 1304-1318, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38546197

RESUMO

Oligodendrocyte differentiation and myelination in the central nervous system are controlled and coordinated by a complex gene regulatory network that contains several transcription factors, including Zfp488 and Nkx2.2. Despite the proven role in oligodendrocyte differentiation little is known about the exact mode of Zfp488 and Nkx2.2 action, including their target genes. Here, we used overexpression of Zfp488 and Nkx2.2 in differentiating CG4 cells to identify aspects of the oligodendroglial expression profile that depend on these transcription factors. Although both transcription factors are primarily described as repressors, the detected changes argue for an additional function as activators. Among the genes activated by both Zfp488 and Nkx2.2 was the G protein-coupled receptor Gpr37 that is important during myelination. In agreement with a positive effect on Gpr37 expression, downregulation of the G protein-coupled receptor was observed in Zfp488- and in Nkx2.2-deficient oligodendrocytes in the mouse. We also identified several potential regulatory regions of the Gpr37 gene. Although Zfp488 and Nkx2.2 both bind to one of the regulatory regions downstream of the Gpr37 gene in vivo, none of the regulatory regions was activated by either transcription factor alone. Increased activation by Zfp488 or Nkx2.2 was only observed in the presence of Sox10, a transcription factor continuously present in oligodendroglial cells. Our results argue that both Zfp488 and Nkx2.2 also act as transcriptional activators during oligodendrocyte differentiation and cooperate with Sox10 to allow the expression of Gpr37 as a modulator of the myelination process.


Assuntos
Diferenciação Celular , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio , Oligodendroglia , Receptores Acoplados a Proteínas G , Fatores de Transcrição SOXE , Fatores de Transcrição , Animais , Feminino , Masculino , Camundongos , Diferenciação Celular/fisiologia , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Fatores de Transcrição SOXE/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
13.
Proc Natl Acad Sci U S A ; 121(8): e2316969121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346197

RESUMO

SOX8 was linked in a genome-wide association study to human height heritability, but roles in chondrocytes for this close relative of the master chondrogenic transcription factor SOX9 remain unknown. We undertook here to fill this knowledge gap. High-throughput assays demonstrate expression of human SOX8 and mouse Sox8 in growth plate cartilage. In situ assays show that Sox8 is expressed at a similar level as Sox9 in reserve and early columnar chondrocytes and turned off when Sox9 expression peaks in late columnar and prehypertrophic chondrocytes. Sox8-/- mice and Sox8fl/flPrx1Cre and Sox9fl/+Prx1Cre mice (inactivation in limb skeletal cells) have a normal or near normal skeletal size. In contrast, juvenile and adult Sox8fl/flSox9fl/+Prx1Cre compound mutants exhibit a 15 to 20% shortening of long bones. Their growth plate reserve chondrocytes progress slowly toward the columnar stage, as witnessed by a delay in down-regulating Pthlh expression, in packing in columns and in elevating their proliferation rate. SOX8 or SOX9 overexpression in chondrocytes reveals not only that SOX8 can promote growth plate cell proliferation and differentiation, even upon inactivation of endogenous Sox9, but also that it is more efficient than SOX9, possibly due to greater protein stability. Altogether, these findings uncover a major role for SOX8 and SOX9 in promoting skeletal growth by stimulating commitment of growth plate reserve chondrocytes to actively proliferating columnar cells. Further, by showing that SOX8 is more chondrogenic than SOX9, they suggest that SOX8 could be preferred over SOX9 in therapies to promote cartilage formation or regeneration in developmental and degenerative cartilage diseases.


Assuntos
Condrócitos , Estudo de Associação Genômica Ampla , Camundongos , Humanos , Animais , Condrócitos/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Regulação da Expressão Gênica , Diferenciação Celular , Proliferação de Células , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo
14.
Mol Genet Genomic Med ; 12(3): e2296, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38419387

RESUMO

OBJECTIVE: To explore the molecular etiology of Waardenburg syndrome type II (WS2) in a family from Yunnan province, China. METHODS: A total of 406 genes related to hereditary hearing loss were sequenced using next-generation sequencing. DNA samples were isolated from the peripheral blood DNA of probands. Those pathogenic mutations detected by next-generation sequencing in probands and their parents were validated by Sanger sequencing. The conservatism of variation sites in genes was also analyzed. The protein expression was detected by flow cytometry. RESULTS: A heterozygous mutation c.178delG (p.D60fs*49) in the SOX10 gene was identified in the proband, which is a frameshift mutation and may cause protein loss of function and considered to be a pathogenic mutation. This was determined to be a de novo mutation because her family were demonstrated to be wild-type and symptom free. SOX10, FGFR3, SOX2, and PAX3 protein levels were reduced as determined by flow cytometry. CONCLUSION: A novel frameshift mutation in SOX10 gene was identified in this study, which may be the cause of WS2 in proband. In addition, FGFR3, SOX2, and PAX3 might also participate in promoting the progression of WS2.


Assuntos
Mutação da Fase de Leitura , Síndrome de Waardenburg , Humanos , Feminino , Síndrome de Waardenburg/genética , Síndrome de Waardenburg/patologia , China , Linhagem , DNA , Fatores de Transcrição SOXE/genética
15.
J Ethnopharmacol ; 325: 117846, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38301982

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Radix Astragali, a versatile traditional Chinese medicinal herb, has a rich history dating back to "Sheng Nong's herbal classic". It has been employed in clinical practice to address various ailments, including depression. One of its primary active components, total flavonoids from Astragalus (TFA), remains unexplored in terms of its potential antidepressant properties. This study delves into the antidepressant effects of TFA using a mouse model subjected to chronic unpredictable mild stress (CUMS). AIMS OF THE STUDY: The study aimed to scrutinize how TFA influenced depressive behaviors, corticosterone and glutamate levels in the hippocampus, as well as myelin-related protein expression in CUMS mice. Additionally, it sought to explore the involvement of the Wnt/ß-catenin/Olig2/Sox10 signaling axis as a potential antidepressant mechanism of TFA. MATERIALS AND METHODS: Male C57BL/6 mice were subjected to CUMS to induce depressive behaviors. TFA were orally administered at two different doses (50 mg/kg and 100 mg/kg). A battery of behavioral tests, biochemical analyses, immunohistochemistry, UPLC-MS/MS, real-time PCR, and Western blotting were employed to evaluate the antidepressant potential of TFA. The role of the Wnt/ß-catenin/Olig2/Sox10 signaling axis in the antidepressant mechanism of TFA was validated through MO3.13 cells. RESULTS: TFA administration significantly alleviated depressive behaviors in CUMS mice, as evidenced by improved sucrose preference, reduced immobility in tail suspension and forced swimming tests, and increased locomotor activity in the open field test. Moreover, TFA effectively reduced hippocampal corticosterone and glutamate levels and promoted myelin formation in the hippocampus of CUMS mice. Then, TFA increased Olig2 and Sox10 expression while inhibiting the Wnt/ß-catenin pathway in the hippocampus of CUMS mice. Finally, we further confirmed the role of TFA in promoting myelin regeneration through the Wnt/ß-catenin/Olig2/Sox10 signaling axis in MO3.13 cells. CONCLUSIONS: TFA exhibited promising antidepressant effects in the CUMS mouse model, facilitated by the restoration of myelin sheaths and regulation of corticosterone, glutamate, Olig2, Sox10, and the Wnt/ß-catenin pathway. This research provides valuable insights into the potential therapeutic application of TFA in treating depression, although further investigations are required to fully elucidate the underlying molecular mechanisms and clinical relevance.


Assuntos
Corticosterona , Depressão , Fator de Transcrição 2 de Oligodendrócitos , Masculino , Animais , Camundongos , Depressão/tratamento farmacológico , Depressão/metabolismo , Flavonoides/farmacologia , Cromatografia Líquida , beta Catenina/metabolismo , Camundongos Endogâmicos C57BL , Espectrometria de Massas em Tandem , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antidepressivos/metabolismo , Hipocampo , Glutamatos/metabolismo , Glutamatos/farmacologia , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Modelos Animais de Doenças , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo
16.
Arch Pathol Lab Med ; 148(4): 461-470, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37406289

RESUMO

CONTEXT.­: Breast cancer with low (1%-10%) estrogen receptor (ER) expression (ER-low positive) constitutes a small portion of invasive breast cancers, and the treatment strategy for these tumors remains debatable. OBJECTIVE.­: To characterize the features and outcomes of ER-low positive patients, and clarify the clinical significance of FOXC1 and SOX10 expression in ER-low positive/HER2-negative tumors. DESIGN.­: Among 9082 patients diagnosed with primary invasive breast cancer, the clinicopathologic features of those with ER-low positive breast cancer were characterized. FOXC1 and SOX10 mRNA levels were analyzed in ER-low positive/HER2-negative cases from public data sets. The expression of FOXC1 and SOX10 in ER-low positive/HER2-negative tumors was evaluated by immunohistochemistry. RESULTS.­: The clinicopathologic study of ER-low positive tumors indicated more aggressive characteristics compared with those tumors with ER >10%, while they had more overlapping features with ER-negative tumors irrespective of the HER2 status. The intrinsic molecular subtype of ER-low positive cases with high FOXC1 and SOX10 mRNA expression was more likely to be nonluminal. Among the ER-low positive/HER2-negative tumors, 56.67% (51 of 90) and 36.67% (33 of 90) were positive for FOXC1 and SOX10, respectively, which was significantly positively correlated with CK5/6 expression. In addition, the survival analysis demonstrated no significant difference between patients who received and who did not receive endocrine therapy. CONCLUSIONS.­: ER-low positive breast cancers biologically overlap more with ER-negative tumors. ER-low positive/HER2-negative cases demonstrate a high rate of FOXC1 or SOX10 expression, and these cases might be better categorized as a basal-like phenotype/subtype. FOXC1 and SOX10 testing may be used for the intrinsic phenotype prediction for ER-low positive/HER2-negative patients.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Receptor ErbB-2/análise , Fenótipo , Biomarcadores Tumorais/análise , Receptores de Estrogênio/análise , RNA Mensageiro/genética , Receptores de Progesterona/análise , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição SOXE/genética
17.
Dev Biol ; 506: 31-41, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052296

RESUMO

During epithelial-to-mesenchymal transition (EMT), significant rearrangements occur in plasma membrane protein and lipid content that are important for membrane function and acquisition of cell motility. To gain insight into how neural crest cells regulate their lipid content at the transcriptional level during EMT, here we identify critical enhancer sequences that regulate the expression of SMPD3, a gene responsible for sphingomyelin hydrolysis to produce ceramide and necessary for neural crest EMT. We uncovered three enhancer regions within the first intron of the SMPD3 locus that drive reporter expression in distinct spatial and temporal domains, together collectively recapitulating the expression domains of endogenous SMPD3 within the ectodermal lineages. We further dissected one enhancer that is specifically active in the migrating neural crest. By mutating putative transcriptional input sites or knocking down upstream regulators, we find that the SOXE-family transcription factors SOX9 and SOX10 regulate the expression of SMPD3 in migrating neural crest cells. Further, ChIP-seq and nascent transcription analysis reveal that SOX10 directly regulates expression of an SMPD3 enhancer specific to migratory neural crest cells. Together these results shed light on how core components of developmental gene regulatory networks interact with metabolic effector genes to control changes in membrane lipid content.


Assuntos
Proteínas Aviárias , Crista Neural , Fatores de Transcrição SOXE , Esfingomielina Fosfodiesterase , Regulação da Expressão Gênica no Desenvolvimento , Íntrons , Lipídeos , Crista Neural/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Galinhas , Animais , Proteínas Aviárias/metabolismo , Esfingomielina Fosfodiesterase/metabolismo
18.
Mol Cancer Res ; 22(2): 209-220, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37847239

RESUMO

The transcription factor, SOX10, plays an important role in the differentiation of neural crest precursors to the melanocytic lineage. Malignant transformation of melanocytes leads to the development of melanoma, and SOX10 promotes melanoma cell proliferation and tumor formation. SOX10 expression in melanomas is heterogeneous, and loss of SOX10 causes a phenotypic switch toward an invasive, mesenchymal-like cell state and therapy resistance; hence, strategies to target SOX10-deficient cells are an active area of investigation. The impact of cell state and SOX10 expression on antitumor immunity is not well understood but will likely have important implications for immunotherapeutic interventions. To this end, we tested whether SOX10 status affects the response to CD8+ T cell-mediated killing and T cell-secreted cytokines, TNFα and IFNγ, which are critical effectors in the cytotoxic killing of cancer cells. We observed that genetic ablation of SOX10 rendered melanoma cells more sensitive to CD8+ T cell-mediated killing and cell death induction by either TNFα or IFNγ. Cytokine-mediated cell death in SOX10-deficient cells was associated with features of caspase-dependent pyroptosis, an inflammatory form of cell death that has the potential to increase immune responses. IMPLICATIONS: These data support a role for SOX10 expression altering the response to T cell-mediated cell death and contribute to a broader understanding of the interaction between immune cells and melanoma cells.


Assuntos
Melanoma , Humanos , Melanoma/patologia , Citocinas , Fator de Necrose Tumoral alfa , Morte Celular , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo
19.
Oncogene ; 43(6): 434-446, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38102338

RESUMO

Melanoma that develops adaptive resistance to MAPK inhibitors (MAPKi) through transcriptional reprograming-mediated phenotype switching is associated with enhanced metastatic potential, yet the underlying mechanism of this improved invasiveness has not been fully elucidated. In this study, we show that MAPKi-resistant melanoma cells are more motile and invasive than the parental cells. We further show that LAMB3, a ß subunit of the extracellular matrix protein laminin-332 is upregulated in MAPKi-resistant melanoma cells and that the LAMB3-Integrin α3/α6 signaling mediates the motile and invasive phenotype of resistant cells. In addition, we demonstrate that SOX10 deficiency in MAPKi-resistant melanoma cells drives LAMB3 upregulation through TGF-ß signaling. Transcriptome profiling and functional studies further reveal a FAK/MMPs axis mediates the pro-invasiveness effect of LAMB3. Using a mouse lung metastasis model, we demonstrate LAMB3 depletion inhibits the metastatic potential of MAPKi-resistant cells in vivo. In summary, this study identifies a SOX10low/TGF-ß/LAMB3/FAK/MMPs signaling pathway that determines the migration and invasion properties of MAPKi-resistant melanoma cells and provide rationales for co-targeting LAMB3 to curb the metastasis of melanoma cells in targeted therapy.


Assuntos
Melanoma , Humanos , Animais , Melanoma/patologia , Regulação para Cima , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Modelos Animais de Doenças , Fator de Crescimento Transformador beta/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo
20.
Sci Rep ; 13(1): 22272, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097655

RESUMO

Genome-wide association studies identified a single nucleotide polymorphism (SNP) downstream of the transcription factor Sox8, associated with an increased risk of multiple sclerosis (MS). Sox8 is known to influence oligodendrocyte terminal differentiation and is involved in myelin maintenance by mature oligodendrocytes. The possible link of a Sox8 related SNP and MS risk, along with the role of Sox8 in oligodendrocyte physiology prompted us to investigate its relevance during de- and remyelination using the cuprizone model. Sox8-/- mice and wildtype littermates received a cuprizone diet for 5 weeks (wk). Sox8-/- mice showed reduced motor performance and weight compared to wildtype controls. Brains were histologically analysed at the maximum of demyelination (wk 5) and on two time points during remyelination (wk 5.5 and wk 6) for oligodendroglial, astroglial, microglial and myelin markers. We identified reduced proliferation of oligodendrocyte precursor cells at wk 5 as well as reduced numbers of mature oligodendrocytes in Sox8-/- mice at wk 6. Moreover, analysis of myelin markers revealed a delay in remyelination in the Sox8-/- group, demonstrating the potential importance of Sox8 in remyelination processes. Our findings present, for the first time, compelling evidence of a significant role of Sox8 in the context of a disease model.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Remielinização , Camundongos , Animais , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/patologia , Diferenciação Celular , Estudo de Associação Genômica Ampla , Oligodendroglia , Bainha de Mielina/patologia , Esclerose Múltipla/induzido quimicamente , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Fatores de Transcrição SOXE/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...