Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 995
Filtrar
1.
BMC Public Health ; 24(1): 1684, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914994

RESUMO

BACKGROUND: Lassa fever (LF) presents significant public health challenges in Sierra Leone, particularly in the Lower Bambara Chiefdom. This study aims to deeply understand how knowledge and attitudes towards LF correlate with community-driven prevention and control measures. METHODS: A descriptive cross-sectional quantitative approach was used to conduct the research. Data from 2167 participants were collected using an Android-based survey from 1st February 2022 to 14th February 2022. Respondents' knowledge of LF causes, risk factors, transmission modes, and preventive measures were evaluated through a multiple-choice questionnaire, and attitudes toward prevention and control were measured on a 5-point Likert scale. Quantitative data were analyzed using SPSS version 26.0 and frequencies were presented in count, percentage, and table. Chi-square statistics were used to test for associations. RESULTS: Among the 2167 participants, over half were males (1184, 54.60%), farmers (1406, 64.90%), married (monogamous) (1428, 65.90%), and had never attended school (1336, 61.70%). Respondents demonstrated high knowledge levels of LF across socio-demographic groups (33% to 100%) and shared a positive attitude towards prevention and control (mean score of 26.77 on a 5-40 scale). Educational level, religious beliefs, and occupational status significantly influenced LF knowledge (p < 0.05). Specifically, illiterates had a high knowledge score of 48.24%, while those with tertiary education had the highest score at 83.33%. Additionally, a Pearson correlation analysis revealed a positive linear relationship between the degree of knowledge and positive attitude towards LF infection and mortality risk factors (r = 0.090, p = 0.02). CONCLUSION: High LF knowledge in Lower Bambara Chiefdom positively influences prevention attitudes. Education, religion, and occupation are key factors. Tailored interventions enhance public health efforts.


Assuntos
Conhecimentos, Atitudes e Prática em Saúde , Febre Lassa , Humanos , Masculino , Estudos Transversais , Feminino , Adulto , Febre Lassa/mortalidade , Febre Lassa/prevenção & controle , Fatores de Risco , Pessoa de Meia-Idade , Adulto Jovem , Serra Leoa/epidemiologia , Adolescente , Inquéritos e Questionários
2.
J Virol ; 98(6): e0057824, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38767352

RESUMO

The mammarenavirus Lassa virus (LASV) causes the life-threatening hemorrhagic fever disease, Lassa fever. The lack of licensed medical countermeasures against LASV underscores the urgent need for the development of novel LASV vaccines, which has been hampered by the requirement for a biosafety level 4 facility to handle live LASV. Here, we investigated the efficacy of mRNA-lipid nanoparticle (mRNA-LNP)-based vaccines expressing the LASV glycoprotein precursor (LASgpc) or nucleoprotein (LCMnp) of the prototypic mammarenavirus, lymphocytic choriomeningitis virus (LCMV), in mice. Two doses of LASgpc- or LCMnp-mRNA-LNP administered intravenously (i.v.) protected C57BL/6 mice from a lethal challenge with a recombinant (r) LCMV expressing a modified LASgpc (rLCMV/LASgpc2m) inoculated intracranially. Intramuscular (i.m.) immunization with two doses of LASgpc- or LCMnp-mRNA-LNP significantly reduced the viral load in C57BL/6 mice inoculated i.v. with rLCMV/LASgpc2m. High levels of viremia and lethality were observed in CBA mice inoculated i.v. with rLCMV/LASgpc2m, which were abrogated by i.m. immunization with two doses of LASgpc-mRNA-LNP. The protective efficacy of two i.m. doses of LCMnp-mRNA-LNP was confirmed in a lethal hemorrhagic disease model of FVB mice i.v. inoculated with wild-type rLCMV. In all conditions tested, negligible and high levels of LASgpc- and LCMnp-specific antibodies were detected in mRNA-LNP-immunized mice, respectively, but robust LASgpc- and LCMnp-specific CD8+ T cell responses were induced. Accordingly, plasma from LASgpc-mRNA-LNP-immunized mice did not exhibit neutralizing activity. Our findings and surrogate mouse models of LASV infection, which can be studied at a reduced biocontainment level, provide a critical foundation for the rapid development of mRNA-LNP-based LASV vaccines.IMPORTANCELassa virus (LASV) is a highly pathogenic mammarenavirus responsible for several hundred thousand infections annually in West African countries, causing a high number of lethal Lassa fever (LF) cases. Despite its significant impact on human health, clinically approved, safe, and effective medical countermeasures against LF are not available. The requirement of a biosafety level 4 facility to handle live LASV has been one of the main obstacles to the research and development of LASV countermeasures. Here, we report that two doses of mRNA-lipid nanoparticle-based vaccines expressing the LASV glycoprotein precursor (LASgpc) or nucleoprotein (LCMnp) of lymphocytic choriomeningitis virus (LCMV), a mammarenavirus genetically closely related to LASV, conferred protection to recombinant LCMV-based surrogate mouse models of lethal LASV infection. Notably, robust LASgpc- and LCMnp-specific CD8+ T cell responses were detected in mRNA-LNP-immunized mice, whereas no virus-neutralizing activity was observed.


Assuntos
Febre Lassa , Vírus Lassa , Vírus da Coriomeningite Linfocítica , Nanopartículas , Vacinas Virais , Animais , Feminino , Camundongos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Glicoproteínas/imunologia , Glicoproteínas/genética , Febre Lassa/prevenção & controle , Febre Lassa/imunologia , Vírus Lassa/imunologia , Vírus Lassa/genética , Lipossomos , Vírus da Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/genética , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Nucleoproteínas/imunologia , Nucleoproteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Carga Viral , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
3.
Emerg Microbes Infect ; 13(1): 2356149, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38747061

RESUMO

Lassa virus (LASV), a risk-group 4 pathogen, must be handled in biosafety level-4 (BSL-4) conditions, thereby limiting its research and antiviral development. Here, we developed a novel LASV reverse genetics system which, to our knowledge, is the first to study the complete LASV life cycle under BSL-2 conditions. Viral particles can be produced efficiently when LASV minigenomic RNA harbouring minimal viral cis-elements and reporter genes is transfected into a helper cell line stably expressing viral NP, GP, Z and L proteins. The resulting defective virions, named LASVmg, can propagate only in the helper cell line, providing a BSL-2 model to study the complete LASV life cycle. Using this model, we found that a previously reported cellular receptor α-dystroglycan is dispensable for LASVmg infection. Furthermore, we showed that ribavirin can inhibit LASVmg infection by inducing viral mutations. This new BSL-2 system should facilitate studying the LASV life cycle and screening antivirals.


Assuntos
Vírus Lassa , Genética Reversa , Vírus Lassa/genética , Vírus Lassa/fisiologia , Genética Reversa/métodos , Humanos , Animais , Antivirais/farmacologia , Chlorocebus aethiops , Linhagem Celular , Replicação Viral , Febre Lassa/virologia , Ribavirina/farmacologia , Células Vero , Contenção de Riscos Biológicos , Genoma Viral , Vírion/genética , Vírion/metabolismo
5.
Nat Commun ; 15(1): 3589, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678025

RESUMO

The black rat (Rattus rattus) is a globally invasive species that has been widely introduced across Africa. Within its invasive range in West Africa, R. rattus may compete with the native rodent Mastomys natalensis, the primary reservoir host of Lassa virus, a zoonotic pathogen that kills thousands annually. Here, we use rodent trapping data from Sierra Leone and Guinea to show that R. rattus presence reduces M. natalensis density within the human dwellings where Lassa virus exposure is most likely to occur. Further, we integrate infection data from M. natalensis to demonstrate that Lassa virus zoonotic spillover risk is lower at sites with R. rattus. While non-native species can have numerous negative effects on ecosystems, our results suggest that R. rattus invasion has the indirect benefit of decreasing zoonotic spillover of an endemic pathogen, with important implications for invasive species control across West Africa.


Assuntos
Reservatórios de Doenças , Espécies Introduzidas , Febre Lassa , Vírus Lassa , Murinae , Zoonoses , Animais , Vírus Lassa/patogenicidade , Vírus Lassa/fisiologia , Febre Lassa/transmissão , Febre Lassa/epidemiologia , Febre Lassa/virologia , Febre Lassa/veterinária , Reservatórios de Doenças/virologia , Humanos , Ratos , Murinae/virologia , Zoonoses/virologia , Zoonoses/transmissão , Zoonoses/epidemiologia , Serra Leoa/epidemiologia , Guiné/epidemiologia , Ecossistema , Doenças dos Roedores/virologia , Doenças dos Roedores/epidemiologia , Doenças dos Roedores/transmissão
6.
Emerg Microbes Infect ; 13(1): 2341141, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38597241

RESUMO

The Natal multimammate mouse (Mastomys natalensis) is the host of Lassa mammarenavirus, causing Lassa haemorrhagic fever in West Africa. As there is currently no operational vaccine and therapeutic drugs are limited, we explored rodent control as an alternative to prevent Lassa virus spillover in Upper Guinea, where the disease is highly endemic in rural areas. In a seven-year experiment, we distributed rodenticides for 10-30 days once a year and, in the last year, added intensive snap trapping for three months in all the houses of one village. We also captured rodents both before and after the intervention period to assess their effectiveness by examining alterations in trapping success and infection rates (Lassa virus RNA and IgG antibodies). We found that both interventions reduced the rodent population by 74-92% but swiftly rebounded to pre-treatment levels, even already six months after the last snap-trapping control. Furthermore, while we observed that chemical control modestly decreased Lassa virus infection rates annually (a reduction of 5% in seroprevalence per year), the intensive trapping unexpectedly led to a significantly higher infection rate (from a seroprevalence of 28% before to 67% after snap trapping control). After seven years, we conclude that annual chemical control, alone or with intensive trapping, is ineffective and sometimes counterproductive in preventing Lassa virus spillover in rural villages. These unexpected findings may result from density-dependent breeding compensation following culling and the survival of a small percentage of chronically infected rodents that may spread the virus to a new susceptible generation of mice.


Assuntos
Febre Lassa , Vírus Lassa , Camundongos , Animais , Vírus Lassa/genética , Guiné/epidemiologia , Controle de Roedores , Estudos Soroepidemiológicos , Reservatórios de Doenças , Febre Lassa/epidemiologia , Febre Lassa/prevenção & controle , Murinae , África Ocidental/epidemiologia
7.
Pan Afr Med J ; 47: 22, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558556

RESUMO

Introduction: Lassa fever (LF) is endemic in Liberia and is immediately reportable. Suspected cases are confirmed at the National Public Health Reference Laboratory. However, there is limited information on the trend and factors associated with mortality. We described the epidemiological characteristics of LF cases and determined factors associated with mortality in Liberia from 2016 to 2021. Methods: we reviewed 867 case-based LF surveillance data from 2016 to 2021 obtained from the National Public Health Institute of Liberia (NPHIL). The cases that met the suspected LF case definition were tested with RT-PCR. Using Epi Info 7.2.5.0. We conducted univariate, bivariate, and multivariate and analysis. We calculated frequencies, proportions. Positivity rate, case fatality rate, and factors associated with LF mortality using chi-square statistics and logistics regression at 5% level of significance. Results: eighty-five percent (737/867) of the suspected cases were tested and 26.0% (192/737) were confirmed LF positive. The median age of confirmed LF cases was 21(IQR: 12-34) years. Age 10-19 years accounted for 24.5% (47/192) and females 54.2% (104/192). Bong 33.9% (65/192), Grand Bassa 31.8% (61/192), and Nimba counties, 21.9% (42/192) accounted for most of the cases. The median duration from symptom onset to hospital admission was 6 (IQR: 3-9) days. A majority, 66% (126/192) of the cases were reported during the dry season (October-March) and annual incidence was highest at 12 cases per 1,000,000 population in 2019 and 2020. The overall case fatality rate was 44.8%. Non-endemic counties, Margibi, 77.8% and Montserrado, 66.7% accounted for the highest case fatality rate (CFR), while 2018, 66.7% and 2021, 60.0% recorded the highest CFR during the period. Age ≥30 years (aOR=2.1,95% CI: 1.08-4.11, p=0.027) and residing in Grand Bassa County (aOR=0.3, 95% CI: 0.13-0.73, p=0.007) were associated with LF mortality. Conclusion: Lassa fever was endemic in three of the fifteen counties of Liberia, case fatality rate remained generally high and widely varied. The high fatality of LF has been reported to the NPHIL and is currently being further investigated. There is a need to continuously train healthcare workers, especially in non-endemic counties to improve the LF treatment outcome.


Assuntos
Febre Lassa , Adolescente , Adulto , Criança , Feminino , Humanos , Adulto Jovem , Pessoal de Saúde , Febre Lassa/epidemiologia , Febre Lassa/diagnóstico , Libéria/epidemiologia , Saúde Pública , Análise de Dados Secundários , Masculino
9.
BMC Infect Dis ; 24(1): 314, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486143

RESUMO

BACKGROUND: Lassa fever is a hemorrhagic disease caused by Lassa virus (LASV), which has been classified by the World Health Organization as one of the top infectious diseases requiring prioritized research. Previous studies have provided insights into the classification and geographic characteristics of LASV lineages. However, the factor of the distribution and evolution characteristics and phylodynamics of the virus was still limited. METHODS: To enhance comprehensive understanding of LASV, we employed phylogenetic analysis, reassortment and recombination detection, and variation evaluation utilizing publicly available viral genome sequences. RESULTS: The results showed the estimated the root of time of the most recent common ancestor (TMRCA) for large (L) segment was approximately 634 (95% HPD: [385879]), whereas the TMRCA for small (S) segment was around 1224 (95% HPD: [10301401]). LASV primarily spread from east to west in West Africa through two routes, and in route 2, the virus independently spread to surrounding countries through Liberia, resulting in a wider spread of LASV. From 1969 to 2018, the effective population size experienced two significant increased, indicating the enhanced genetic diversity of LASV. We also found the evolution rate of L segment was faster than S segment, further results showed zinc-binding protein had the fastest evolution rate. Reassortment events were detected in multiple lineages including sub-lineage IIg, while recombination events were observed within lineage V. Significant amino acid changes in the glycoprotein precursor of LASV were identified, demonstrating sequence diversity among lineages in LASV. CONCLUSION: This study comprehensively elucidated the transmission and evolution of LASV in West Africa, providing detailed insights into reassortment events, recombination events, and amino acid variations.


Assuntos
Febre Lassa , Vírus Lassa , Humanos , Vírus Lassa/genética , Filogenia , Febre Lassa/epidemiologia , Aminoácidos , Libéria
10.
Nat Microbiol ; 9(3): 751-762, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38326571

RESUMO

Infection with Lassa virus (LASV) can cause Lassa fever, a haemorrhagic illness with an estimated fatality rate of 29.7%, but causes no or mild symptoms in many individuals. Here, to investigate whether human genetic variation underlies the heterogeneity of LASV infection, we carried out genome-wide association studies (GWAS) as well as seroprevalence surveys, human leukocyte antigen typing and high-throughput variant functional characterization assays. We analysed Lassa fever susceptibility and fatal outcomes in 533 cases of Lassa fever and 1,986 population controls recruited over a 7 year period in Nigeria and Sierra Leone. We detected genome-wide significant variant associations with Lassa fever fatal outcomes near GRM7 and LIF in the Nigerian cohort. We also show that a haplotype bearing signatures of positive selection and overlapping LARGE1, a required LASV entry factor, is associated with decreased risk of Lassa fever in the Nigerian cohort but not in the Sierra Leone cohort. Overall, we identified variants and genes that may impact the risk of severe Lassa fever, demonstrating how GWAS can provide insight into viral pathogenesis.


Assuntos
Febre Lassa , Humanos , Febre Lassa/genética , Febre Lassa/diagnóstico , Febre Lassa/epidemiologia , Estudo de Associação Genômica Ampla , Estudos Soroepidemiológicos , Vírus Lassa/genética , Febre , Genética Humana
12.
Viruses ; 16(2)2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38400041

RESUMO

Lassa virus (LASV) is a zoonotic pathogen endemic throughout western Africa and is responsible for a human disease known as Lassa fever (LF). Historically, LASV has been emphasized as one of the greatest public health threats in West Africa, with up to 300,000 cases and 5000 associated deaths per year. This, and the fact that the disease has been reported in travelers, has driven a rapid production of various vaccine candidates. Several of these vaccines are currently in clinical development, despite limitations in understanding the immune response to infection. Alarmingly, the host immune response has been implicated in the induction of sensorineural hearing loss in LF survivors, legitimately raising safety questions about any future vaccines as well as efficacy in preventing potential hearing loss. The objective of this article is to revisit the importance and prevalence of LF in West Africa, with focus on Nigeria, and discuss current therapeutic approaches and ongoing vaccine development. In addition, we aim to emphasize the need for more scientific studies relating to LF-associated hearing loss, and to promote critical discussion about potential risks and benefits of vaccinating the population in endemic regions of West Africa.


Assuntos
Perda Auditiva Neurossensorial , Febre Lassa , Vacinas Virais , Humanos , Febre Lassa/epidemiologia , Febre Lassa/prevenção & controle , Vírus Lassa , África Ocidental/epidemiologia , Gerenciamento Clínico
13.
Front Cell Infect Microbiol ; 14: 1341891, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404292

RESUMO

Lassa virus (LASV) causes an acute multisystemic hemorrhagic fever in humans known as Lassa fever, which is endemic in several African countries. This manuscript focuses on the progression of disease in cynomolgus macaques challenged with aerosolized LASV and serially sampled for the development and progression of gross and histopathologic lesions. Gross lesions were first noted in tissues on day 6 and persisted throughout day 12. Viremia and histologic lesions were first noted on day 6 commencing with the pulmonary system and hemolymphatic system and progressing at later time points to include all systems. Immunoreactivity to LASV antigen was first observed in the lungs of one macaque on day 3 and appeared localized to macrophages with an increase at later time points to include immunoreactivity in all organ systems. Additionally, this manuscript will serve as a detailed atlas of histopathologic lesions and disease progression for comparison to other animal models of aerosolized Arenaviral disease.


Assuntos
Febre Lassa , Vírus Lassa , Humanos , Animais , Febre Lassa/patologia , Macaca fascicularis , Antígenos Virais , Viremia
14.
Vaccine ; 42(8): 1873-1877, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38369392

RESUMO

Lassa fever (LF) is a zoonotic viral hemorrhagic disease endemic to several West African countries. Approximately 300-500,000 cases occur annually across all ages with 10-20% case fatality rates. A LF vaccine is a recognized public health priority, with several candidates entering clinical trials. However, the perspectives of regional experts regarding critical vaccine properties, ideal delivery methods, and priority target populations remain unclear. Using a mixed methods approach with a standardized questionnaire, we individually interviewed 8 West African stakeholders, each with extensive knowledge and experience of LF. They strongly favored the use of a mass, proactive campaign strategy to immunize a wide age range of people in high-risk areas, including pregnant women and health care workers. We estimated that these and other plausible delivery scenarios could result in an initial demand of anywhere from 1 to 100 million doses, with most demand coming from Nigeria. These findings may help inform LF vaccine development and deployment efforts.


Assuntos
Febre Lassa , Vacinas Virais , Humanos , Feminino , Gravidez , Febre Lassa/epidemiologia , Febre Lassa/prevenção & controle , Vírus Lassa , África Ocidental/epidemiologia , Nigéria/epidemiologia
15.
Science ; 383(6685): 810-816, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38386723

RESUMO

Long neglected, Lassa fever is surging in West Africa. Researchers want to know why.


Assuntos
Febre Lassa , Doenças Negligenciadas , Humanos , África Ocidental/epidemiologia , Febre Lassa/epidemiologia , Doenças Negligenciadas/epidemiologia
16.
PLoS Negl Trop Dis ; 18(2): e0011984, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38421939

RESUMO

West African Mastomys rodents are the primary reservoir of the zoonotic Lassa virus (LASV). The virus causes haemorrhagic Lassa fever and considerable mortality in humans. To date, the role of Mastomys immunogenetics in resistance to, and persistence of, LASV infections is largely unknown. Here, we investigated the role of Major Histocompatibility Complex class I (MHC-I) on LASV infection status (i.e., active vs. cleared infection, determined via PCR and an immunofluorescence assay on IgG antibodies, respectively) in Mastomys natalensis and M. erythroleucus sampled within southwestern Nigeria. We identified more than 190 and 90 MHC-I alleles by Illumina high throughput-sequencing in M. natalensis and M. erythroleucus, respectively, with different MHC allele compositions and frequencies between LASV endemic and non-endemic sites. In M. natalensis, the MHC allele ManaMHC-I*006 was negatively associated with active infections (PCR-positive) and positively associated with cleared infections (IgG-positive) simultaneously, suggesting efficient immune responses that facilitate LASV clearance in animals carrying this allele. Contrarily, alleles ManaMHC-I*008 and ManaMHC-I*021 in M. natalensis, and MaerMHC-I*008 in M. erythroleucus, were positively associated with active infection, implying susceptibility. Alleles associated with susceptibility shared a glutamic acid at the positively selected codon 57, while ManaMHC-I*006 featured an arginine. There was no link between number of MHC alleles per Mastomys individual and LASV prevalence. Thus, specific alleles, but not MHC diversity per se, seem to mediate antibody responses to viremia. We conclude that co-evolution with LASV likely shaped the MHC-I diversity of the main LASV reservoirs in southwestern Nigeria, and that information on reservoir immunogenetics may hold insights into transmission dynamics and zoonotic spillover risks.


Assuntos
Febre Lassa , Vírus Lassa , Animais , Humanos , Vírus Lassa/genética , Alelos , Formação de Anticorpos , Cinética , Febre Lassa/genética , Febre Lassa/veterinária , Imunoglobulina G
18.
Nat Commun ; 15(1): 285, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177144

RESUMO

Lassa virus (LASV) infection is expanding outside its traditionally endemic areas in West Africa, posing a pandemic biothreat. LASV-neutralizing antibodies, moreover, have proven difficult to elicit. To gain insight into LASV neutralization, here we develop a prefusion-stabilized LASV glycoprotein trimer (GPC), pan it against phage libraries comprising single-domain antibodies (nanobodies) from shark and camel, and identify one, D5, which neutralizes LASV. Cryo-EM analyses reveal D5 to recognize a cleavage-dependent site-of-vulnerability at the trimer apex. The recognized site appears specific to GPC intermediates, with protomers lacking full cleavage between GP1 and GP2 subunits. Guinea pig immunizations with the prefusion-stabilized cleavage-intermediate LASV GPC, first as trimer and then as a nanoparticle, induce neutralizing responses, targeting multiple epitopes including that of D5; we identify a neutralizing antibody (GP23) from the immunized guinea pigs. Collectively, our findings define a prefusion-stabilized GPC trimer, reveal an apex-situated site-of-vulnerability, and demonstrate elicitation of LASV-neutralizing responses by a cleavage-intermediate LASV trimer.


Assuntos
Febre Lassa , Anticorpos de Domínio Único , Animais , Cobaias , Vírus Lassa , Anticorpos Antivirais , Anticorpos Neutralizantes
20.
Emerg Microbes Infect ; 13(1): 2301061, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38164768

RESUMO

Lassa virus (LASV) is a World Health Organization (WHO) priority pathogen that causes high morbidity and mortality. Recently, we showed that a combination of three broadly neutralizing human monoclonal antibodies known as Arevirumab-3 (8.9F, 12.1F, 37.2D) based on the lineage IV Josiah strain protected 100% of cynomolgus macaques against heterologous challenge with lineage II and III strains of LASV when therapy was initiated beginning at day 8 after challenge. LASV strains from Benin and Togo represent a new lineage VII that are more genetically diverse from lineage IV than strains from lineages II and III. Here, we tested the ability of Arevirumab-3 to protect macaques against a LASV lineage VII Togo isolate when treatment was administered beginning 8 days after exposure. Unexpectedly, only 40% of treated animals survived challenge. In a subsequent study we showed that Arevirumab-3 protected 100% of macaques from lethal challenge when treatment was initiated 7 days after LASV Togo exposure. Based on our transcriptomics data, successful Arevirumab-3 treatment correlated with diminished neutrophil signatures and the predicted development of T cell responses. As the in vitro antiviral activity of Arevirumab-3 against LASV Togo was equivalent to lineage II and III strains, the reduced protection in macaques against Togo likely reflects the faster disease course of LASV Togo in macaques than other strains. This data causes concern regarding the ability of heterologous vaccines and treatments to provide cross protection against lineage VII LASV isolates.


Assuntos
Febre Lassa , Vírus Lassa , Humanos , Animais , Virulência , Macaca fascicularis , Anticorpos Monoclonais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...