Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.084
Filtrar
1.
Sci Rep ; 14(1): 13104, 2024 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849458

RESUMO

Bacteria employ quorum sensing as a remarkable mechanism for coordinating behaviors and communicating within their communities. In this study, we introduce a MATLAB Graphical User Interface (GUI) that offers a versatile platform for exploring the dynamics of quorum sensing. Our computational framework allows for the assessment of quorum sensing, the investigation of parameter dependencies, and the prediction of minimum biofilm thickness required for its initiation. A pivotal observation from our simulations underscores the pivotal role of the diffusion coefficient in quorum sensing, surpassing the influence of bacterial cell dimensions. Varying the diffusion coefficient reveals significant fluctuations in autoinducer concentration, highlighting its centrality in shaping bacterial communication. Additionally, our GUI facilitates the prediction of the minimum biofilm thickness necessary to trigger quorum sensing, a parameter contingent on the diffusion coefficient. This feature provides valuable insights into spatial constraints governing quorum sensing initiation. The interplay between production rates and cell concentrations emerges as another critical facet of our study. We observe that higher production rates or cell concentrations expedite quorum sensing, underscoring the intricate relationship between cell communication and population dynamics in bacterial communities. While our simulations align with mathematical models reported in the literature, we acknowledge the complexity of living organisms, emphasizing the value of our GUI for standardizing results and facilitating early assessments of quorum sensing. This computational approach offers a window into the environmental conditions conducive to quorum sensing initiation, encompassing parameters such as the diffusion coefficient, cell concentration, and biofilm thickness. In conclusion, our MATLAB GUI serves as a versatile tool for understanding the diverse aspects of quorum sensing especially for non-biologists. The insights gained from this computational framework advance our understanding of bacterial communication, providing researchers with the means to explore diverse ecological contexts where quorum sensing plays a pivotal role.


Assuntos
Biofilmes , Percepção de Quorum , Biofilmes/crescimento & desenvolvimento , Modelos Biológicos , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Difusão , Interface Usuário-Computador , Simulação por Computador
2.
J Vis Exp ; (207)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38856209

RESUMO

The multispecies biofilm is a naturally occurring and dominant lifestyle of bacteria in nature, including in rhizosphere soil, although the current understanding of it is limited. Here, we provide an approach to rapidly establish synergistic multispecies biofilm communities. The first step is to extract cells from rhizosphere soil using the differential centrifugation method. Afterward, these soil cells are inoculated into the culture medium to form pellicle biofilm. After 36 h of incubation, the bacterial composition of the biofilm and the solution underneath are determined using the 16S rRNA gene amplicon sequencing method. Meanwhile, high-throughput bacterial isolation from pellicle biofilm is conducted using the limiting dilution method. Then, the top 5 bacterial taxa are selected with the highest abundance in the 16S rRNA gene amplicon sequencing data (pellicle biofilm samples) for further use in constructing multispecies biofilm communities. All combinations of the 5 bacterial taxa were quickly established using a 24-well plate, selected for the strongest biofilm formation ability by the crystal violet staining assay, and quantified by qPCR. Finally, the most robust synthetic bacterial multispecies biofilm communities were obtained through the methods above. This methodology provides informative guidance for conducting research on rhizosphere multispecies biofilm and identifying representative communities for studying the principles governing interactions among these species.


Assuntos
Biofilmes , RNA Ribossômico 16S , Rizosfera , Microbiologia do Solo , Biofilmes/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação , Fenômenos Fisiológicos Bacterianos
3.
Nat Commun ; 15(1): 4238, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762599

RESUMO

Growth rate maximization is an important fitness strategy for microbes. However, the wide distribution of slow-growing oligotrophic microbes in ecosystems suggests that rapid growth is often not favored across ecological environments. In many circumstances, there exist trade-offs between growth and other important traits (e.g., adaptability and survival) due to physiological and proteome constraints. Investments on alternative traits could compromise growth rate and microbes need to adopt bet-hedging strategies to improve fitness in fluctuating environments. Here we review the mechanistic role of trade-offs in controlling bacterial growth and further highlight its ecological implications in driving the emergences of many important ecological phenomena such as co-existence, population heterogeneity and oligotrophic/copiotrophic lifestyles.


Assuntos
Bactérias , Fenótipo , Bactérias/metabolismo , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Ecossistema , Fenômenos Fisiológicos Bacterianos , Adaptação Fisiológica
4.
Sci Total Environ ; 931: 172967, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38705297

RESUMO

The fascinating world of microscopic life unveils a captivating spectacle as bacteria effortlessly maneuver through their surroundings with astonishing accuracy, guided by the intricate mechanism of chemotaxis. This review explores the complex mechanisms behind this behavior, analyzing the flagellum as the driving force and unraveling the intricate signaling pathways that govern its movement. We delve into the hidden costs and benefits of this intricate skill, analyzing its potential to propagate antibiotic resistance gene while shedding light on its vital role in plant colonization and beneficial symbiosis. We explore the realm of human intervention, considering strategies to manipulate bacterial chemotaxis for various applications, including nutrient cycling, algal bloom and biofilm formation. This review explores the wide range of applications for bacterial capabilities, from targeted drug delivery in medicine to bioremediation and disease control in the environment. Ultimately, through unraveling the intricacies of bacterial movement, we can enhance our comprehension of the intricate web of life on our planet. This knowledge opens up avenues for progress in fields such as medicine, agriculture, and environmental conservation.


Assuntos
Bactérias , Fenômenos Fisiológicos Bacterianos , Quimiotaxia , Biodegradação Ambiental
6.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744663

RESUMO

Eukaryotic organisms coevolved with microbes from the environment forming holobiotic meta-genomic units. Members of host-associated microbiomes have commensalic, beneficial/symbiotic, or pathogenic phenotypes. More than 100 years ago, Lorenz Hiltner, pioneer of soil microbiology, introduced the term 'Rhizosphere' to characterize the observation that a high density of saprophytic, beneficial, and pathogenic microbes are attracted by root exudates. The balance between these types of microbes decide about the health of the host. Nowadays we know, that for the interaction of microbes with all eukaryotic hosts similar principles and processes of cooperative and competitive functions are in action. Small diffusible molecules like (phyto)hormones, volatiles and quorum sensing signals are examples for mediators of interspecies and cross-kingdom interactions. Quorum sensing of bacteria is mediated by different autoinducible metabolites in a density-dependent manner. In this perspective publication, the role of QS-related activities for the health of hosts will be discussed focussing mostly on N-acyl-homoserine lactones (AHL). It is also considered that in some cases very close phylogenetic relations exist between plant beneficial and opportunistic human pathogenic bacteria. Based on a genome and system-targeted new understanding, sociomicrobiological solutions are possible for the biocontrol of diseases and the health improvement of eukaryotic hosts.


Assuntos
Bactérias , Plantas , Percepção de Quorum , Humanos , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Plantas/microbiologia , Acil-Butirolactonas/metabolismo , Fenômenos Fisiológicos Bacterianos , Microbiologia do Solo , Microbiota , Simbiose , Rizosfera
7.
Microb Ecol ; 87(1): 74, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771320

RESUMO

Rhizosphere microbial communities are to be as critical factors for plant growth and vitality, and their adaptive differentiation strategies have received increasing amounts of attention but are poorly understood. In this study, we obtained bacterial and fungal amplicon sequences from the rhizosphere and bulk soils of various ecosystems to investigate the potential mechanisms of microbial adaptation to the rhizosphere environment. Our focus encompasses three aspects: niche preference, functional profiles, and cross-kingdom co-occurrence patterns. Our findings revealed a correlation between niche similarity and nucleotide distance, suggesting that niche adaptation explains nucleotide variation among some closely related amplicon sequence variants (ASVs). Furthermore, biological macromolecule metabolism and communication among abundant bacteria increase in the rhizosphere conditions, suggesting that bacterial function is trait-mediated in terms of fitness in new habitats. Additionally, our analysis of cross-kingdom networks revealed that fungi act as intermediaries that facilitate connections between bacteria, indicating that microbes can modify their cooperative relationships to adapt. Overall, the evidence for rhizosphere microbial community adaptation, via differences in gene and functional and co-occurrence patterns, elucidates the adaptive benefits of genetic and functional flexibility of the rhizosphere microbiota through niche shifts.


Assuntos
Adaptação Fisiológica , Bactérias , Fungos , Microbiota , Rizosfera , Microbiologia do Solo , Fungos/genética , Fungos/classificação , Fungos/fisiologia , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Ecossistema , Fenômenos Fisiológicos Bacterianos
8.
Int J Mol Sci ; 25(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38791481

RESUMO

A bacterium's ability to colonize and adapt to an ecological niche is highly dependent on its capacity to perceive and analyze its environment and its ability to interact with its hosts and congeners [...].


Assuntos
Bactérias , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Percepção de Quorum
9.
Environ Microbiol ; 26(5): e16623, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38715450

RESUMO

Free-living amoebae (FLA) serve as hosts for a variety of endosymbionts, which are microorganisms that reside and multiply within the FLA. Some of these endosymbionts pose a pathogenic threat to humans, animals, or both. The symbiotic relationship with FLA not only offers these microorganisms protection but also enhances their survival outside their hosts and assists in their dispersal across diverse habitats, thereby escalating disease transmission. This review is intended to offer an exhaustive overview of the existing mathematical models that have been applied to understand the dynamics of FLA, especially concerning their interactions with bacteria. An extensive literature review was conducted across Google Scholar, PubMed, and Scopus databases to identify mathematical models that describe the dynamics of interactions between FLA and bacteria, as published in peer-reviewed scientific journals. The literature search revealed several FLA-bacteria model systems, including Pseudomonas aeruginosa, Pasteurella multocida, and Legionella spp. Although the published mathematical models account for significant system dynamics such as predator-prey relationships and non-linear growth rates, they generally overlook spatial and temporal heterogeneity in environmental conditions, such as temperature, and population diversity. Future mathematical models will need to incorporate these factors to enhance our understanding of FLA-bacteria dynamics and to provide valuable insights for future risk assessment and disease control measures.


Assuntos
Amoeba , Bactérias , Simbiose , Amoeba/microbiologia , Modelos Biológicos , Fenômenos Fisiológicos Bacterianos , Modelos Teóricos , Animais
10.
Microbiol Res ; 285: 127748, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38735241

RESUMO

The rhizosphere system of plants hosts a diverse consortium of bacteria that confer beneficial effects on plant, such as plant growth-promoting rhizobacteria (PGPR), biocontrol agents with disease-suppression activities, and symbiotic nitrogen fixing bacteria with the formation of root nodule. Efficient colonization in planta is of fundamental importance for promoting of these beneficial activities. However, the process of root colonization is complex, consisting of multiple stages, including chemotaxis, adhesion, aggregation, and biofilm formation. The secondary messenger, c-di-GMP (cyclic bis-(3'-5') dimeric guanosine monophosphate), plays a key regulatory role in a variety of physiological processes. This paper reviews recent progress on the actions of c-di-GMP in plant beneficial bacteria, with a specific focus on its role in chemotaxis, biofilm formation, and nodulation.


Assuntos
Biofilmes , Quimiotaxia , GMP Cíclico , Raízes de Plantas , Plantas , Simbiose , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Biofilmes/crescimento & desenvolvimento , Plantas/microbiologia , Raízes de Plantas/microbiologia , Bactérias/metabolismo , Bactérias/genética , Rizosfera , Nodulação , Sistemas do Segundo Mensageiro , Fenômenos Fisiológicos Bacterianos , Microbiologia do Solo
11.
mBio ; 15(6): e0075824, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38771034

RESUMO

Clonal reproduction of unicellular organisms ensures the stable inheritance of genetic information. However, this means of reproduction lacks an intrinsic basis for genetic variation, other than spontaneous mutation and horizontal gene transfer. To make up for this lack of genetic variation, many unicellular organisms undergo the process of cell differentiation to achieve phenotypic heterogeneity within isogenic populations. Cell differentiation is either an inducible or obligate program. Induced cell differentiation can occur as a response to a stimulus, such as starvation or host cell invasion, or it can be a stochastic process. In contrast, obligate cell differentiation is hardwired into the organism's life cycle. Whether induced or obligate, bacterial cell differentiation requires the activation of a signal transduction pathway that initiates a global change in gene expression and ultimately results in a morphological change. While cell differentiation is considered a hallmark in the development of multicellular organisms, many unicellular bacteria utilize this process to implement survival strategies. In this review, we describe well-characterized cell differentiation programs to highlight three main survival strategies used by bacteria capable of differentiation: (i) environmental adaptation, (ii) division of labor, and (iii) bet-hedging.


Assuntos
Bactérias , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Diferenciação Celular , Adaptação Fisiológica , Viabilidade Microbiana , Transdução de Sinais
12.
Sci Total Environ ; 927: 172110, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38565348

RESUMO

Recently, it is reported that bacterial communication coordinates the whole consortia to jointly resist the adverse environments. Here, we found the bacterial communication inevitably distinguished bacterial adaptation among different species in partial nitrification reactor under decreasing temperatures. We operated a partial nitrification reactor under temperature gradient from 30 °C to 5 °C and found the promotion of bacterial communication on adaptation of ammonia-oxidizing bacteria (AOB) was greater than that of nitrite-oxidizing bacteria (NOB). Signal pathways with single-component sensing protein in AOB can regulate more genes involved in bacterial adaptation than that with two-component sensing protein in NOB. The negative effects of bacterial communication, which were seriously ignored, have been highlighted, and Clp regulator downstream diffusible signal factor (DSF) based signal pathways worked as transcription activators and inhibitors of adaptation genes in AOB and NOB respectively. Bacterial communication can induce differential adaptation through influencing bacterial interactions. AOB inclined to cooperate with DSF synthesis bacteria as temperature declined, however, cooperation between NOB and DSF synthesis bacteria inclined to get weakening. According to the regulatory effects of signal pathways, bacterial survival strategies for self-protection were revealed. This study hints a potential way to govern niche differentiation in the microbiota by bacterial communication, contributing to forming an efficient artificial ecosystem.


Assuntos
Reatores Biológicos , Nitrificação , Reatores Biológicos/microbiologia , Bactérias/metabolismo , Adaptação Fisiológica , Amônia/metabolismo , Fenômenos Fisiológicos Bacterianos
13.
PLoS Biol ; 22(4): e3002577, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38626194

RESUMO

The move from a free-living environment to a long-term residence inside a host eukaryotic cell has profound effects on bacterial function. While endosymbioses are found in many eukaryotes, from protists to plants to animals, the bacteria that form these host-beneficial relationships are even more diverse. Endosymbiont genomes can become radically smaller than their free-living relatives, and their few remaining genes show extreme compositional biases. The details of how these reduced and divergent gene sets work, and how they interact with their host cell, remain mysterious. This Unsolved Mystery reviews how genome reduction alters endosymbiont biology and highlights a "tipping point" where the loss of the ability to build a cell envelope coincides with a marked erosion of translation-related genes.


Assuntos
Bactérias , Eucariotos , Animais , Bactérias/genética , Eucariotos/genética , Genoma Bacteriano/genética , Simbiose/genética , Fenômenos Fisiológicos Bacterianos , Filogenia
14.
Sci Total Environ ; 928: 172397, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608889

RESUMO

Microplastic biofilms are novel vectors for the transport and spread of pathogenic and drug-resistant bacteria. With the increasing use of bio-based plastics, there is an urgent need to investigate the microbial colonization characteristics of these materials in seawater, particularly in comparison with conventional petroleum-based plastics. Furthermore, the effect of co-occurring contaminants, such as heavy metals, on the formation of microplastic biofilms and bacterial communities remains unclear. In this study, we compared the biofilm bacterial community structure of petroleum-based polyethylene (PE) and bio-based polylactic acid (PLA) in seawater under the influence of zinc ions (Zn2+). Our findings indicate that the biofilm on PLA microplastics in the late stage was impeded by the formation of a mildly acidic microenvironment resulting from the hydrolysis of the ester group on PLA. The PE surface had higher bacterial abundance and diversity, with a more intricate symbiotic pattern. The bacterial structures on the two types of microplastics were different; PE was more conducive to the colonization of anaerobic bacteria, whereas PLA was more favorable for the colonization of aerobic and acid-tolerant species. Furthermore, Zn increased the proportion of the dominant genera that could utilize microplastics as a carbon source, such as Alcanivorax and Nitratireductor. PLA had a greater propensity to harbor and disseminate pathogenic and drug-resistant bacteria, and Zn promoted the enrichment and spread of harmful bacteria such as, Pseudomonas and Clostridioides. Therefore, further research is essential to fully understand the potential environmental effects of bio-based microplastics and the role of heavy metals in the dynamics of bacterial colonization.


Assuntos
Biofilmes , Microplásticos , Água do Mar , Poluentes Químicos da Água , Zinco , Biofilmes/efeitos dos fármacos , Água do Mar/química , Água do Mar/microbiologia , Microplásticos/toxicidade , Poluentes Químicos da Água/análise , Petróleo , Bactérias/efeitos dos fármacos , Poliésteres , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos
16.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38648266

RESUMO

Flagellar motility is a key bacterial trait as it allows bacteria to navigate their immediate surroundings. Not all bacteria are capable of flagellar motility, and the distribution of this trait, its ecological associations, and the life history strategies of flagellated taxa remain poorly characterized. We developed and validated a genome-based approach to infer the potential for flagellar motility across 12 bacterial phyla (26 192 unique genomes). The capacity for flagellar motility was associated with a higher prevalence of genes for carbohydrate metabolism and higher maximum potential growth rates, suggesting that flagellar motility is more prevalent in environments with higher carbon availability. To test this hypothesis, we applied a method to infer the prevalence of flagellar motility in whole bacterial communities from metagenomic data and quantified the prevalence of flagellar motility across four independent field studies that each captured putative gradients in soil carbon availability (148 metagenomes). We observed a positive relationship between the prevalence of bacterial flagellar motility and soil carbon availability in all datasets. Since soil carbon availability is often correlated with other factors that could influence the prevalence of flagellar motility, we validated these observations using metagenomic data from a soil incubation experiment where carbon availability was directly manipulated with glucose amendments. This confirmed that the prevalence of bacterial flagellar motility is consistently associated with soil carbon availability over other potential confounding factors. This work highlights the value of combining predictive genomic and metagenomic approaches to expand our understanding of microbial phenotypic traits and reveal their general environmental associations.


Assuntos
Bactérias , Flagelos , Microbiologia do Solo , Flagelos/genética , Flagelos/fisiologia , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Metagenômica , Fenômenos Fisiológicos Bacterianos , Carbono/metabolismo , Solo/química , Metagenoma , Genoma Bacteriano
17.
Sci Total Environ ; 927: 172376, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604376

RESUMO

Biofilms are widely used and play important roles in biological processes. Low temperature of wastewater inhibits the development of biofilms derived from wastewater activated sludge. However, the specific mechanism of temperature on biofilm development is still unclear. This study explored the mechanism of temperature on biofilm development and found a feasible method to enhance biofilm development at low temperature. The amount of biofilm development decreased by approximately 66 % and 55 % at 4 °C and 15 °C, respectively, as compared to 28 °C. The cyclic dimeric guanosine monophosphate (c-di-GMP) concentration also decreased at low temperature and was positively correlated with extracellular polymeric substance (EPS) content, formation, and adhesion strength. Microbial community results showed that low temperature inhibited the normal survival of most microorganisms, but promoted the growth of some psychrophile bacteria like Sporosarcina, Caldilineaceae, Gemmataceae, Anaerolineaceae and Acidobacteriota. Further analysis of functional genes demonstrated that the abundance of functional genes related to the synthesis of c-di-GMP (K18968, K18967 and K13590) decreased at low temperature. Subsequently, the addition of exogenous spermidine increased the level of intracellular c-di-GMP and alleviated the inhibition effect of low temperature on biofilm development. Therefore, the possible mechanism of low temperature on biofilm development could be the inhibition of the microorganism activity and reduction of the communication level between cells, which is the closely related to the EPS content, formation, and adhesion strength. The enhancement of c-di-GMP level through the exogenous addition of spermidine provides an alternative strategy to enhance biofilm development at low temperatures. The results of this study enhance the understanding of the influence of temperature on biofilm development and provide possible strategies for enhancing biofilm development at low temperatures.


Assuntos
Bactérias , Biofilmes , GMP Cíclico , Fenômenos Fisiológicos Bacterianos , Temperatura Baixa , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Matriz Extracelular de Substâncias Poliméricas , Águas Residuárias/microbiologia
18.
Curr Biol ; 34(8): R323-R325, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38653201

RESUMO

The massive species richness of certain taxonomic groups has long enchanted evolutionary biologists, but even within such groups there are biases in cladogenesis. A study of Metazoa's greatest radiation - the beetles - points to metabolic symbioses with bacteria as a possible driver of enhanced diversification in herbivorous clades.


Assuntos
Evolução Biológica , Besouros , Simbiose , Besouros/microbiologia , Besouros/fisiologia , Animais , Bactérias/classificação , Bactérias/genética , Herbivoria/fisiologia , Fenômenos Fisiológicos Bacterianos , Filogenia
20.
Microbiol Res ; 284: 127733, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38678680

RESUMO

Bacterial extracellular vesicles (bEVs) represent spherical particles with diameters ranging from 20 to 400 nm filled with multiple parental bacteria-derived components, including proteins, nucleic acids, lipids, and other biomolecules. The production of bEVs facilitates bacteria interacting with their environment and exerting biological functions. It is increasingly evident that the bEVs play integral roles in both bacterial and host physiology, contributing to environmental adaptations to functioning as health promoters for their hosts. This review highlights the current state of knowledge on the composition, biogenesis, and diversity of bEVs and the mechanisms by which different bEVs elicit effects on bacterial physiology and host health. We posit that an in-depth exploration of the mechanistic aspects of bEVs activity is essential to elucidate their health-promoting effects on the host and may facilitate the translation of bEVs into applications as novel natural biological nanomaterials.


Assuntos
Bactérias , Fenômenos Fisiológicos Bacterianos , Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Bactérias/metabolismo , Bactérias/genética , Humanos , Interações Hospedeiro-Patógeno , Animais , Interações entre Hospedeiro e Microrganismos/fisiologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...