Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(10): e0205298, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30289920

RESUMO

The majority of apparently balanced translocation (ABT) carriers are phenotypically normal. However, several mechanisms were proposed to underlie phenotypes in affected ABT cases. In the current study, whole-genome mate-pair sequencing (WG-MPS) followed by Sanger sequencing was applied to further characterize de novo ABTs in three affected individuals. WG-MPS precisely mapped all ABT breakpoints and revealed three possible underlying molecular mechanisms. Firstly, in a t(X;1) carrier with hearing loss, a highly skewed X-inactivation pattern was observed and the der(X) breakpoint mapped ~87kb upstream an X-linked deafness gene namely POU3F4, thus suggesting an underlying long-range position effect mechanism. Secondly, cryptic complexity and a chromothripsis rearrangement was identified in a t(6;7;8;12) carrier with intellectual disability. Two translocations and a heterozygous deletion disrupted SOX5; a dominant nervous system development gene previously reported in similar patients. Finally, a direct gene disruption mechanism was proposed in a t(4;9) carrier with dysmorphic facial features and speech delay. In this case, the der(9) breakpoint directly disrupted NFIB, a gene involved in lung maturation and development of the pons with important functions in main speech processes. To conclude, in contrast to familial ABT cases with identical rearrangements and discordant phenotypes, where translocations are considered coincidental, translocations seem to be associated with phenotype presentation in affected de novo ABT cases. In addition, this study highlights the importance of investigating both coding and non-coding regions to decipher the underlying pathogenic mechanisms in these patients, and supports the potential introduction of low coverage WG-MPS in the clinical investigation of de novo ABTs.


Assuntos
Fácies , Perda Auditiva/genética , Deficiência Intelectual/genética , Transtornos do Desenvolvimento da Linguagem/genética , Translocação Genética , Sequência de Bases , Pontos de Quebra do Cromossomo , Feminino , Expressão Gênica , Perda Auditiva/diagnóstico , Perda Auditiva/fisiopatologia , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/fisiopatologia , Cariótipo , Transtornos do Desenvolvimento da Linguagem/diagnóstico , Transtornos do Desenvolvimento da Linguagem/fisiopatologia , Fatores de Transcrição NFI/deficiência , Fatores de Transcrição NFI/genética , Fatores do Domínio POU/deficiência , Fatores do Domínio POU/genética , Fenótipo , Fatores de Transcrição SOXD/deficiência , Fatores de Transcrição SOXD/genética , Sequenciamento Completo do Genoma
2.
PLoS One ; 9(9): e108216, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25259580

RESUMO

Brn4, which encodes a POU transcription factor, is the gene responsible for DFN3, an X chromosome-linked, non-syndromic type of hearing loss. Brn4-deficient mice have a low endocochlear potential (EP), hearing loss, and ultrastructural alterations in spiral ligament fibrocytes, however the molecular pathology through which Brn4 deficiency causes low EP is still unclear. Mutations in the Gjb2 and Gjb6 genes encoding the gap junction proteins connexin26 (Cx26) and connexin30 (Cx30) genes, respectively, which encode gap junction proteins and are expressed in cochlear fibrocytes and non-sensory epithelial cells (i.e., cochlear supporting cells) to maintain the proper EP, are responsible for hereditary sensorineural deafness. It has been hypothesized that the gap junction in the cochlea provides an intercellular passage by which K+ is transported to maintain the EP at the high level necessary for sensory hair cell excitation. Here we analyzed the formation of gap junction plaques in cochlear supporting cells of Brn4-deficient mice at different stages by confocal microscopy and three-dimensional graphic reconstructions. Gap junctions from control mice, which are composed mainly of Cx26 and Cx30, formed linear plaques along the cell-cell junction sites with adjacent cells. These plaques formed pentagonal or hexagonal outlines of the normal inner sulcus cells and border cells. Gap junction plaques in Brn4-deficient mice did not, however, show the normal linear structure but instead formed small spots around the cell-cell junction sites. Gap junction lengths were significantly shorter, and the level of Cx26 and Cx30 was significantly reduced in Brn4-deficient mice compared with littermate controls. Thus the Brn4 mutation affected the assembly and localization of gap junction proteins at the cell borders of cochlear supporting cells, suggesting that Brn4 substantially contributes to cochlear gap junction properties to maintain the proper EP in cochleae, similar to connexin-related deafness.


Assuntos
Cóclea/metabolismo , Junções Comunicantes/genética , Junções Comunicantes/metabolismo , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/metabolismo , Proteínas do Tecido Nervoso/deficiência , Fatores do Domínio POU/deficiência , Animais , Conexina 26 , Conexina 30 , Conexinas/genética , Conexinas/metabolismo , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Fatores do Domínio POU/genética
3.
J Immunol ; 186(6): 3556-62, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21317385

RESUMO

In CD4(-)CD8(-) double-negative thymocytes, the murine Tcrb locus is composed of alternating blocks of active and inactive chromatin containing Tcrb gene segments and trypsinogen genes, respectively. Although chromatin structure is appreciated to be critical for regulated recombination and expression of Tcrb gene segments, the molecular mechanisms that maintain the integrity of these differentially regulated Tcrb locus chromatin domains are not understood. We localized a boundary between active and inactive chromatin by mapping chromatin modifications across the interval extending from Prss2 (the most 3' trypsinogen gene) to D(ß)1. This boundary, located 6 kb upstream of D(ß)1, is characterized by a transition from repressive (histone H3 lysine 9 dimethylation [H3K9me2]) to active (histone H3 acetylation [H3ac]) chromatin and is marked by a peak of histone H3 lysine 4 dimethylation (H3K4me2) that colocalizes with a retroviral long terminal repeat (LTR). Histone H3 lysine 4 dimethylation is retained and histone H3 lysine 9 dimethylation fails to spread past the LTR even on alleles lacking the Tcrb enhancer (E(ß)) suggesting that these features may be determined by the local DNA sequence. Notably, we found that LTR-containing DNA functions as a barrier-type insulator that can protect a transgene from negative chromosomal position effects. We propose that, in vivo, the LTR blocks the spread of heterochromatin, and thereby helps to maintain the integrity of the E(ß)-regulated chromatin domain. We also identified low-abundance, E(ß)-dependent transcripts that initiate at the border of the LTR and an adjacent long interspersed element. We speculate that this transcription, which extends across D(ß), J(ß) and C(ß) gene segments, may play an additional role promoting initial opening of the E(ß)-regulated chromatin domain.


Assuntos
Genes Codificadores da Cadeia beta de Receptores de Linfócitos T/imunologia , Heterocromatina/metabolismo , Elementos Isolantes/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Ativação Transcricional/imunologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Metilação de DNA/genética , Metilação de DNA/imunologia , Elementos Facilitadores Genéticos/imunologia , Heterocromatina/genética , Histonas/genética , Histonas/metabolismo , Humanos , Elementos Isolantes/genética , Células Jurkat , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fatores do Domínio POU/deficiência , Fatores do Domínio POU/genética , Fatores do Domínio POU/metabolismo , Estrutura Terciária de Proteína/genética , Subpopulações de Linfócitos T/citologia , Tripsinogênio/antagonistas & inibidores , Tripsinogênio/genética
4.
J Neurosci ; 30(14): 5028-36, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20371823

RESUMO

Individual olfactory receptor neurons (ORNs) selectively express one or a small number of odor receptors from among a large receptor repertoire. The expression of an odor receptor dictates the odor response spectrum of the ORN. The process of receptor gene choice relies in part on a combinatorial code of transcription factors. In Drosophila, the POU domain transcription factor Acj6 is one element of the transcription factor code. In acj6 null mutants, many ORNs do not express an appropriate odor receptor gene and thus are not correctly specified. We find that acj6 is alternatively spliced to yield many structurally distinct transcripts in the olfactory organs. We generate flies that express single splice forms of acj6 in an acj6(-) background. We find that different splice forms are functionally distinct; they differ in their abilities to specify ORN identities. Some individual splice forms can fully rescue the specification of some ORNs. Individual splice forms can function both positively and negatively in receptor gene regulation. ORNs differ in their requirements for splice forms; some are not fully rescued by any single splice form tested, suggesting that some ORNs may require the combinatorial action of multiple splice forms. Late expression of some acj6 splice forms is sufficient to rescue some ORN classes, consistent with a direct role for Acj6 isoforms in receptor gene expression. The results indicate that alternative splicing may add another level of richness to the regulatory code that underlies the process of odor receptor gene choice.


Assuntos
Processamento Alternativo/genética , Proteínas de Drosophila/genética , Proteínas do Tecido Nervoso/genética , Neurônios Receptores Olfatórios/fisiologia , Fatores do Domínio POU/genética , Isoformas de Proteínas/genética , Receptores Odorantes/genética , Processamento Alternativo/fisiologia , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Técnicas de Inativação de Genes , Larva/genética , Larva/fisiologia , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/fisiologia , Fatores do Domínio POU/deficiência , Fatores do Domínio POU/fisiologia , Isoformas de Proteínas/deficiência , Isoformas de Proteínas/fisiologia , Receptores Odorantes/biossíntese , Receptores Odorantes/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...