Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Eur J Pharmacol ; 919: 174810, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35151644

RESUMO

5-Fluorouracil (5-FU)-induced oral mucositis has a severe negative impact on the patient's quality of life. This study aimed to investigate the role of endoplasmic reticulum stress (ERS) in the occurrence of 5-FU-induced oral mucositis in vivo and in the clinic. In vivo, 5-FU-induced oral mucositis model mice showed a higher level of glucose-regulated protein 78 kD (GRP78, a marker of ERS) than control mice. The inhibition of ERS could effectively reduce 5-FU-induced oxidative stress, inflammatory factor mRNA and cell apoptosis. Moreover, inhibition of ERS significantly decreased the activation of nuclear factor kappa-B (NF-κB) in 5-FU-induced oral mucositis model mice following tissue damage reduction. In the clinic, 5-FU could increase cell apoptosis and cause oral mucosa damage while increasing the expression of the ERS marker genes GRP78 and C/EBP-homologous protein (CHOP). Our study found that 5-FU could induce severe ERS, upregulate the expression of GRP78 and CHOP, raise oxidative stress and increase the expression of inflammatory factors by activating the NF-κB pathway, thus causing cell apoptosis and finally leading to oral mucosal injury.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fenilbutiratos/farmacologia , Estomatite/prevenção & controle , Animais , Antineoplásicos/efeitos adversos , Modelos Animais de Doenças , Fluoruracila/efeitos adversos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Fenilbutiratos/administração & dosagem , Fenilbutiratos/uso terapêutico , Estomatite/induzido quimicamente
2.
Neurotherapeutics ; 18(2): 1151-1165, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33782863

RESUMO

Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is a polyglutamine expansion disease arising from a trinucleotide CAG repeat expansion in exon 10 of the gene ATXN3. There are no effective pharmacological treatments for MJD, thus the identification of new pathogenic mechanisms, and the development of novel therapeutics is urgently needed. In this study, we performed a comprehensive, blind drug screen of 3942 compounds (many FDA approved) and identified small molecules that rescued the motor-deficient phenotype in transgenic ATXN3 Caenorhabditis elegans strain. Out of this screen, five lead compounds restoring motility, protecting against neurodegeneration, and increasing the lifespan in ATXN3-CAG89 mutant worms were identified. These compounds were alfacalcidol, chenodiol, cyclophosphamide, fenbufen, and sulfaphenazole. We then investigated how these molecules might exert their neuroprotective properties. We found that three of these compounds, chenodiol, fenbufen, and sulfaphenazole, act as modulators for TFEB/HLH-30, a key transcriptional regulator of the autophagy process, and require this gene for their neuroprotective activities. These genetic-chemical approaches, using genetic C. elegans models for MJD and the screening, are promising tools to understand the mechanisms and pathways causing neurodegeneration, leading to MJD. Positively acting compounds may be promising candidates for investigation in mammalian models of MJD and preclinical applications in the treatment of this disease.


Assuntos
Ataxina-3/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Caenorhabditis elegans/genética , Ácido Quenodesoxicólico/administração & dosagem , Fenilbutiratos/administração & dosagem , Sulfafenazol/administração & dosagem , Animais , Animais Geneticamente Modificados , Ataxina-3/toxicidade , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/toxicidade , Avaliação Pré-Clínica de Medicamentos/métodos , Longevidade/efeitos dos fármacos , Longevidade/fisiologia , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/genética
3.
Mol Genet Metab ; 132(4): 220-226, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33648834

RESUMO

Urea cycle disorders (UCDs), inborn errors of hepatocyte metabolism, result in the systemic accumulation of ammonia to toxic levels. Sodium 4-phenylbutyrate (NaPB), a standard therapy for UCDs for over 20 years, generates an alternative pathway of nitrogen deposition through glutamine consumption. Administration during or immediately after a meal is the accepted use of NaPB. However, this regimen is not based on clinical evidence. Here, an open-label, single-dose, five-period crossover study was conducted in healthy adults to investigate the effect of food on the pharmacokinetics of NaPB and determine any subsequent change in amino acid availability. Twenty subjects were randomized to one of four treatment groups. Following an overnight fast, NaPB was administered orally at 4.3 g/m2 (high dose, HD) or 1.4 g/m2 (low dose, LD) either 30 min before or just after breakfast. At both doses, compared with post-breakfast administration, pre-breakfast administration significantly increased systemic exposure of PB and decreased plasma glutamine availability. Pre-breakfast LD administration attenuated plasma glutamine availability to the same extent as post-breakfast HD administration. Regardless of the regimen, plasma levels of branched-chain amino acids (BCAA) were decreased below baseline in a dose-dependent manner. In conclusion, preprandial oral administration of NaPB maximized systemic exposure of the drug and thereby its potency to consume plasma glutamine. This finding may improve poor medication compliance because of the issues with odor, taste, and pill burden of NaPB and reduce the risk of BCAA deficiency in NaPB therapy.


Assuntos
Ingestão de Alimentos/genética , Farmacocinética , Fenilbutiratos/administração & dosagem , Distúrbios Congênitos do Ciclo da Ureia/tratamento farmacológico , Administração Oral , Adulto , Aminoácidos/genética , Aminoácidos de Cadeia Ramificada/genética , Disponibilidade Biológica , Feminino , Glutamina/genética , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Distúrbios Congênitos do Ciclo da Ureia/genética , Distúrbios Congênitos do Ciclo da Ureia/patologia , Adulto Jovem
4.
Metab Brain Dis ; 36(5): 1015-1027, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33620579

RESUMO

Maple syrup urine disease (MSUD) is a genetic disorder that leads the accumulation of branched-chain amino acids (BCAA) leucine (Leu), isoleucine, valine and metabolites. The symptomatology includes psychomotor delay and mental retardation. MSUD therapy comprises a lifelong protein strict diet with low BCAA levels and is well established that high concentrations of Leu and/or its ketoacid are associated with neurological symptoms. Recently, it was demonstrated that the phenylbutyrate (PBA) have the ability to decrease BCAA concentrations. This work aimed the development of lipid-based nanoparticles loaded with PBA, capable of targeting to the central nervous system in order to verify its action mechanisms on oxidative stress and cell death in brain of rats subjected to a MSUD chronic model. PBA-loaded nanoparticles treatment was effective in significantly decreasing BCAA concentration in plasma and Leu in the cerebral cortex of MSUD animals. Furthermore, PBA modulate the activity of catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase enzymes, as well as preventing the oxidative damage to lipid membranes and proteins. PBA was also able to decrease the glial fibrillary acidic protein concentrations and partially decreased the reactive species production and caspase-3 activity in MSUD rats. Taken together, the data indicate that the PBA-loaded nanoparticles could be an efficient adjuvant in the MSUD therapy, protecting against oxidative brain damage and neuroinflammation.


Assuntos
Aminoácidos de Cadeia Ramificada/sangue , Córtex Cerebral/efeitos dos fármacos , Doença da Urina de Xarope de Bordo/metabolismo , Nanopartículas/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Fenilbutiratos/administração & dosagem , Animais , Catalase/metabolismo , Córtex Cerebral/metabolismo , Glutationa Peroxidase/metabolismo , Doença da Urina de Xarope de Bordo/sangue , Doença da Urina de Xarope de Bordo/induzido quimicamente , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
5.
Mol Genet Metab ; 132(1): 19-26, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33388234

RESUMO

BACKGROUND/AIMS: Neonatal onset Urea cycle disorders (UCDs) can be life threatening with severe hyperammonemia and poor neurological outcomes. Glycerol phenylbutyrate (GPB) is safe and effective in reducing ammonia levels in patients with UCD above 2 months of age. This study assesses safety, ammonia control and pharmacokinetics (PK) of GPB in UCD patients below 2 months of age. METHODS: This was an open-label study in UCD patients aged 0 - 2 months, consisting of an initiation/transition period (1 - 4 days) to GPB, followed by a safety extension period (6 months to 2 years). Patients presenting with a hyperammonemic crisis (HAC) did not initiate GPB until blood ammonia levels decreased to below 100 µmol/L while receiving sodium phenylacetate/sodium benzoate and/or hemodialysis. Ammonia levels, PK analytes and safety were evaluated during transition and monthly during the safety extension for 6 months and every 3 months thereafter. RESULTS: All 16 patients with UCD (median age 0.48 months, range 0.1 to 2.0 months) successfully transitioned to GPB within 3 days. Average plasma ammonia level excluding HAC was 94.3 µmol/L at baseline and 50.4 µmol/L at the end of the transition period (p = 0.21). No patient had a HAC during the transition period. During the safety extension, the majority of patients had controlled ammonia levels, with mean plasma ammonia levels lower during GPB treatment than baseline. Mean glutamine levels remained within normal limits throughout the study. PK analyses indicate that UCD patients <2 months are able to hydrolyze GPB with subsequent absorption of phenylbutyric acid (PBA), metabolism to phenylacetic acid (PAA) and conjugation with glutamine. Plasma concentrations of PBA, PAA, and phenylacetylglutamine (PAGN) were stable during the safety extension phase and mean plasma phenylacetic acid: phenylacetylglutamine ratio remained below 2.5 suggesting no accumulation of GPB. All patients reported at least 1 treatment emergent adverse event with gastroesophageal reflux disease, vomiting, hyperammonemia, diaper dermatitis (37.5% each), diarrhea, upper respiratory tract infection and rash (31.3% each) being the most frequently reported. CONCLUSIONS: This study supports safety and efficacy of GPB in UCD patients aged 0 -2 months who cannot be managed by dietary protein restriction and/or amino acid supplementation alone. GPB undergoes intestinal hydrolysis with no accumulation in this population.


Assuntos
Glicerol/análogos & derivados , Hiperamonemia/tratamento farmacológico , Fenilbutiratos/administração & dosagem , Distúrbios Congênitos do Ciclo da Ureia/tratamento farmacológico , Idade de Início , Amônia/sangue , Pré-Escolar , Feminino , Glicerol/administração & dosagem , Humanos , Hiperamonemia/sangue , Hiperamonemia/patologia , Lactente , Recém-Nascido , Masculino , Pediatria , Fenilacetatos/administração & dosagem , Diálise Renal , Distúrbios Congênitos do Ciclo da Ureia/sangue , Distúrbios Congênitos do Ciclo da Ureia/metabolismo , Distúrbios Congênitos do Ciclo da Ureia/patologia
6.
Biomolecules ; 10(7)2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650488

RESUMO

The precise pathogenic mechanism in Cu exposure-cause nephrotoxicity remains unclear. This study investigated the underlying molecular mechanism of copper sulfate (CuSO4)-induced nephrotoxicity. Mice were treated with CuSO4 at 50, 100, 200 mg/kg/day or co-treated with CuSO4 (200 mg/kg/day) and 4-phenylbutyric acid (4-PBA, 100 mg/kg/day) for 28 consecutive days. HEK293 cells were treated with CuSO4 (400 µM) with or without superoxide dismutase, catalase or 4-PBA for 24 h. Results showed that CuSO4 exposure can cause renal dysfunction and tubular necrosis in the kidney tissues of mice. CuSO4 exposure up-regulated the activities and mRNA expression of caspases-9 and -3 as well as the expression of glucose-regulated protein 78 (GRP78), GRP94, DNA damage-inducible gene 153 (GADD153/CHOP), caspase-12 mRNAs in the kidney tissues. Furthermore, superoxide dismutase and catalase pre-treatments partly inhibited CuSO4-induced cytotoxicity by decreasing reactive oxygen species (ROS) production, activities of caspases-9 and -3 and DNA fragmentations in HEK293 cells. 4-PBA co-treatment significantly improved CuSO4-induced cytotoxicity in HEK293 cells and inhibited CuSO4 exposure-induced renal dysfunction and pathology damage in the kidney tissues. In conclusion, our results reveal that oxidative stress and endoplasmic reticulum stress contribute to CuSO4-induced nephrotoxicity. Our study highlights that targeting endoplasmic reticulum and oxidative stress may offer an approach for Cu overload-caused nephrotoxicity.


Assuntos
Sulfato de Cobre/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Nefropatias/genética , Estresse Oxidativo/efeitos dos fármacos , Fenilbutiratos/administração & dosagem , Animais , Caspase 12/genética , Caspase 3/genética , Caspase 9/genética , Modelos Animais de Doenças , Chaperona BiP do Retículo Endoplasmático , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Proteínas de Choque Térmico/genética , Humanos , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Fenilbutiratos/farmacologia , Testes de Toxicidade , Fator de Transcrição CHOP/genética
7.
J Mol Neurosci ; 70(5): 647-658, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31925707

RESUMO

Brain glycogen is a vital energy source during metabolic imbalance. Metabolic sensory neurons in the ventromedial hypothalamic nucleus (VMN) shape glucose counter-regulation. Insulin-induced hypoglycemic (IIH) male rats were infused icv with the glycogen breakdown inhibitor CP-316,819 (CP) to investigate whether glycogen-derived fuel controls basal and/or hypoglycemic patterns of VMN gluco-regulatory neuron energy stability and transmitter signaling. CP caused dose-dependent amplification of basal VMN glycogen content and either mobilization (low dose) or augmentation (high dose) of this depot during IIH. Drug treatment also prevented hypoglycemic diminution of tissue glucose in multiple structures. Low CP dose caused IIH-reversible augmentation of AMPK activity and glutamate decarboxylase (GAD) protein levels in laser-microdissected VMN GABA neurons, while the higher dose abolished hypoglycemic adjustments in these profiles. VMN steroidogenic factor-1 (SF-1) neurons exhibited suppressed (low CP dose) or unchanged (high CP dose) basal SF-1 expression and AMPK refractoriness of hypoglycemia at each dose. CP caused dose-proportionate augmentation of neuronal nitric oxide synthase protein and enhancement (low dose) or diminution (high dose) of this profile during IIH; AMPK activity in these cells was decreased in high dose-pretreated IIH rats. CP exerted dose-dependent effects on basal and hypoglycemic patterns of glucagon, but not corticosterone secretion. Results verify that VMN GABA, SF-1, and nitrergic neurons are metabolic sensory in function and infer that these populations may screen unique aspects of neurometabolic instability. Correlation of VMN glycogen augmentation with attenuated hypoglycemic VMN gluco-regulatory neuron AMPK activity implies that expansion of this fuel reservoir preserves cellular energy stability during this metabolic threat.


Assuntos
Inibidores Enzimáticos/farmacologia , Glicogênio/metabolismo , Indóis/farmacologia , Neurotransmissores/metabolismo , Fenilbutiratos/farmacologia , Proteínas Quinases/metabolismo , Núcleo Hipotalâmico Ventromedial/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Inibidores Enzimáticos/administração & dosagem , Neurônios GABAérgicos/metabolismo , Glutamato Descarboxilase/metabolismo , Glicogênio Fosforilase/antagonistas & inibidores , Indóis/administração & dosagem , Infusões Intraventriculares , Masculino , Fenilbutiratos/administração & dosagem , Ratos , Ratos Sprague-Dawley , Núcleo Hipotalâmico Ventromedial/citologia , Núcleo Hipotalâmico Ventromedial/efeitos dos fármacos
8.
Int J Mol Sci ; 20(23)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766455

RESUMO

While silica nanoparticles (SiNPs) have wide applications, they inevitably increase atmospheric particulate matter and human exposure to this nanomaterial. Numerous studies have focused on how to disclose SiNP toxicity and on understanding its toxic mechanisms. However, there are few studies in the literature reporting the interaction between endoplasmic reticulum (ER) stress and SiNP exposure, and the corresponding detailed mechanisms have not been clearly determined. In this study, CCK-8 and flow cytometry assays demonstrated that SiNPs gradually decreased cell viability and increased cell apoptosis in RAW 264.7 macrophage cells in dose- and time-dependent manners. Western blot analysis showed that SiNPs significantly activated ER stress by upregulating GRP78, CHOP, and ERO1α expression. Meanwhile, western blot analysis also showed that SiNPs activated the mitochondrial-mediated apoptotic signaling pathway by upregulating BAD and Caspase-3, and downregulating the BCL-2/BAX ratio. Moreover, 4-phenylbutyrate (4-PBA), an ER stress inhibitor, significantly decreased GRP78, CHOP, and ERO1α expression, and inhibited cell apoptosis in RAW 264.7 macrophage cells. Furthermore, overexpression of CHOP significantly enhanced cell apoptosis, while knockdown of CHOP significantly protected RAW 264.7 macrophage cells from apoptosis induced by SiNPs. We found that the CHOP-ERO1α-caspase-dependent apoptotic signaling pathway was activated by upregulating the downstream target protein ERO1α and caspase-dependent mitochondrial-mediated apoptotic signaling pathway by upregulating Caspase-3 and downregulating the ratio of BCL-2/BAX. In summary, ER stress participated in cell apoptosis induced by SiNPs and CHOP regulated SiNP-induced cell apoptosis, at least partly, via activation of the CHOP-ERO1α-caspase apoptotic signaling pathway in RAW 264.7 macrophage cells.


Assuntos
Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Nanopartículas/administração & dosagem , Dióxido de Silício/química , Fator de Transcrição CHOP/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Nanopartículas/química , Fenilbutiratos/administração & dosagem , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
9.
Nutrients ; 11(7)2019 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-31330899

RESUMO

Dysbiosis and a dysregulated gut immune barrier function contributes to chronic immune activation in HIV-1 infection. We investigated if nutritional supplementation with vitamin D and phenylbutyrate could improve gut-derived inflammation, selected microbial metabolites, and composition of the gut microbiota. Treatment-naïve HIV-1-infected individuals (n = 167) were included from a double-blind, randomized, and placebo-controlled trial of daily 5000 IU vitamin D and 500 mg phenylbutyrate for 16 weeks (Clinicaltrials.gov NCT01702974). Baseline and per-protocol plasma samples at week 16 were analysed for soluble CD14, the antimicrobial peptide LL-37, kynurenine/tryptophan-ratio, TMAO, choline, and betaine. Assessment of the gut microbiota involved 16S rRNA gene sequencing of colonic biopsies. Vitamin D + phenylbutyrate treatment significantly increased 25-hydroxyvitamin D levels (p < 0.001) but had no effects on sCD14, the kynurenine/tryptophan-ratio, TMAO, or choline levels. Subgroup-analyses of vitamin D insufficient subjects demonstrated a significant increase of LL-37 in the treatment group (p = 0.02), whereas treatment failed to significantly impact LL-37-levels in multiple regression analysis. Further, no effects on the microbiota was found in number of operational taxonomic units (p = 0.71), Shannon microbial diversity index (p = 0.82), or in principal component analyses (p = 0.83). Nutritional supplementation with vitamin D + phenylbutyrate did not modulate gut-derived inflammatory markers or microbial composition in treatment-naïve HIV-1 individuals with active viral replication.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Infecções por HIV/terapia , HIV-1 , Fenilbutiratos/farmacologia , Vitamina D/farmacologia , Adulto , Fármacos Anti-HIV/administração & dosagem , Suplementos Nutricionais , Método Duplo-Cego , Feminino , Microbioma Gastrointestinal , Humanos , Imunidade Inata , Masculino , Pessoa de Meia-Idade , Fenilbutiratos/administração & dosagem , Vitamina D/administração & dosagem , Vitamina D/análogos & derivados , Vitamina D/sangue , Adulto Jovem
10.
Chem Biol Interact ; 306: 70-77, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30980806

RESUMO

PURPOSE: Skeletal muscle is severely affected in diabetes leading to muscle atrophy. Previously we reported the role of ER stress in muscle atrophy due to hyperglycemia. Hence, in the present study, we investigated the effect of a classical ER stress inhibitor, 4-phenylbutyric acid (PBA), on muscle atrophy in diabetic rats. METHODS: Diabetes was induced in male rats by streptozotocin, and PBA was administered (40 mg/kg/day; intraperitoneal) after two months of diabetes for two more months. Gastrocnemius muscle is collected after four months of experimental period. The cross-sectional area of myocytes was measured on Hematoxylin and Eosin stained muscle sections. Protein levels of ER stress markers, ubiquitin-proteasome system (UPS) components, and apoptosis were analysed by immunoblot. Proteasomal activity and apoptotic cells were measured. RESULTS: ER stress markers (GRP78, ATF6, ATF4 and CHOP) that are elevated in diabetes are decreased with PBA treatment. PBA also averted diabetes-induced alterations in UPS (higher levels of E1, atrogin-1, UCHL1 and UCHL5, accumulation of ubiquitinated proteins and increased proteasomal activity). Apoptosis mediators-p53, BAX, and cleaved caspase-3 protein levels, and TUNEL positive cells were decreased in PBA treated diabetic rats. PBA notably improved the muscle-cross sectional area. CONCLUSIONS: Results highlighted the therapeutic potential of PBA in diabetes muscle wastage.


Assuntos
Diabetes Mellitus Experimental/prevenção & controle , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Atrofia Muscular/prevenção & controle , Fenilbutiratos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/patologia , Injeções Intraperitoneais , Masculino , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/patologia , Fenilbutiratos/administração & dosagem , Ratos , Ratos Sprague-Dawley , Estreptozocina
11.
J Vet Intern Med ; 33(3): 1331-1335, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30916412

RESUMO

BACKGROUND: Hyperammonemia can result in hepatic encephalopathy, which in severe cases eventually can lead to coma and death. In dogs, congenital portosystemic shunts (CPSS) are the most common cause for hyperammonemia. Conservative treatment consists of a protein modified diet, nonabsorbable disaccharides, antibiotics, or some combinations of these. Sodium benzoate (SB) and sodium phenylbutyrate (SPB) both are used in the acute and long-term treatment of humans with hyperammonemia caused by urea cycle enzyme deficiencies. Both treatments are believed to lower blood ammonia concentrations by promoting excretion of excess nitrogen via alternative pathways. OBJECTIVES: To evaluate the efficacy and safety of PO treatment with SB and SPB on hyperammonemia and clinical signs in CPSS dogs. METHODS: Randomized, double-blind, placebo-controlled crossover trial. Concentrations of blood ammonia and bile acids were measured in CPSS dogs before and after a 5-day treatment with SB, SPB, and placebo. A wash-out period of 3 days was used between treatments. A standard questionnaire was developed and distributed to owners to evaluate clinical signs before and after each treatment. RESULTS: Blood ammonia concentrations were not influenced by any of the treatments and were comparable to those observed during placebo treatment. In addition, SB and SPB treatment did not result in improvement of clinical signs. Adverse effects during treatment included anorexia, vomiting, and lethargy. CONCLUSIONS AND CLINICAL IMPORTANCE: Based on our results, we conclude that SB or SPB are not useful in the conservative treatment of hyperammonemia in dogs with CPSS.


Assuntos
Hiperamonemia/veterinária , Fenilbutiratos/farmacologia , Benzoato de Sódio/farmacologia , Amônia/sangue , Animais , Ácidos e Sais Biliares/sangue , Estudos Cross-Over , Cães , Método Duplo-Cego , Feminino , Hiperamonemia/tratamento farmacológico , Masculino , Fenilbutiratos/administração & dosagem , Fenilbutiratos/efeitos adversos , Veia Porta/anormalidades , Distribuição Aleatória , Benzoato de Sódio/administração & dosagem , Benzoato de Sódio/efeitos adversos , Malformações Vasculares/veterinária
12.
Ir Med J ; 112(1): 858, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30719899

RESUMO

Hyperammonaemia is a metabolic disturbance characterized by accumulation of ammonia in the blood. Entry of ammonia into the brain via the blood-brain barrier leads to hyperammonaemic encephalopathy. The causes of hyperammonaemia in paediatric patients vary. We present 3 cases of hyperammonaemia in critically ill children in whom an inborn metabolic disorder was identified and provide insights into the phenotypes, diagnostic approaches and management. In children with acute overwhelming illness and progressive neurological deterioration plasma ammonia measurement should be included in the urgent diagnostic work-up. We here raise the awareness that hyperammonaemia is a metabolic emergency requiring prompt recognition and treatment to avoid subsequent complications.


Assuntos
Hiperamonemia/diagnóstico , Hiperamonemia/terapia , Amônia/sangue , Arginina/administração & dosagem , Biomarcadores/sangue , Encefalopatias Metabólicas Congênitas/complicações , Carnitina/administração & dosagem , Estado Terminal , Dieta com Restrição de Proteínas , Diagnóstico Precoce , Emergências , Feminino , Humanos , Hiperamonemia/etiologia , Lactente , Recém-Nascido , Masculino , Fenilbutiratos/administração & dosagem , Benzoato de Sódio/administração & dosagem , Resultado do Tratamento
13.
Hum Mol Genet ; 28(4): 628-638, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30351356

RESUMO

Mutations in the collagen genes COL4A1 and COL4A2 cause Mendelian eye, kidney and cerebrovascular disease including intracerebral haemorrhage (ICH), and common collagen IV variants are a risk factor for sporadic ICH. COL4A1 and COL4A2 mutations cause endoplasmic reticulum (ER) stress and basement membrane (BM) defects, and recent data suggest an association of ER stress with ICH due to a COL4A2 mutation. However, the potential of ER stress as a therapeutic target for the multi-systemic COL4A1 pathologies remains unclear. We performed a preventative oral treatment of Col4a1 mutant mice with the chemical chaperone phenyl butyric acid (PBA), which reduced adult ICH. Importantly, treatment of adult mice with the established disease also reduced ICH. However, PBA treatment did not alter eye and kidney defects, establishing tissue-specific outcomes of targeting Col4a1-derived ER stress, and therefore this treatment may not be applicable for patients with eye and renal disease. While PBA treatment reduced ER stress and increased collagen IV incorporation into BMs, the persistence of defects in BM structure and reduced ability of the BM to withstand mechanical stress indicate that PBA may be counter-indicative for pathologies caused by matrix defects. These data establish that treatment for COL4A1 disease requires a multipronged treatment approach that restores both ER homeostasis and matrix defects. Alleviating ER stress is a valid therapeutic target for preventing and treating established adult ICH, but collagen IV patients will require stratification based on their clinical presentation and mechanism of their mutations.


Assuntos
Hemorragia Cerebral/tratamento farmacológico , Colágeno Tipo IV/genética , Terapia de Alvo Molecular , Animais , Membrana Basal/efeitos dos fármacos , Membrana Basal/patologia , Hemorragia Cerebral/genética , Hemorragia Cerebral/patologia , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Camundongos , Mutação , Fenilbutiratos/administração & dosagem
14.
Histochem Cell Biol ; 151(4): 291-303, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30511269

RESUMO

Diethylstilbestrol (DES), an estrogen agonist, increases prolactin (PRL) cells through transdifferentiation of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) cells to PRL cells as well as proliferation of PRL cells in adult male mouse pituitary. Since hyperacetylation of histone H3 is implicated in the regulation of activation of various genes, we examined the effect of DES on the state of histone H3 acetylation. DES significantly reduced the immunohistochemical signal for acetylated histone H3 at lysine 9 (H3K9ac) in PRL, LH and FSH cells, but not for H3K18ac or H3K23ac. DES-treated mice were injected intraperitoneally with HDAC inhibitors (HDACi), sodium phenylbutyrate (NaPB) or valproic acid (VPA), to mimic the acetylation level of histone H3. As expected, HDACi treatment restored the level of H3K9ac expression in these cells, and also inhibited DES-induced increase in PRL cells. Furthermore, NaPB and VPA also abrogated the effects of DES on the population density of both LH and FSH cells. Similarly, the numbers of proliferating and apoptotic cells in the pituitary in NaPB- or VPA-treated mice were comparable to those of the control mice. Considered together, these results indicated that the acetylation level of histone H3 plays an important role in DES-induced transdifferentiation of LH to PRL cells as well as proliferation of PRL cells.


Assuntos
Transdiferenciação Celular/efeitos dos fármacos , Gonadotrofos/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Lactotrofos/efeitos dos fármacos , Fenilbutiratos/farmacologia , Hipófise/efeitos dos fármacos , Ácido Valproico/farmacologia , Acetilação/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dietilestilbestrol/administração & dosagem , Dietilestilbestrol/farmacologia , Gonadotrofos/citologia , Inibidores de Histona Desacetilases/administração & dosagem , Histonas/análise , Histonas/biossíntese , Injeções Intraperitoneais , Lactotrofos/citologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fenilbutiratos/administração & dosagem , Hipófise/metabolismo , Coelhos , Ácido Valproico/administração & dosagem
15.
AAPS PharmSciTech ; 19(8): 3895-3906, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30324359

RESUMO

The facile fabrication of single-walled carbon nanotubes (SWCNTs)-doping molecularly imprinted polymer (MIP) nanocomposite-based binary green porogen system, room-temperature ionic liquids (RTILs), and deep eutectic solvents (DESs) was developed for drug delivery system. With fenbufen (FB) as template molecule, 4-vinylpyridine (4-VP) was used as functional monomer, ethylene glycol dimethacrylate as cross-linking monomer, and 1-butyl-3-methylimidazoliumtetrafluoroborate and choline chloride/ethylene glycol as binary green solvent, in the presence of SWCNTs. The imprinting effect of the SWCNT-MIP composites was optimized by regulation of the amount of SWCNTs, ratio of RTILs and DES, and the composition of DES. Blue shifts of UV bands strongly suggested that interaction between 4-VP and FB can be enhanced due to SWCNT doping in the process of self-assembly. The reinforced imprinted effect of CNT-doping MIP can provide superior controlled release characteristics. Compared with the control MIP prepared without SWCNTs, the imprinting factor of the SWCNT-MIP composites exhibited a twofold increase. In the analysis for the FB release kinetics from all samples, the SWCNT-reinforced MIP produced the lowest value of drug diffusivity. The relative bioavailability of the SWCNT-MIP composites (F %) displayed the highest value of 143.3% compared with the commercial FB tablet, whereas the control MIP and SWCNT-non-MIP composites was only 48.3% and 44.4%, respectively. The results indicated that the SWCNT-MIP nanocomposites developed here have potentials as the controlled-release device.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Química Verde/métodos , Nanotubos de Carbono/química , Fenilbutiratos/síntese química , Polímeros/síntese química , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/síntese química , Liberação Controlada de Fármacos , Masculino , Impressão Molecular/métodos , Fenilbutiratos/administração & dosagem , Ratos , Ratos Wistar
16.
Mol Genet Metab ; 125(3): 251-257, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30217721

RESUMO

INTRODUCTION: Glycerol phenylbutyrate (GPB) is approved in the US and EU for the chronic management of patients ≥2 months of age with urea cycle disorders (UCDs) who cannot be managed by dietary protein restriction and/or amino acid supplementation alone. GPB is a pre-prodrug, hydrolyzed by lipases to phenylbutyric acid (PBA) that upon absorption is beta-oxidized to the active nitrogen scavenger phenylacetic acid (PAA), which is conjugated to glutamine (PAGN) and excreted as urinary PAGN (UPAGN). Pharmacokinetics (PK) of GPB were examined to see if hydrolysis is impaired in very young patients who may lack lipase activity. METHODS: Patients 2 months to <2 years of age with UCDs from two open label studies (n = 17, median age 10 months) predominantly on stable doses of nitrogen scavengers (n = 14) were switched to GPB. Primary assessments included traditional plasma PK analyses of PBA, PAA, and PAGN, using noncompartmental methods with WinNonlin™. UPAGN was collected periodically throughout the study up to 12 months. RESULTS: PBA, PAA and PAGN rapidly appeared in plasma after GPB dosing, demonstrating evidence of GPB cleavage with subsequent PBA absorption. Median concentrations of PBA, PAA and PAGN did not increase over time and were similar to or lower than the values observed in older UCD patients. The median PAA/PAGN ratio was well below one over time, demonstrating that conjugation of PAA with glutamine to form PAGN did not reach saturation. Covariate analyses indicated that age did not influence the PK parameters, with body surface area (BSA) being the most significant covariate, reinforcing current BSA based dosing recommendations as seen in older patients. CONCLUSION: These observations demonstrate that UCD patients aged 2 months to <2 years have sufficient lipase activity to adequately convert the pre-prodrug GPB to PBA. PBA is then converted to its active moiety (PAA) providing successful nitrogen scavenging even in very young children.


Assuntos
Glicerol/análogos & derivados , Lipase/sangue , Fenilbutiratos/administração & dosagem , Pró-Fármacos/administração & dosagem , Distúrbios Congênitos do Ciclo da Ureia/tratamento farmacológico , Criança , Pré-Escolar , Feminino , Glutamina/sangue , Glicerol/administração & dosagem , Glicerol/sangue , Glicerol/farmacocinética , Humanos , Lactente , Masculino , Nitrogênio/sangue , Nitrogênio/metabolismo , Fenilacetatos/sangue , Fenilbutiratos/sangue , Fenilbutiratos/farmacocinética , Pró-Fármacos/farmacocinética , Distúrbios Congênitos do Ciclo da Ureia/sangue , Distúrbios Congênitos do Ciclo da Ureia/patologia
17.
Dis Model Mech ; 11(7)2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-29895609

RESUMO

Collagen type IV alpha 1 (COL4A1) and alpha 2 (COL4A2) form heterotrimers that constitute a major component of nearly all basement membranes. COL4A1 and COL4A2 mutations cause a multisystem disorder that includes variable cerebrovascular and skeletal muscle manifestations. The pathogenicity of COL4A1 and COL4A2 mutations is generally attributed to impaired secretion into basement membranes. Sodium 4-phenylbutyrate (4PBA) is a US Food and Drug Administration-approved drug that promotes mutant heterotrimer secretion in vitro and in vivo Here, we use different 4PBA treatment paradigms to define therapeutic parameters for preventing cerebrovascular and muscular pathologies in Col4a1 mutant mice. We show the efficacy of long-term 4PBA treatment in reducing the severity of intracerebral hemorrhages (ICHs) in Col4a1 mutant mice aged up to 8 months. In addition, we demonstrate that maximal efficacy of 4PBA on ICH and myopathy was achieved when treatment was initiated prenatally, whereby even transient 4PBA administration had lasting benefits after being discontinued. Importantly, postnatal treatment with 4PBA also reduced ICH and skeletal myopathy severities in Col4a1 mutant mice, which has significant clinical implications for patients with COL4A1 and COL4A2 mutations.This article has an associated First Person interview with the first author of the paper.


Assuntos
Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/genética , Colágeno Tipo IV/genética , Doenças Musculares/tratamento farmacológico , Doenças Musculares/genética , Fenilbutiratos/uso terapêutico , Envelhecimento/patologia , Animais , Animais Recém-Nascidos , Hemorragia Cerebral/complicações , Hemorragia Cerebral/patologia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Doenças Musculares/patologia , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fenilbutiratos/administração & dosagem , Fenilbutiratos/farmacologia , Condicionamento Físico Animal , Índice de Gravidade de Doença , Fatores de Tempo
18.
J Intern Med ; 284(3): 292-306, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29696707

RESUMO

OBJECTIVE: Immunotherapy using vitamin D (vitD3 ) and phenylbutyrate (PBA) may support standard drug regimens used to treat infectious diseases. We investigated if vitD3 + PBA enhanced clinical recovery from pulmonary tuberculosis (TB). METHODS: A randomized controlled trial was conducted in Addis Ababa, Ethiopia. Patients with smear-positive or smear-negative TB received daily oral supplementation with 5000 IU vitD3 and 2 × 500 mg PBA or placebo for 16 weeks, together with 6-month chemotherapy. Primary end-point: reduction of a clinical composite TB score at week 8 compared with baseline using modified intention-to-treat (mITT, n = 348) and per-protocol (n = 296) analyses. Secondary end-points: primary and modified TB scores (week 0, 4, 8, 16, 24), sputum conversion, radiological findings and plasma 25(OH)D3 concentrations. RESULTS: Most subjects had low baseline plasma 25(OH)D3 levels that increased gradually in the vitD3 + PBA group compared with placebo (P < 0.0001) from week 0 to 16 (mean 34.7 vs. 127.4 nmol L-1 ). In the adjusted mITT analysis, the primary TB score was significantly reduced in the intervention group at week 8 (-0.52, 95% CI -0.93, -0.10; P = 0.015) while the modified TB score was reduced at week 8 (-0.58, 95% CI -1.02, -0.14; P = 0.01) and 16 (-0.34, 95% CI -0.64, -0.03; P = 0.03). VitD3 + PBA had no effect on longitudinal sputum-smear conversion (P = 0.98). Clinical adverse events were more common in the placebo group (24.3%) compared with the vitD3 + PBA group (12.6%). CONCLUSION: Daily supplementation with vitD3 + PBA may ameliorate clinical TB symptoms and disease-specific complications, while the intervention had no effect on bacterial clearance in sputum.


Assuntos
Colecalciferol/administração & dosagem , Países em Desenvolvimento , Fenilbutiratos/administração & dosagem , Tuberculose Pulmonar/tratamento farmacológico , Administração Oral , Adulto , Antituberculosos/administração & dosagem , Método Duplo-Cego , Quimioterapia Combinada , Feminino , Humanos , Masculino , Resultado do Tratamento
19.
Fish Shellfish Immunol ; 72: 247-258, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29108970

RESUMO

Maintaining fish health is one of the most important aims in aquaculture. Prevention of fish diseases therefore is crucial and can be achieved by various different strategies, including most often a combination of different methods such as optimal feed and fish density, as well as strengthening the immune system. Understanding the fish innate immune system and developing methods to activate it, in an effort to prevent infections in the first place, has been a goal in recent years. In this study we choose different inducers of the innate immune system and examined their effects in vitro on the salmon cell line CHSE-214. We found that the butyrate derivatives 4-phenyl butyrate (PBA) and ß-hydroxy-ß-methyl butyrate (HMB) induce the expression of various innate immune genes differentially over 24-72 h. Similarly, lipids generated from fish oils were found to have an effect on the expression of the antimicrobial peptides cathelicidin and hepcidin, as well as iNOS and the viral receptor RIG-1. Interestingly we found that vitamin D3, similar as in mammals, was able to increase cathelicidin expression in fish cells. The observed induction of these different innate immune factors correlated with antibacterial activity against Aeromonas salmonicida and antiviral activity against IPNV and ISAV in vitro. To relate this data to the in vivo situation we examined cathelicidin expression in juvenile salmon and found that salmon families vary greatly in their basal cathelicidin levels. Examining cathelicidin levels in families known to be resistant to IPNV showed that these QTL-families had lower basal levels of cathelicidin in gills, than non QTL-families. Feeding fish with HMB caused a robust increase in cathelicidin expression in gills, but not skin and this was independent of the fish being resistant to IPNV. These findings support the use of fish cell lines as a tool to develop new inducers of the fish innate immune system, but also highlight the importance of the tissue studied in vivo. Understanding the response of the innate immune system in different tissues and what effect this might have on infections and downstream cellular pathways is an interesting research topic for the future.


Assuntos
Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Imunidade Inata , Salmo salar/genética , Salmo salar/imunologia , Aeromonas salmonicida/fisiologia , Animais , Infecções por Birnaviridae/imunologia , Infecções por Birnaviridae/veterinária , Linhagem Celular , Colecalciferol/administração & dosagem , Colecalciferol/metabolismo , Furunculose/imunologia , Expressão Gênica , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Vírus da Necrose Pancreática Infecciosa/fisiologia , Lipídeos/administração & dosagem , Fenilbutiratos/administração & dosagem , Fenilbutiratos/metabolismo , Valeratos/administração & dosagem , Valeratos/metabolismo
20.
Pol Merkur Lekarski ; 43(254): 69-74, 2017 Aug 21.
Artigo em Polonês | MEDLINE | ID: mdl-28875973

RESUMO

Cough is the reflex defense response of the respiratory tract to the present secretions in the throat, trachea and bronchi, and ongoing inflammation in the mucous membranes of the upper and lower respiratory tract. From a practical point of view, cough is dry (unproductive) and productive cough with expulsion of significant amounts of secretion. Drugs used to treat cough differ in both mechanism of action and pharmacokinetic activity. Butamirate citrate belongs to a new class of cough suppressants acting centrally through the receptors in the brainstem. In addition, it has a very beneficial effect, because it reduces the resistance in the airways by inhibiting bronchospasm and anti-inflammatory effect. It is rapidly absorbed after oral administration and its therapeutic plasma concentration is determined after 5-10 minutes of administration, irrespective of the dose. Possible side effects are rarely seen in 0.5-1% of patients, mainly in the form of skin rash, nausea, diarrhea, dizziness, which usually resolves during treatment. The cough effect of most cough suppressants is good, but their mechanisms are different and for that reason they should be individually selected. An important asset of this group of drugs is peripheral activity and effects on bronchodilator muscles, such as in the case of butamirate. Inclusion of this feature is particularly beneficial in chronic inflammatory bronchial diseases.


Assuntos
Antitussígenos/uso terapêutico , Tosse/tratamento farmacológico , Fenilbutiratos/uso terapêutico , Administração Oral , Antitussígenos/administração & dosagem , Antitussígenos/efeitos adversos , Antitussígenos/farmacologia , Humanos , Inflamação/tratamento farmacológico , Fenilbutiratos/administração & dosagem , Fenilbutiratos/efeitos adversos , Fenilbutiratos/farmacologia , Doenças Respiratórias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...