Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(3): e1009459, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33765095

RESUMO

The host-pathogen combinations-Malus domestica (apple)/`Candidatus Phytoplasma mali´, Prunus persica (peach)/`Ca. P. prunorum´ and Pyrus communis (pear)/`Ca. P. pyri´ show different courses of diseases although the phytoplasma strains belong to the same 16SrX group. While infected apple trees can survive for decades, peach and pear trees die within weeks to few years. To this date, neither morphological nor physiological differences caused by phytoplasmas have been studied in these host plants. In this study, phytoplasma-induced morphological changes of the vascular system as well as physiological changes of the phloem sap and leaf phytohormones were analysed and compared with non-infected plants. Unlike peach and pear, infected apple trees showed substantial reductions in leaf and vascular area, affecting phloem mass flow. In contrast, in infected pear mass flow and physicochemical characteristics of phloem sap increased. Additionally, an increased callose deposition was detected in pear and peach leaves but not in apple trees in response to phytoplasma infection. The phytohormone levels in pear were not affected by an infection, while in apple and peach trees concentrations of defence- and stress-related phytohormones were increased. Compared with peach and pear trees, data from apple suggest that the long-lasting morphological adaptations in the vascular system, which likely cause reduced sap flow, triggers the ability of apple trees to survive phytoplasma infection. Some phytohormone-mediated defences might support the tolerance.


Assuntos
Produtos Agrícolas/microbiologia , Malus/imunologia , Doenças por Fitoplasmas/imunologia , Imunidade Vegetal/fisiologia , Prunus persica/imunologia , Produtos Agrícolas/imunologia , Malus/microbiologia , Phytoplasma/imunologia , Folhas de Planta/microbiologia , Feixe Vascular de Plantas/microbiologia , Prunus persica/microbiologia , RNA Ribossômico 16S
2.
Mol Cell Proteomics ; 19(12): 1936-1952, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32883801

RESUMO

Huanglongbing (HLB) is the most devastating and widespread citrus disease. All commercial citrus varieties are susceptible to the HLB-associated bacterium, Candidatus Liberibacter asiaticus (CLas), which resides in the phloem. The phloem is part of the plant vascular system and is involved in sugar transport. To investigate the plant response to CLas, we enriched for proteins surrounding the phloem in an HLB susceptible sweet orange variety, Washington navel (Citrus sinensis (L) Osbeck). Quantitative proteomics revealed global changes in the citrus proteome after CLas inoculation. Plant metabolism and translation were suppressed, whereas defense-related proteins such as peroxidases, proteases and protease inhibitors were induced in the vasculature. Transcript accumulation and enzymatic activity of plant peroxidases in CLas infected sweet orange varieties under greenhouse and field conditions were assessed. Although peroxidase transcript accumulation was induced in CLas infected sweet orange varieties, peroxidase enzymatic activity varied. Specific serine proteases were up-regulated in Washington navel in the presence of CLas based on quantitative proteomics. Subsequent activity-based protein profiling revealed increased activity of two serine proteases, and reduced activity of one protease in two C. sinensis sweet orange varieties under greenhouse and field conditions. The observations in the current study highlight global reprogramming of the citrus vascular proteome and differential regulation of enzyme classes in response to CLas infection. These results open an avenue for further investigation of diverse responses to HLB across different environmental conditions and citrus genotypes.


Assuntos
Citrus/enzimologia , Citrus/microbiologia , Progressão da Doença , Peroxidases/metabolismo , Doenças das Plantas/microbiologia , Feixe Vascular de Plantas/metabolismo , Proteômica , Serina Proteases/metabolismo , Citrus/efeitos dos fármacos , Citrus/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Peroxidases/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Feixe Vascular de Plantas/efeitos dos fármacos , Feixe Vascular de Plantas/microbiologia , Inibidores de Proteases/farmacologia , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
J Appl Microbiol ; 127(6): 1790-1800, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31509316

RESUMO

AIMS: Ratoon stunting disease caused by Leifsonia xyli subsp. xyli (Lxx) is a bacterial disease that has plagued sugarcane-planting countries for a long time. This study mainly analysed Lxx localization and its effects on sugarcane leaf. METHODS AND RESULTS: Badila were inocultated by bacteria of Lxx. It was noted that the number of Lxx cells were rapidly enriched in sugarcane leaves from the 150th to the 210th days of post inoculation (dpi). Lxx infection disrupted the integrity of vascular bundle sheath cells (BSC) in the 'Kranz anatomy' of leaves, resulting in irregular accumulation of starch in vascular BSC of leaves. In situ PCR showed that the Lxx localized in the xylem vessels, mesophyll cell (MC) and BSC as described before in sugarcane leaf, a new niche within the host tissues in the phloem of sugarcane stem. The gene expression and activities of phosphoenolpyruvate carboxylase (PEPC), pyruvate, orthophosphate dikinase (PPDK) and NADP-malic enzyme (NADP-ME) enzymes were lower in Lxx-inoculated sugarcane plants as compared to the MI group. CONCLUSION: Lxx infection not only disrupted the structure of vascular BSC in the C4 'Kranz anatomy' of sugarcane leaves, but also affected the activities and gene expression of the key enzymes PEPC, PPDK and NADP-ME in the C4 cycle of sugarcane suggesting a reduction in CO2 fixation. SIGNIFICANCE AND IMPACT OF THE STUDY: The effect of Leifsonia xyli subsp. xyli (Lxx) infection on the photosynthetic physiology of sugarcane is currently limited to the evaluation of photosynthetic parameters. This study assessed the impact of Lxx infection on the mechanism of C4 cycle CO2 fixation and to accompanying plant anatomy.


Assuntos
Actinomycetales/fisiologia , Enzimas/metabolismo , Fotossíntese , Doenças das Plantas/microbiologia , Saccharum/enzimologia , Saccharum/microbiologia , Regulação da Expressão Gênica de Plantas , Fotossíntese/genética , Folhas de Planta/enzimologia , Folhas de Planta/microbiologia , Feixe Vascular de Plantas/enzimologia , Feixe Vascular de Plantas/microbiologia , Amido/metabolismo
4.
Mol Plant Pathol ; 19(5): 1210-1221, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28868644

RESUMO

Expansin proteins, which loosen plant cell walls, play critical roles in normal plant growth and development. The horizontal acquisition of functional plant-like expansin genes in numerous xylem-colonizing phytopathogenic bacteria suggests that bacterial expansins may also contribute to virulence. To investigate the role of bacterial expansins in plant diseases, we mutated the non-chimeric expansin genes (CmEXLX2 and RsEXLX) of two xylem-inhabiting bacterial pathogens, the Actinobacterium Clavibacter michiganensis ssp. michiganensis (Cmm) and the ß-proteobacterium Ralstonia solanacearum (Rs), respectively. The Cmm ΔCmEXLX2 mutant caused increased symptom development on tomato, which was characterized by more rapid wilting, greater vascular necrosis and abundant atypical lesions on distant petioles. This increased disease severity correlated with larger in planta populations of the ΔCmEXLX2 mutant, even though the strains grew as well as the wild-type in vitro. Similarly, when inoculated onto tomato fruit, ΔCmEXLX2 caused significantly larger lesions with larger necrotic centres. In contrast, the Rs ΔRsEXLX mutant showed reduced virulence on tomato following root inoculation, but not following direct petiole inoculation, suggesting that the RsEXLX expansin contributes to early virulence at the root infection stage. Consistent with this finding, ΔRsEXLX attached to tomato seedling roots better than the wild-type Rs, which may prevent mutants from invading the plant's vasculature. These contrasting results demonstrate the diverse roles of non-chimeric bacterial expansins and highlight their importance in plant-bacterial interactions.


Assuntos
Actinobacteria/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Plantas/metabolismo , Feixe Vascular de Plantas/microbiologia , Ralstonia solanacearum/metabolismo , Solanum lycopersicum/microbiologia , Actinobacteria/patogenicidade , Proteínas de Bactérias/genética , Frutas/microbiologia , Genes Bacterianos , Funções Verossimilhança , Mutação/genética , Fenótipo , Filogenia , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Ralstonia solanacearum/genética , Ralstonia solanacearum/patogenicidade , Plântula/microbiologia , Virulência
5.
Plant Dis ; 102(3): 473-482, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30673496

RESUMO

The Australian sugar industry has never pursued genetic resistance to ratoon stunting disease (RSD), despite it being widely considered to be one of the most important diseases of sugarcane (Saccharum interspecific hybrids). This is because of a prevailing view that the disease is economically managed, and that no further action needs to take place. However, there is a range of epidemiological evidence that suggests that RSD is having a more significant impact than what is generally recognized. This review traces the factors that have led to an industry stance that is apparently without any scientific justification, and which has tended to downplay the significance of RSD on Australian sugarcane productivity, and thus has led to significant lost production. The consequences of this position are that RSD may be influencing broad but poorly explained issues such as commercial ratooning performance of existing varieties and the "yield decline" that has been subject to much scrutiny, if not much success in resolving the issue. Based on the available information, this review calls on the Australian sugar industry to prioritize selection for RSD resistance in the plant improvement program.


Assuntos
Actinomycetales/fisiologia , Resistência à Doença , Doenças das Plantas/imunologia , Saccharum/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/estatística & dados numéricos , Feixe Vascular de Plantas/genética , Feixe Vascular de Plantas/imunologia , Feixe Vascular de Plantas/microbiologia , Saccharum/genética , Saccharum/microbiologia
6.
Mol Biotechnol ; 59(8): 343-352, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28674943

RESUMO

This study presents a novel approach of controlling vascular wilt in tomato by RNAi expression directed to pathogenicity genes of Fusarium oxysporum f. sp. lycopersici. Vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici leads to qualitative and quantitative loss of the crop. Limitation in the existing control measures necessitates the development of alternative strategies to increase resistance in the plants against pathogens. Recent findings paved way to RNAi, as a promising method for silencing of pathogenicity genes in fungus and provided effective resistance against fungal pathogens. Here, two important pathogenicity genes FOW2, a Zn(II)2Cys6 family putative transcription regulator, and chsV, a putative myosin motor and a chitin synthase domain, were used for host-induced gene silencing through hairpinRNA cassettes of these genes against Fusarium oxysporum f. sp. lycopersici. HairpinRNAs were assembled in appropriate binary vectors and transformed into tomato plant targeting FOW2 and chsV genes, for two highly pathogenic strains of Fusarium oxysporum viz. TOFOL-IHBT and TOFOL-IVRI. Transgenic tomatoes were analyzed for possible attainment of resistance in transgenic lines against fungal infection. Eight transgenic lines expressing hairpinRNA cassettes showed trivial disease symptoms after 6-8 weeks of infection. Hence, the host-induced posttranscriptional gene silencing of pathogenicity genes in transgenic tomato plants has enhanced their resistance to vascular wilt disease caused by Fusarium oxysporum.


Assuntos
Resistência à Doença/imunologia , Fusarium/genética , Fusarium/patogenicidade , Inativação Gênica , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/microbiologia , Bioensaio , Genes Fúngicos , Solanum lycopersicum/citologia , Feixe Vascular de Plantas/citologia , Feixe Vascular de Plantas/microbiologia , Plantas Geneticamente Modificadas , RNA Interferente Pequeno/metabolismo , Virulência
7.
Mol Plant Pathol ; 18(3): 347-362, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-26996832

RESUMO

The initial interaction of a pathogenic fungus with its host is complex and involves numerous metabolic pathways and regulatory proteins. Considerable attention has been devoted to proteins that play a crucial role in these interactions, with an emphasis on so-called effector molecules that are secreted by the invading microbe to establish the symbiosis. However, the contribution of other types of molecules, such as glycans, is less well appreciated. Here, we present a random genetic screen that enabled us to identify 58 novel candidate genes that are involved in the pathogenic potential of the fungal pathogen Verticillium dahliae, which causes vascular wilt diseases in over 200 dicotyledonous plant species, including economically important crops. One of the candidate genes that was identified concerns a putative biosynthetic gene involved in nucleotide sugar precursor formation, as it encodes a putative nucleotide-rhamnose synthase/epimerase-reductase (NRS/ER). This enzyme has homology to bacterial enzymes involved in the biosynthesis of the nucleotide sugar deoxy-thymidine diphosphate (dTDP)-rhamnose, a precursor of L-rhamnose, which has been shown to be required for virulence in several human pathogenic bacteria. Rhamnose is known to be a minor cell wall glycan in fungi and has therefore not been suspected as a crucial molecule in fungal-host interactions. Nevertheless, our study shows that deletion of the VdNRS/ER gene from the V. dahliae genome results in complete loss of pathogenicity on tomato and Nicotiana benthamiana plants, whereas vegetative growth and sporulation are not affected. We demonstrate that VdNRS/ER is a functional enzyme in the biosynthesis of uridine diphosphate (UDP)-rhamnose, and further analysis has revealed that VdNRS/ER deletion strains are impaired in the colonization of tomato roots. Collectively, our results demonstrate that rhamnose, although only a minor cell wall component, is essential for the pathogenicity of V. dahliae.


Assuntos
Carboidratos Epimerases/metabolismo , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Feixe Vascular de Plantas/microbiologia , Verticillium/enzimologia , Verticillium/patogenicidade , Parede Celular/metabolismo , DNA Bacteriano/genética , DNA Intergênico/genética , Deleção de Genes , Interações Hospedeiro-Patógeno/genética , Solanum lycopersicum/microbiologia , Mutagênese Insercional/genética , Raízes de Plantas/microbiologia , Ramnose/metabolismo , Esporos Fúngicos/fisiologia , Nicotiana/microbiologia , Transformação Genética , Difosfato de Uridina/metabolismo , Verticillium/genética , Virulência
8.
Plant Physiol ; 172(2): 650-660, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27443602

RESUMO

Plant disease symptoms exhibit complex spatial and temporal patterns that are challenging to quantify. Image-based phenotyping approaches enable multidimensional characterization of host-microbe interactions and are well suited to capture spatial and temporal data that are key to understanding disease progression. We applied image-based methods to investigate cassava bacterial blight, which is caused by the pathogen Xanthomonas axonopodis pv. manihotis (Xam). We generated Xam strains in which individual predicted type III effector (T3E) genes were mutated and applied multiple imaging approaches to investigate the role of these proteins in bacterial virulence. Specifically, we quantified bacterial populations, water-soaking disease symptoms, and pathogen spread from the site of inoculation over time for strains with mutations in avrBs2, xopX, and xopK as compared to wild-type Xam ∆avrBs2 and ∆xopX both showed reduced growth in planta and delayed spread through the vasculature system of cassava. ∆avrBs2 exhibited reduced water-soaking symptoms at the site of inoculation. In contrast, ∆xopK exhibited enhanced induction of disease symptoms at the site of inoculation but reduced spread through the vasculature. Our results highlight the importance of adopting a multipronged approach to plant disease phenotyping to more fully understand the roles of T3Es in virulence. Finally, we demonstrate that the approaches used in this study can be extended to many host-microbe systems and increase the dimensions of phenotype that can be explored.


Assuntos
Medições Luminescentes/métodos , Doenças das Plantas/microbiologia , Feixe Vascular de Plantas/microbiologia , Plantas/microbiologia , Xanthomonas/patogenicidade , Brassica/microbiologia , Capsicum/microbiologia , Interações Hospedeiro-Patógeno , Solanum lycopersicum/microbiologia , Manihot/microbiologia , Mutação , Fenótipo , Folhas de Planta/microbiologia , Plantas/classificação , Reprodutibilidade dos Testes , Análise Espacial , Proteínas Virais/genética , Virulência/genética , Xanthomonas/classificação , Xanthomonas/genética
9.
Mol Plant Pathol ; 17(5): 669-79, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26369403

RESUMO

The viral-induced banana bunchy top disease and the fungal-induced banana blight are two major causes of concern for industrial scale production of bananas. Banana blight is particularly troublesome, affecting ∼80% of crops worldwide. Strict guidelines and protocols are in place in order to ameliorate the effects of this devastating disease, yet little success has been achieved. From the data presented here, we have found that Banana bunchy top virus (BBTV)-infected bananas are more resistant to Fusarium oxysporum f. sp. cubense (Foc). BBTV appears to be antagonistic towards Foc, thus improving the survivability of plants against blight. The BBTV suppressor of RNA silencing, namely protein B4, displays fungicidal properties in vitro. Furthermore, transgenic tomatoes expressing green fluorescent protein (GFP)-tagged protein B4 demonstrate enhanced resistance to F. oxysporum f. sp. lycopersici (Fol). Differential gene expression analysis indicates that increased numbers of photogenesis-related gene transcripts are present in dark-green leaves of B4-GFP-modified tomato plants relative to those found in WT plants. Conversely, the transcript abundance of immunity-related genes is substantially lower in transgenic tomatoes compared with WT plants, suggesting that plant defences may be influenced by protein B4. This viral-fungal interaction provides new insights into microbial community dynamics within a single host and has potential commercial value for the breeding of transgenic resistance to Fusarium-related blight/wilt.


Assuntos
Babuvirus/metabolismo , Fusarium/efeitos dos fármacos , Proteínas Virais/farmacologia , Sequência de Aminoácidos , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Membrana Celular/metabolismo , Resistência à Doença , Fusarium/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Musa/microbiologia , Musa/virologia , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Feixe Vascular de Plantas/microbiologia , Feixe Vascular de Plantas/virologia , Plantas Geneticamente Modificadas , Alinhamento de Sequência , Proteínas Virais/química
10.
Mol Plant Pathol ; 17(6): 890-902, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26609568

RESUMO

The mechanism of colonization of intercellular spaces by the soil-borne and vascular plant-pathogenic bacterium Ralstonia solanacearum strain OE1-1 after invasion into host plants remains unclear. To analyse the behaviour of OE1-1 cells in intercellular spaces, tomato leaves with the lower epidermis layers excised after infiltration with OE1-1 were observed under a scanning electron microscope. OE1-1 cells formed microcolonies on the surfaces of tomato cells adjacent to intercellular spaces, and then aggregated surrounded by an extracellular matrix, forming mature biofilm structures. Furthermore, OE1-1 cells produced mushroom-type biofilms when incubated in fluids of apoplasts including intercellular spaces, but not xylem fluids from tomato plants. This is the first report of biofilm formation by R. solanacearum on host plant cells after invasion into intercellular spaces and mushroom-type biofilms produced by R. solanacearum in vitro. Sugar application led to enhanced biofilm formation by OE1-1. Mutation of lecM encoding a lectin, RS-IIL, which reportedly exhibits affinity for these sugars, led to a significant decrease in biofilm formation. Colonization in intercellular spaces was significantly decreased in the lecM mutant, leading to a loss of virulence on tomato plants. Complementation of the lecM mutant with native lecM resulted in the recovery of mushroom-type biofilms and virulence on tomato plants. Together, our findings indicate that OE1-1 produces mature biofilms on the surfaces of tomato cells after invasion into intercellular spaces. RS-IIL may contribute to biofilm formation by OE1-1, which is required for OE1-1 virulence.


Assuntos
Biofilmes , Espaço Extracelular/microbiologia , Feixe Vascular de Plantas/microbiologia , Ralstonia solanacearum/patogenicidade , Solanum lycopersicum/microbiologia , Aderência Bacteriana/efeitos dos fármacos , Biopolímeros/metabolismo , Carboidratos/farmacologia , Contagem de Colônia Microbiana , Espaço Extracelular/efeitos dos fármacos , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/ultraestrutura , Mutação/genética , Feixe Vascular de Plantas/efeitos dos fármacos , Ralstonia solanacearum/efeitos dos fármacos , Ralstonia solanacearum/ultraestrutura , Virulência/efeitos dos fármacos
11.
Plant Signal Behav ; 10(12): e1107690, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26492318

RESUMO

The peanut witches' broom (PnWB) phytoplasma causes virescence symptoms such as phyllody (leafy flower) in infected peanuts. However, the obligate nature of phytoplasma limits the study of host-pathogen interactions, and the detailed anatomy of PnWB-infected plants has yet to be reported. Here, we demonstrate that 4',6'-diamidino-2-phenylindole (DAPI) staining can be used to track PnWB infection. The DAPI-stained phytoplasma cells were observed in phloem/internal phloem tissues, and changes in vascular bundle morphology, including increasing pith rays and thinner cell walls in the xylem, were found. We also discerned the cell types comprising PnWB in infected sieve tube members. These results suggest that the presence of PnWB in phloem tissue facilitates the transmission of phytoplasma via sap-feeding insect vectors. In addition, PnWB in sieve tube members and changes in vascular bundle morphology might strongly promote the ability of phytoplasmas to assimilate nutrients. These data will help further an understanding of the obligate life cycle and host-pathogen interactions of phytoplasma.


Assuntos
Arachis/microbiologia , Flores/microbiologia , Phytoplasma/fisiologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Caules de Planta/microbiologia , Feixe Vascular de Plantas/crescimento & desenvolvimento , Catharanthus/microbiologia , Microscopia Confocal , Feixe Vascular de Plantas/microbiologia
12.
Curr Biol ; 25(9): 1201-7, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25843031

RESUMO

The colonization of bacteria in complex fluid flow networks, such as those found in host vasculature, remains poorly understood. Recently, it was reported that many bacteria, including Bacillus subtilis [1], Escherichia coli [2], and Pseudomonas aeruginosa [3, 4], can move in the opposite direction of fluid flow. Upstream movement results from the interplay between fluid shear stress and bacterial motility structures, and such rheotactic-like behavior is predicted to occur for a wide range of conditions [1]. Given the potential ubiquity of upstream movement, its impact on population-level behaviors within hosts could be significant. Here, we find that P. aeruginosa communities use a diverse set of motility strategies, including a novel surface-motility mechanism characterized by counter-advection and transverse diffusion, to rapidly disperse throughout vasculature-like flow networks. These motility modalities give P. aeruginosa a selective growth advantage, enabling it to self-segregate from other human pathogens such as Proteus mirabilis and Staphylococcus aureus that outcompete P. aeruginosa in well-mixed non-flow environments. We develop a quantitative model of bacterial colonization in flow networks, confirm our model in vivo in plant vasculature, and validate a key prediction that colonization and dispersal can be inhibited by modifying surface chemistry. Our results show that the interaction between flow mechanics and motility structures shapes the formation of mixed-species communities and suggest a general mechanism by which bacteria could colonize hosts. Furthermore, our results suggest novel strategies for tuning the composition of multi-species bacterial communities in hosts, preventing inappropriate colonization in medical devices, and combatting bacterial infections.


Assuntos
Pseudomonas aeruginosa/fisiologia , Fenômenos Fisiológicos Bacterianos , Hidrodinâmica , Doenças das Plantas/microbiologia , Feixe Vascular de Plantas/microbiologia , Nicotiana
13.
Mol Biol Rep ; 42(6): 1123-38, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25596722

RESUMO

Polygalacturonase-inhibitor proteins (PGIPs) are important plant defense proteins which modulate the activity of microbial polygalacturonases (PGs) leading to elicitor accumulation. Very few studies have been carried out towards understanding the role of PGIPs in monocot host defense. Hence, present study was taken up to characterize a native PGIP from pearl millet and understand its role in resistance against downy mildew. A native glycosylated PGIP (PglPGIP1) of ~43 kDa and pI 5.9 was immunopurified from pearl millet. Comparative inhibition studies involving PglPGIP1 and its non-glycosylated form (rPglPGIP1; recombinant pearl millet PGIP produced in Escherichia coli) against two PGs, PG-II isoform from Aspergillus niger (AnPGII) and PG-III isoform from Fusarium moniliforme, showed both PGIPs to inhibit only AnPGII. The protein glycosylation was found to impact only the pH and temperature stability of PGIP, with the native form showing relatively higher stability to pH and temperature changes. Temporal accumulation of both PglPGIP1 protein (western blot and ELISA) and transcripts (real time PCR) in resistant and susceptible pearl millet cultivars showed significant Sclerospora graminicola-induced accumulation only in the incompatible interaction. Further, confocal PGIP immunolocalization results showed a very intense immuno-decoration with highest fluorescent intensities observed at the outer epidermal layer and vascular bundles in resistant cultivar only. This is the first native PGIP isolated from millets and the results indicate a role for PglPGIP1 in host defense. This could further be exploited in devising pearl millet cultivars with better pathogen resistance.


Assuntos
Inibidores Enzimáticos/farmacologia , Proteínas Fúngicas/antagonistas & inibidores , Pennisetum/metabolismo , Proteínas de Plantas/farmacologia , Poligalacturonase/antagonistas & inibidores , Sequência de Aminoácidos , Resistência à Doença/genética , Eletroforese em Gel Bidimensional , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/metabolismo , Proteínas Fúngicas/metabolismo , Glicosilação , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Immunoblotting , Microscopia Confocal , Dados de Sequência Molecular , Oomicetos/efeitos dos fármacos , Oomicetos/fisiologia , Pennisetum/genética , Pennisetum/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Epiderme Vegetal/genética , Epiderme Vegetal/metabolismo , Epiderme Vegetal/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Feixe Vascular de Plantas/genética , Feixe Vascular de Plantas/metabolismo , Feixe Vascular de Plantas/microbiologia , Poligalacturonase/metabolismo , Estabilidade Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Temperatura
14.
New Phytol ; 205(3): 1175-1182, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25348596

RESUMO

The ongoing expansion of shrub cover in response to climate change represents a unique opportunity to explore the link between soil microbial communities and vegetation changes. This link is particularly important in peatlands where shrub expansion is expected to feed back negatively on the carbon sink capacity of these ecosystems. Microbial community structure and function were measured seasonally in four peatlands located along an altitude gradient representing a natural gradient of climate and associated vascular plant abundance. We show that increased soil temperature and reduced water content are associated with greater vascular plant biomass, in particular that of ericoids, and that this, in turn, is correlated with greater microbial biomass. More specifically, microbial community structure is characterized by an increasing dominance of fungi over bacteria with improved soil oxygenation. We also found that the carbon and nitrogen stoichiometry of microbial biomass differs in relation to soil microbial community structure and that this is ultimately associated with a different investment in extracellular enzymatic activity. Our findings highlight the fact that the determination of the structural identity of microbial communities can help to explain the biogeochemical dynamics of organic matter and provide a better understanding of ecosystem response to environmental changes.


Assuntos
Bactérias/metabolismo , Clima , Fungos/metabolismo , Feixe Vascular de Plantas/crescimento & desenvolvimento , Feixe Vascular de Plantas/microbiologia , Microbiologia do Solo , Bactérias/enzimologia , Biomassa , Carbono/análise , Fungos/enzimologia , Nitrogênio/análise , Fósforo/análise
16.
Physiol Plant ; 153(2): 253-68, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24930426

RESUMO

Verticillium dahliae is a prominent generator of plant vascular wilting disease and sulfur (S)-enhanced defense (SED) mechanisms contribute to its in-planta elimination. The accumulation of S-containing defense compounds (SDCs) including elemental S (S(0) ) has been described based on the comparison of two near-isogenic tomato (Solanum lycopersicum) lines differing in fungal susceptibility. To better understand the effect of S nutrition on V. dahliae resistance both lines were supplied with low, optimal or supraoptimal sulfate-S. An absolute quantification demonstrated a most effective fungal elimination due to luxury plant S nutrition. High-pressure liquid chromatography (HPLC) showed a strong regulation of Cys levels and an S-responsive GSH pool rise in the bulk hypocotyl. High-frequency S peak accumulations were detected in vascular bundles of resistant tomato plants after fungal colonization by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Global transcriptomic analysis suggested that early steps of the primary S metabolism did not promote the SDCs synthesis in the whole hypocotyl as gene expression was downregulated after infection. Enhanced S fertilization mostly alleviated the repressive fungal effect but did not reverse it. Upregulation of glutathione (GSH)-associated genes in bulk hypocotyls but not in vascular bundles indicated a global antioxidative role of GSH. To finally assign the contribution of S metabolism-associated genes to high S(0) accumulations exclusively found in the resistant tomato line, a spatial gene expression approach was applied. Laser microdissection of infected vascular bundles revealed a switch toward transcription of genes connected with cysteine (Cys) synthesis. The upregulation of LeOASTLp1 suggests a role for Cys as key precursor for local S accumulations (possibly S(0) ) in the vascular bundles of the V. dahliae-resistant tomato line.


Assuntos
Cisteína/metabolismo , Regulação da Expressão Gênica de Plantas , Hipocótilo/genética , Feixe Vascular de Plantas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Enxofre/metabolismo , Verticillium/fisiologia , Transporte Biológico/efeitos dos fármacos , Contagem de Colônia Microbiana , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Estudos de Associação Genética , Genótipo , Hipocótilo/efeitos dos fármacos , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/imunologia , Microdissecção , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Feixe Vascular de Plantas/efeitos dos fármacos , Feixe Vascular de Plantas/genética , Feixe Vascular de Plantas/microbiologia , Espectrofotometria Atômica , Sulfatos/farmacologia , Compostos de Sulfidrila/metabolismo , Verticillium/efeitos dos fármacos , Verticillium/crescimento & desenvolvimento , Xilema/microbiologia
17.
Mol Plant Pathol ; 15(8): 823-31, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24684632

RESUMO

Trichoderma is a soil-borne fungal genus that includes species with a significant impact on agriculture and industrial processes. Some Trichoderma strains exert beneficial effects in plants through root colonization, although little is known about how this interaction takes place. To better understand this process, the root colonization of wild-type Arabidopsis and the salicylic acid (SA)-impaired mutant sid2 by a green fluorescent protein (GFP)-marked Trichoderma harzianum strain was followed under confocal microscopy. Trichoderma harzianum GFP22 was able to penetrate the vascular tissue of the sid2 mutant because of the absence of callose deposition in the cell wall of root cells. In addition, a higher colonization of sid2 roots by GFP22 compared with that in Arabidopsis wild-type roots was detected by real-time polymerase chain reaction. These results, together with differences in the expression levels of plant defence genes in the roots of both interactions, support a key role for SA in Trichoderma early root colonization stages. We observed that, without the support of SA, plants were unable to prevent the arrival of the fungus in the vascular system and its spread into aerial parts, leading to later collapse.


Assuntos
Arabidopsis/microbiologia , Raízes de Plantas/microbiologia , Feixe Vascular de Plantas/microbiologia , Ácido Salicílico/farmacologia , Trichoderma/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Contagem de Colônia Microbiana , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Glucanos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Desenvolvimento Vegetal/efeitos dos fármacos , Feixe Vascular de Plantas/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Trichoderma/efeitos dos fármacos
18.
Plant Signal Behav ; 8(11): e27008, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24300304

RESUMO

Verticillium longisporum is a soil-borne vascular pathogen found primarily on oilseed rape in Northern Europe. Infection of the model plant Arabidopsis thaliana can be achieved under laboratory conditions. In the article related to this addendum, we have shown that Arabidopsis dde2-2 mutants that are compromised in their ability to synthesize the defense hormone jasmonoyl-isoleucine (JA-Ile) are slightly more susceptible than wild-type. Contrary to the expectation that hormone biosynthesis mutants and their respective receptor mutants should have the same phenotype, we found that plants that lack the JA-Ile receptor CORONATINE INSENSITIVE1 (COI1) are more tolerant to the disease. This addendum addressed the question whether the increased JA-Ile levels found in coi1 are responsible for its tolerance phenotype. Based on the evidence that the JA-Ile-deficient dde2-2 coi1-t double mutant is as tolerant as coi1-t, we conclude that increased JA-Ile levels do not protect Arabidopsis against the fungus in the absence of COI1.


Assuntos
Adaptação Fisiológica , Proteínas de Arabidopsis/genética , Arabidopsis/microbiologia , Ciclopentanos/metabolismo , Isoleucina/análogos & derivados , Mutação/genética , Feixe Vascular de Plantas/microbiologia , Verticillium/fisiologia , Arabidopsis/imunologia , Biomassa , Isoleucina/metabolismo , Fenótipo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia
19.
PLoS One ; 8(7): e68228, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874551

RESUMO

Hop plant (Humulus lupulus L.), cultivated primarily for its use in the brewing industry, is faced with a variety of diseases, including severe vascular diseases, such as Verticillium wilt, against which no effective protection is available. The understanding of disease resistance with tools such as differentially expressed gene studies is an important objective of plant defense mechanisms. In this study, we evaluated twenty-three reference genes for RT-qPCR expression studies on hop under biotic stress conditions. The candidate genes were validated on susceptible and resistant hop cultivars sampled at three different time points after infection with Verticillium albo-atrum. The stability of expression and the number of genes required for accurate normalization were assessed by three different Excel-based approaches (geNorm v.3.5 software, NormFinder, and RefFinder). High consistency was found among them, identifying the same six best reference genes (YLS8, DRH1, TIP41, CAC, POAC and SAND) and five least stably expressed genes (CYCL, UBQ11, POACT, GAPDH and NADH). The candidate genes in different experimental subsets/conditions resulted in different rankings. A combination of the two best reference genes, YLS8 and DRH1, was used for normalization of RT-qPCR data of the gene of interest (PR-1) implicated in biotic stress of hop. We outlined the differences between normalized and non-normalized values and the importance of RT-qPCR data normalization. The high correlation obtained among data standardized with different sets of reference genes confirms the suitability of the reference genes selected for normalization. Lower correlations between normalized and non-normalized data may reflect different quantity and/or quality of RNA samples used in RT-qPCR analyses.


Assuntos
Genes de Plantas/genética , Humulus/genética , Humulus/microbiologia , Doenças das Plantas/microbiologia , Feixe Vascular de Plantas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Verticillium/fisiologia , Algoritmos , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Feixe Vascular de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real/normas , Padrões de Referência , Reprodutibilidade dos Testes
20.
Plant Physiol ; 162(1): 107-15, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23535942

RESUMO

Nodulation in legumes involves the coordination of epidermal infection by rhizobia with cell divisions in the underlying cortex. During nodulation, rhizobia are entrapped within curled root hairs to form an infection pocket. Transcellular tubes called infection threads then develop from the pocket and become colonized by rhizobia. The infection thread grows toward the developing nodule primordia and rhizobia are taken up into the nodule cells, where they eventually fix nitrogen. The epidermal and cortical developmental programs are synchronized by a yet-to-be-identified signal that is transmitted from the outer to the inner cell layers of the root. Using a new allele of the Medicago truncatula mutant Lumpy Infections, lin-4, which forms normal infection pockets but cannot initiate infection threads, we show that infection thread initiation is required for normal nodule development. lin-4 forms nodules with centrally located vascular bundles similar to that found in lateral roots rather than the peripheral vasculature characteristic of legume nodules. The same phenomenon was observed in M. truncatula plants inoculated with the Sinorhizobium meliloti exoY mutant, and the M. truncatula vapyrin-2 mutant, all cases where infections arrest. Nodules on lin-4 have reduced expression of the nodule meristem marker MtCRE1 and do not express root-tip markers. In addition, these mutant nodules have altered patterns of gene expression for the cytokinin and auxin markers CRE1 and DR5. Our work highlights the coordinating role that bacterial infection exerts on the developing nodule and allows us to draw comparisons with primitive actinorhizal nodules and rhizobia-induced nodules on the nonlegume Parasponia andersonii.


Assuntos
Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/microbiologia , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Sinorhizobium meliloti/fisiologia , Alelos , Citocininas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes Reporter , Ácidos Indolacéticos/metabolismo , Medicago truncatula/citologia , Medicago truncatula/genética , Mutação , Fixação de Nitrogênio , Fenótipo , Epiderme Vegetal/citologia , Epiderme Vegetal/genética , Epiderme Vegetal/crescimento & desenvolvimento , Epiderme Vegetal/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Feixe Vascular de Plantas/citologia , Feixe Vascular de Plantas/genética , Feixe Vascular de Plantas/crescimento & desenvolvimento , Feixe Vascular de Plantas/microbiologia , Nódulos Radiculares de Plantas/citologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/microbiologia , Transdução de Sinais , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...