Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.228
Filtrar
1.
Sci Rep ; 14(1): 13435, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862650

RESUMO

Diabetic corneal neuropathy (DCN) is a common diabetic ocular complication with limited treatment options. In this study, we investigated the effects of topical and oral fenofibrate, a peroxisome proliferator-activated receptor-α agonist, on the amelioration of DCN using diabetic mice (n = 120). Ocular surface assessments, corneal nerve and cell imaging analysis, tear proteomics and its associated biological pathways, immuno-histochemistry and western blot on PPARα expression, were studied before and 12 weeks after treatment. At 12 weeks, PPARα expression markedly restored after topical and oral fenofibrate. Topical fenofibrate significantly improved corneal nerve fibre density (CNFD) and tortuosity coefficient. Likewise, oral fenofibrate significantly improved CNFD. Both topical and oral forms significantly improved corneal sensitivity. Additionally, topical and oral fenofibrate significantly alleviated diabetic keratopathy, with fenofibrate eye drops demonstrating earlier therapeutic effects. Both topical and oral fenofibrate significantly increased corneal ß-III tubulin expression. Topical fenofibrate reduced neuroinflammation by significantly increasing the levels of nerve growth factor and substance P. It also significantly increased ß-III-tubulin and reduced CDC42 mRNA expression in trigeminal ganglions. Proteomic analysis showed that neurotrophin signalling and anti-inflammation reactions were significantly up-regulated after fenofibrate treatment, whether applied topically or orally. This study concluded that both topical and oral fenofibrate ameliorate DCN, while topical fenofibrate significantly reduces neuroinflammation.


Assuntos
Córnea , Diabetes Mellitus Experimental , Neuropatias Diabéticas , Fenofibrato , PPAR alfa , Animais , PPAR alfa/agonistas , PPAR alfa/metabolismo , Camundongos , Fenofibrato/farmacologia , Fenofibrato/administração & dosagem , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/metabolismo , Córnea/metabolismo , Córnea/efeitos dos fármacos , Córnea/inervação , Córnea/patologia , Masculino , Administração Oral , Administração Tópica , Doenças da Córnea/tratamento farmacológico , Doenças da Córnea/etiologia , Doenças da Córnea/metabolismo , Doenças da Córnea/patologia , Camundongos Endogâmicos C57BL , Proteômica/métodos
2.
Eur J Pharmacol ; 976: 176667, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38795754

RESUMO

Migraine, a debilitating neurological condition, significantly affects patients' quality of life. Fenofibrate, a peroxisome proliferator-activated receptor alpha (PPAR-α) agonist approved for managing dyslipidemia, has shown promise in treating neurological disorders. Therefore, this study aims to investigate the protective effects of fenofibrate against nitroglycerin (NTG)-induced chronic migraine in rats. Migraine was induced in rats by administering five intermittent doses of NTG (10 mg/kg, i. p.) on days 1, 3, 5, 7, and 9. Rats were treated with either topiramate (80 mg/kg/day, p. o.), a standard drug, or fenofibrate (100 mg/kg/day, p. o.) from day 1-10. Fenofibrate significantly improved mechanical and thermal hypersensitivity, photophobia, and head grooming compared to topiramate. These effects were associated with reduced serum levels of nitric oxide (NO), calcitonin gene-related peptide (CGRP), and pituitary adenylate cyclase-activating polypeptide (PACAP). Furthermore, fenofibrate down-regulated c-Fos expression in the medulla and medullary pro-inflammatory cytokine contents. Additionally, fenofibrate attenuated NTG-induced histopathological changes in the trigeminal ganglia and trigeminal nucleus caudalis. These effects were associated with the inhibition of CGRP/p-CREB/purinergic 2X receptor 3 (P2X3) and nerve growth factor (NGF)/protein kinase C (PKC)/acid-sensing ion channel 3 (ASIC3) signaling pathways. This study demonstrates that fenofibrate attenuated NTG-induced migraine-like signs in rats. These effects were partially mediated through the inhibition of CGRP/p-CREB/P2X3 and NGF/PKC/ASIC3 signaling pathways. The present study supports the idea that fenofibrate could be an effective candidate for treating migraine headache without significant adverse effects. Future studies should explore its clinical applicability.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Fenofibrato , Transtornos de Enxaqueca , Fator de Crescimento Neural , Nitroglicerina , Proteína Quinase C , Receptores Purinérgicos P2X3 , Transdução de Sinais , Animais , Nitroglicerina/farmacologia , Nitroglicerina/toxicidade , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/metabolismo , Masculino , Fenofibrato/farmacologia , Fenofibrato/uso terapêutico , Ratos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína Quinase C/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Fator de Crescimento Neural/metabolismo , Óxido Nítrico/metabolismo , Ratos Sprague-Dawley , Comportamento Animal/efeitos dos fármacos
3.
Dig Dis Sci ; 69(6): 2123-2131, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38609542

RESUMO

BACKGROUND: The incidence of hypertriglyceridemic acute pancreatitis (HTG-AP) is increasing. Although the guideline defines the diagnostic criteria as triglyceride (TG) greater than 11.3 mmol/L, there is actually no specific threshold. Many people with hypertriglyceridemia (HTG) or obvious chyloid blood do not develop acute pancreatitis (AP). AIMS: To explore the role of HTG in the pathogenesis of AP. METHODS: Thirty-six male SD rats were randomly assigned into normal control, AP, HTG, HTG-AP, low-dose fenofibrate and high-dose fenofibrate groups. Serum indices and cytokine levels in serum, and pathological changes in pancreatic tissues were observed. The expression levels of TLR4 and NF-κBp65 in pancreatic tissues were detected by immunohistochemistry and Western blot. RESULTS: In normal rats, HTG alone did not induce AP. However, after establishing the HTG-AP model with Poloxam 407 and L-arginine, serum-free fatty acid and TG levels were positively correlated with the levels of lipase, amylase, IL-1ß, IL-6, pancreatic inflammation scores, and the expressions of TLR4 and NF-κBp65 (all P < 0.001). Expressions of TLR4 and NF-κBp65 were significantly increased in the pancreatic tissues of HTG-AP rats. Fenofibrate effectively decreased TG levels in HTG-AP rats and reduced the expression of TLR4 and NF-κBp65 (all P < 0.001). CONCLUSIONS: HTG does not directly cause AP, but rather increases the susceptibility to AP or aggravates the inflammatory response. It is more like a sensitizer of inflammation rather than an activator.


Assuntos
Hipertrigliceridemia , Pancreatite , Ratos Sprague-Dawley , Receptor 4 Toll-Like , Triglicerídeos , Animais , Masculino , Pancreatite/metabolismo , Hipertrigliceridemia/complicações , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Receptor 4 Toll-Like/metabolismo , Ratos , Pâncreas/metabolismo , Pâncreas/patologia , Fator de Transcrição RelA/metabolismo , Fenofibrato/farmacologia , Modelos Animais de Doenças , Doença Aguda , Arginina/sangue , Hipolipemiantes/uso terapêutico , Hipolipemiantes/farmacologia
4.
ACS Infect Dis ; 10(5): 1793-1807, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38648355

RESUMO

Chagas disease, caused by Trypanosoma cruzi, stands as the primary cause of dilated cardiomyopathy in the Americas. Macrophages play a crucial role in the heart's response to infection. Given their functional and phenotypic adaptability, manipulating specific macrophage subsets could be vital in aiding essential cardiovascular functions including tissue repair and defense against infection. PPARα are ligand-dependent transcription factors involved in lipid metabolism and inflammation regulation. However, the role of fenofibrate, a PPARα ligand, in the activation profile of cardiac macrophages as well as its effect on the early inflammatory and fibrotic response in the heart remains unexplored. The present study demonstrates that fenofibrate significantly reduces not only the serum activity of tissue damage biomarker enzymes (LDH and GOT) but also the circulating proportions of pro-inflammatory monocytes (CD11b+ LY6Chigh). Furthermore, both CD11b+ Ly6Clow F4/80high macrophages (MΦ) and recently differentiated CD11b+ Ly6Chigh F4/80high monocyte-derived macrophages (MdMΦ) shift toward a resolving phenotype (CD206high) in the hearts of fenofibrate-treated mice. This shift correlates with a reduction in fibrosis, inflammation, and restoration of ventricular function in the early stages of Chagas disease. These findings encourage the repositioning of fenofibrate as a potential ancillary immunotherapy adjunct to antiparasitic drugs, addressing inflammation to mitigate Chagas disease symptoms.


Assuntos
Cardiomiopatia Chagásica , Fenofibrato , Macrófagos , Fenofibrato/farmacologia , Fenofibrato/uso terapêutico , Animais , Camundongos , Cardiomiopatia Chagásica/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Miocárdio/patologia , Masculino , Trypanosoma cruzi/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Miocardite/tratamento farmacológico , Miocardite/parasitologia
5.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474282

RESUMO

We investigated the age-related effects of the lipid-lowering drug fenofibrate on renal stress-associated effectors. Young and old rats were fed standard chow with 0.1% or 0.5% fenofibrate. The kidney cortex tissue structure showed typical aging-related changes. In old rats, 0.1% fenofibrate reduced the thickening of basement membranes, but 0.5% fenofibrate exacerbated interstitial fibrosis. The PCR array for stress and toxicity-related targets showed that 0.1% fenofibrate mildly downregulated, whereas 0.5% upregulated multiple genes. In young rats, 0.1% fenofibrate increased some antioxidant genes' expression and decreased the immunoreactivity of oxidative stress marker 4-HNE. However, the activation of cellular antioxidant defenses was impaired in old rats. Fenofibrate modulated the expression of factors involved in hypoxia and osmotic stress signaling similarly in both age groups. Inflammatory response genes were variably modulated in the young rats, whereas old animals presented elevated expression of proinflammatory genes and TNFα immunoreactivity after 0.5% fenofibrate. In old rats, 0.1% fenofibrate more prominently than in young animals induced phospho-AMPK and PGC1α levels, and upregulated fatty acid oxidation genes. Our results show divergent effects of fenofibrate in young and old rat kidneys. The activation of multiple stress-associated effectors by high-dose fenofibrate in the aged kidney warrants caution when applying fenofibrate therapy to the elderly.


Assuntos
Fenofibrato , Humanos , Ratos , Animais , Idoso , Fenofibrato/farmacologia , Antioxidantes/farmacologia , Rim/metabolismo , Hipolipemiantes/farmacologia , Expressão Gênica
6.
Clin Cancer Res ; 30(9): 1916-1933, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38363297

RESUMO

PURPOSE: Head and neck cancer (HNC) improvements are stagnant, even with advances in immunotherapy. Our previous clinical trial data show that altered fatty acid (FA) metabolism correlates with outcome. We hypothesized that pharmacologic and dietary modulation of FA catabolism will affect therapeutic efficacy. EXPERIMENTAL DESIGN: We performed in vivo and in vitro experiments using PPARα agonism with fenofibrate (FF) or high oleic acid diets (OAD) with radiotherapy, generating metabolomic, proteomic, stable isotope tracing, extracellular flux analysis, and flow-cytometric data to investigate these alterations. RESULTS: FF improved antitumor efficacy of high dose per fraction radiotherapy in HNC murine models, whereas the OAD reversed this effect. FF-treated mice on the control diet had evidence of increased FA catabolism. Stable isotope tracing showed less glycolytic utilization by ex vivo CD8+ T cells. Improved efficacy correlated with intratumoral alterations in eicosanoid metabolism and downregulated mTOR and CD36. CONCLUSIONS: Metabolic intervention with increased FA catabolism improves the efficacy of HNC therapy and enhances antitumoral immune response.


Assuntos
Neoplasias de Cabeça e Pescoço , Ácido Oleico , PPAR alfa , Animais , PPAR alfa/agonistas , Camundongos , Ácido Oleico/farmacologia , Humanos , Neoplasias de Cabeça e Pescoço/imunologia , Fenofibrato/farmacologia , Linhagem Celular Tumoral , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Ácidos Graxos/metabolismo , Modelos Animais de Doenças
7.
Eur J Med Res ; 29(1): 113, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336772

RESUMO

Multiple sclerosis (MS) is the most frequent inflammatory and demyelinating disease of the central nervous system (CNS). The underlying pathophysiology of MS is the destruction of myelin sheath by immune cells. The formation of myelin plaques, inflammation, and injury of neuronal myelin sheath characterizes its neuropathology. MS plaques are multiple focal regions of demyelination disseminated in the brain's white matter, spinal cords, deep grey matter, and cerebral cortex. Fenofibrate is a peroxisome proliferative activated receptor alpha (PPAR-α) that attenuates the inflammatory reactions in MS. Fenofibrate inhibits differentiation of Th17 by inhibiting the expression of pro-inflammatory signaling. According to these findings, this review intended to illuminate the mechanistic immunoinflammatory role of fenofibrate in mitigating MS neuropathology. In conclusion, fenofibrate can attenuate MS neuropathology by modulating different pathways, including oxidative stress, autophagy, mitochondrial dysfunction, inflammatory-signaling pathways, and neuroinflammation.


Assuntos
Fenofibrato , Esclerose Múltipla , Humanos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/patologia , Fenofibrato/farmacologia , Fenofibrato/uso terapêutico , Sistema Nervoso Central , Neurônios/patologia , Inflamação/patologia
8.
Phytomedicine ; 126: 155450, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368794

RESUMO

BACKGROUND: Shen Shuai Ⅱ Recipe (SSR) is clinically used to treat chronic kidney diseases (CKDs) with remarkable efficacy and safety. In earlier research, we found the anti-inflammatory, antioxidant, and mitochondrial protective properties of SSR in hypoxic kidney injury model, which is closely related to its renal protection. Further work is needed to understand the underlying molecular mechanisms. PURPOSE: Further investigation of the mechanisms of action of SSR against renal interstitial fibrosis (RIF) building on previous research leads. METHODS: Rats receiving CKD model surgery were given with Fenofibrate or SSR once a day for eight weeks. In vitro, the NRK-52E cells were treated with SSR in the presence or absence of 10 µM Sc75741, 0.5 µM PMA, or 1 µM fenofibrate under 1% O2. The effects of SSR on NF-κB/NLRP3 inflammatory cascade, secretion of pro-inflammatory cytokines, fatty acid oxidation (FAO), and renal tubular injury were determined by immunoblotting, luminex liquid suspension chip assay, transmission electron microscopy, and Oil red O staining. Next, we delivered PPARα-interfering sequences to kidney tissue and NRK-52E cells by adeno-associated virus (AAV) injection and siRNA transfection methods. Finally, we evaluated the effect of renal tubular cells on fibroblast activation by co-culture method. RESULTS: SSR attenuated the release of IL-18, VEGF, and MCP1 cytokines, inhibited the activation of NF-κB/NLRP3 cascade, increased the PPARα, CPT-1α, CPT-2, ACADL, and MCAD protein expression, and improved the lipid accumulation. Further studies have demonstrated that one of the ways in which SSR suppresses the inflammatory response to protect renal tubular cells is through the restoration of PPARα-mediated FAO. In addition, by means of co-culture ways, the results demonstrated that SSR attenuated secretion of inflammatory mediators in NRK-52E cells by PPARα/NF-κB/NLRP3 pathway, thereby inhibiting renal fibroblast activation. CONCLUSION: SSR inhibits RIF by suppressing inflammatory response of hypoxia-exposed RTECs through PPARα-mediated FAO.


Assuntos
Fenofibrato , Insuficiência Renal Crônica , Ratos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , PPAR alfa/metabolismo , NF-kappa B/metabolismo , Fenofibrato/metabolismo , Fenofibrato/farmacologia , Rim , Inflamação/metabolismo , Citocinas/metabolismo , Ácidos Graxos/metabolismo , Fibrose , Fibroblastos/metabolismo
9.
Toxicol Appl Pharmacol ; 483: 116818, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38215994

RESUMO

The recurrence and metastasis in breast cancer within 3 years after the chemotherapies or surgery leads to poor prognosis with approximately 1-year overall survival. Large-scale scanning research studies have shown that taking lipid-lowering drugs may assist to reduce the risk of death from many cancers, since cholesterol in lipid rafts are essential for maintain integral membrane structure and functional signaling regulation. In this study, we examined five lipid-lowering drugs: swertiamarin, gemfibrozil, clofibrate, bezafibrate, and fenofibrate in triple-negative breast cancer, which is the most migration-prone subtype. Using human and murine triple-negative breast cancer cell lines (Hs 578 t and 4 T1), we found that fenofibrate displays the highest potential in inhibiting the colony formation, wound healing, and transwell migration. We further discovered that fenofibrate reduces the activity of pro-metastatic enzymes, matrix metalloproteinases (MMP)-9 and MMP-2. In addition, epithelial markers including E-cadherin and Zonula occludens-1 are increased, whereas mesenchymal markers including Snail, Twist and α-smooth muscle actin are attenuated. Furthermore, we found that fenofibrate downregulates ubiquitin-dependent GDF-15 degradation, which leads to enhanced GDF-15 expression that inhibits cell migration. Besides, nuclear translocation of FOXO1 is also upregulated by fenofibrate, which may responsible for GDF-15 expression. In summary, fenofibrate with anti-cancer ability hinders TNBC from migration and invasion, and may be beneficial to repurposing use of fenofibrate.


Assuntos
Fenofibrato , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Neoplasias de Mama Triplo Negativas/metabolismo , Fenofibrato/farmacologia , Fenofibrato/uso terapêutico , Fator 15 de Diferenciação de Crescimento/farmacologia , Fator 15 de Diferenciação de Crescimento/uso terapêutico , Linhagem Celular Tumoral , Movimento Celular , Hipolipemiantes/farmacologia , Hipolipemiantes/uso terapêutico , Transição Epitelial-Mesenquimal , Lipídeos , Proliferação de Células
10.
BMC Pharmacol Toxicol ; 25(1): 7, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38173037

RESUMO

BACKGROUND: To comprehend the influences of fenofibrate on hepatic lipid accumulation and mitochondrial function-related signaling pathways in mice with non-alcoholic fatty liver disease (NAFLD) secondary to high-fat diets together with free fatty acids-influenced HepG2 cells model. MATERIALS AND METHODS: A random allocation of male 6-week C57BL/6J mice into three groups was done, including controls, model (14 weeks of a high-fat diet), and fenofibrate [similar to the model one with administered 0.04 g/(kg.d) fenofibrate by gavage at 11 weeks for 4 weeks] groups, which contained 10 mice each. This study verified NAFLD pathogenesis via mitochondrial functions in hepatic pathological abnormalities, liver index and weight, body weight, serum biochemical indexes, oxidative stress indicators, mitochondrial function indexes, and related signaling pathways. The effect of fenofibrate intervention was investigated in NAFLD model mice. In vitro, four groups based on HepG2 cells were generated, including controls, the FFA model (1.5 mmol/L FFA incubation for 24 h), LV-PGC-1α intervention (similar to the FFA model one after PPARGC1A lentivirus transfection), and LV control intervention (similar to the FFA model one after negative control lentivirus transfection) groups. The study investigated the mechanism of PGC-1α related to lipid decomposition and mitochondrial biosynthesis by Oil red O staining, colorimetry and western blot. RESULTS: In vivo experiments, a high-fat diet achieved remarkable changes regarding liver weight, liver index, serum biochemical indicators, oxidative stress indicators, liver pathological changes, mitochondrial function indicators, and body weight of the NAFLD model mice while fenofibrate improved the objective indicators. In the HepG2 cells model, the lipid accumulation increased significantly within the FFA model group, together with aggravated hepatocytic damage and boosted oxidative stress levels. Moreover, FFA induced excessive mitosis into fragmented in mitochondrial morphology, ATP content in cells decreased, mtDNA replication fold decreased, the expression of lipid decomposition protein PPARα reduced, mitochondrial biosynthesis related protein PGC-1α, NRF-1 and TFAM decreased. PGC-1α overexpression inhibited lipid deposition by improving mitochondrial biosynthesis and lipid decomposition. CONCLUSION: Fenofibrate up-regulated PPARα/PGC-1α signaling pathway, promoted mitochondrial ß-oxidation, reduced oxidative stress damage and lipid accumulation of liver. PGC-1α overexpression enhanced mitochondrial biosynthesis and ATP production, and reduced HepG2 intracellular accumulation of lipids and oxidative stress.


Assuntos
Fenofibrato , Hepatopatia Gordurosa não Alcoólica , Masculino , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fenofibrato/farmacologia , Fenofibrato/uso terapêutico , PPAR alfa/genética , PPAR alfa/metabolismo , Camundongos Endogâmicos C57BL , Fígado , Mitocôndrias/metabolismo , Transdução de Sinais , Peso Corporal , Lipídeos , Trifosfato de Adenosina/metabolismo , Dieta Hiperlipídica/efeitos adversos
11.
Oncogene ; 43(2): 136-150, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37973951

RESUMO

Impaired macroautophagy/autophagy flux has been implicated in the treatment of prostate cancer (PCa). However, the mechanism underlying autophagy dysregulation in PCa remains unknown. In the current study, we investigated the role of diacylglycerol acyltransferases 1 (DGAT1) and its potential effects on cellular energy homeostasis and autophagy flux in PCa. The results of immunohistochemical staining suggested that DGAT1 expression was positively corrected with tumor stage and node metastasis, indicating DGAT1 is an important factor involved in the development and progression of PCa. Furthermore, targeting DGAT1 remarkably inhibited cell proliferation in vitro and suppressed PCa growth in xenograft models by triggering severe oxidative stress and subsequently autophagy flux blockage. Mechanically, DGAT1 promoted PCa progression by maintaining cellular energy homeostasis, preserving mitochondrial function, protecting against reactive oxygen species, and subsequently promoting autophagy flux via regulating lipid droplet formation. Moreover, we found that fenofibrate exhibits as an upstream regulator of DGAT1. Fenofibrate performed its anti-PCa effect involved the aforementioned mechanisms, and partially dependent on the regulation of DGAT1. Collectively. These findings indicate that DGAT1 regulates PCa lipid droplets formation and is essential for PCa progression. Targeting DGAT1 might be a promising method to control the development and progression of PCa. Schematic representation of DGAT1 affects autophagy flux by regulating lipid homeostasis and maintaining mitochondrial function in prostate cancer (PCa). PCa is characterized up-regulation of DGAT1, leading to the translocation of free fatty acids into lipid droplets, thereby preventing PCa cell from lipotoxicity. Inhibition of DGAT1 suppresses growth of PCa by inducing oxidative stress and subsequently autophagy flux blockage. Further, the current results revealed that fenofibrate exhibits as an upstream regulator of DGAT1, and fenofibrate plays an anti-PCa role partially dependent on the regulation of DGAT1, suggesting a potential therapeutic approach to ameliorate this refractory tumor.


Assuntos
Fenofibrato , Neoplasias da Próstata , Humanos , Masculino , Autofagia , Diacilglicerol O-Aciltransferase/antagonistas & inibidores , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Fenofibrato/metabolismo , Fenofibrato/farmacologia , Fenofibrato/uso terapêutico , Estresse Oxidativo , Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo
12.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 1025-1035, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37566308

RESUMO

Primary hepatic carcinoma (PHC) is a leading threat to cancer patients with few effective treatment strategies. OPN is found to be an oncogene in hepatocellular carcinoma (HCC) with potential as a treating target for PHC. Fenofibrate is a lipid-lowering drug with potential anti-tumor properties, which is claimed with suppressive effects on OPN expression. Our study proposes to explore the molecular mechanism of fenofibrate in inhibiting HCC. OPN was found extremely upregulated in 6 HCC cell lines, especially Hep3B cells. Hep3B and Huh7 cells were treated with 75 and 100 µM fenofibrate, while OPN-overexpressed Hep3B cells were treated with 100 µM fenofibrate. Decreased clone number, elevated apoptotic rate, reduced number of migrated cells, and shortened migration distance were observed in fenofibrate-treated Hep3B and Huh7 cells, which were markedly abolished by the overexpression of OPN. Furthermore, the facilitating effect against apoptosis and the inhibitory effect against migration of fenofibrate in Hep3B cells were abolished by 740 Y-P, an agonist of PI3K. Hep3B xenograft model was established, followed by treated with 100 mg/kg and 200 mg/kg fenofibrate, while OPN-overexpressed Hep3B xenograft was treated with 200 mg/kg fenofibrate. The tumor growth was repressed by fenofibrate, which was notably abolished by OPN overexpression. Furthermore, the inhibitory effect of fenofibrate on the PI3K/AKT/Twist pathway in Hep3B cells and Hep3B xenograft model was abrogated by OPN overexpression. Collectively, fenofibrate suppressed progression of hepatoma downregulating OPN through inhibiting the PI3K/AKT/Twist pathway.


Assuntos
Carcinoma Hepatocelular , Fenofibrato , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Fenofibrato/farmacologia , Fenofibrato/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Osteopontina/genética , Apoptose , Linhagem Celular Tumoral , Proliferação de Células
13.
Life Sci ; 336: 122321, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042280

RESUMO

AIMS: Alcoholic liver disease (ALD) can develop into cirrhosis and hepatocellular carcinoma but no specific drugs are available. Fenofibrate is therapeutically effective in ALD, however, the exact mechanism remains unknown. We explored the hub genes of ALD and the role of fenofibrate in ALD. MAIN METHODS: The hub genes of ALD were screened by bioinformatics method, and their functional enrichment, signalling pathways, target genes and their correlation with immune microenvironment and pathogenic genes were analysed. We also analysed the binding affinity of fenofibrate to proteins of hub genes using molecular docking techniques, and the effects on hub gene expression, lipid deposition, oxidative stress and inflammation in the liver of National Institute on Alcohol Abuse and Alcoholism (NIAAA) model mice. The regulatory effects of fenofibrate on MOXD1 and PDZK1P1 were investigated after gene silencing of peroxisome proliferator-activated receptor-α (Ppar-α). KEY FINDINGS: Hub genes identified, including monooxygenase DBH-like 1 (MOXD1), PDZK1-interacting protein 1 (PDZK1IP1) and solute carrier 51 ß (SLC51B), are highly predictive for ALD. Hepatic MOXD1 and PDZK1IP1 expression was elevated in patients with ALD and NIAAA model mice, with no significant difference in SLC51B expression between the groups. Fenofibrate binds tightly to MOXD1 and PDZK1IP1, inhibits their hepatic expression independently of PPAR-α signalling, and ameliorates lipid deposition, oxidative stress and inflammatory responses in NIAAA model mice. SIGNIFICANCE: MOXD1 and PDZK1IP1 are key genes in ALD progression; fenofibrate improves liver damage in NIAAA model mice by downregulating their expression. Our findings provide insight for improving diagnostic and therapeutic strategies for ALD.


Assuntos
Fígado Gorduroso Alcoólico , Fenofibrato , Hipercolesterolemia , Hepatopatias Alcoólicas , Camundongos , Humanos , Animais , Fenofibrato/farmacologia , Fenofibrato/uso terapêutico , Fígado Gorduroso Alcoólico/tratamento farmacológico , Simulação de Acoplamento Molecular , Fígado/metabolismo , Inflamação/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Hipercolesterolemia/metabolismo , Hepatopatias Alcoólicas/patologia , Lipídeos/farmacologia , Proteínas de Membrana/metabolismo
14.
Lipids Health Dis ; 22(1): 215, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049842

RESUMO

BACKGROUND: Chronic interstitial fibrosis is the primary barrier against the long-term survival of transplanted kidneys. Extending the lifespan of allografts is vital for ensuring the long-term health of patients undergoing kidney transplants. However, few targets and their clinical applications have been identified. Moreover, whether dyslipidemia facilitates fibrosis in renal allograft remains unclear. METHODS: Blood samples were collected from patients who underwent kidney transplantation. Correlation analyses were conducted between the Banff score and body mass index, and serum levels of triacylglycerol, total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. A rat model of renal transplantation was treated with the lipid-lowering drug, fenofibrate, and kidney fibrosis levels were determined by histochemical staining. Targeted metabolomic detection was conducted in blood samples from patients who underwent kidney transplantation and were divided into fibrotic and non-fibrotic groups. Rats undergoing renal transplantation were fed either an n-3 or n-6 polyunsaturated fatty acid (PUFA)-enriched diet. Immunohistochemical and Masson's trichrome staining were used to determine the degree of fibrosis. RESULTS: Hyperlipidemia was associated with fibrosis development. Treatment with fenofibrate contributed to improve fibrosis in a rat model of renal transplantation. Moreover, n-3 PUFAs from fibrotic group showed significant downregulation compared to patients without fibrotic renal allografts, and n-3 PUFAs-enriched diet contributed to delayed fibrosis in a rat model of renal transplantation. CONCLUSIONS: This study suggests that hyperlipidemia facilitates fibrosis of renal allografts. Importantly, a new therapeutic approach was provided that may delay chronic interstitial fibrosis in transplanted kidneys by augmenting the n-3 PUFA content in the diet.


Assuntos
Ácidos Graxos Ômega-3 , Fenofibrato , Hiperlipidemias , Transplante de Rim , Humanos , Ratos , Animais , Transplante de Rim/efeitos adversos , Fenofibrato/farmacologia , Rim/patologia , Fibrose , Aloenxertos , Hiperlipidemias/patologia , Colesterol
15.
Sci Rep ; 13(1): 22558, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110453

RESUMO

Diabetes mellitus (DM) is a common chronic metabolic disease in humans and household cats that is characterized by persistent hyperglycemia. DM is associated with dysfunction of the intestinal barrier. This barrier is comprised of an epithelial monolayer that contains a network of tight junctions that adjoin cells and regulate paracellular movement of water and solutes. The mechanisms driving DM-associated barrier dysfunction are multifaceted, and the direct effects of hyperglycemia on the epithelium are poorly understood. Preliminary data suggest that fenofibrate, An FDA-approved peroxisome proliferator-activated receptor-alpha (PPARα) agonist drug attenuates intestinal barrier dysfunction in dogs with experimentally-induced DM. We investigated the effects of hyperglycemia-like conditions and fenofibrate treatment on epithelial barrier function using feline intestinal organoids. We hypothesized that glucose treatment directly increases barrier permeability and alters tight junction morphology, and that fenofibrate administration can ameliorate these deleterious effects. We show that hyperglycemia-like conditions directly increase intestinal epithelial permeability, which is mitigated by fenofibrate. Moreover, increased permeability is caused by disruption of tight junctions, as evident by increased junctional tortuosity. Finally, we found that increased junctional tortuosity and barrier permeability in hyperglycemic conditions were associated with increased protein kinase C-α (PKCα) activity, and that fenofibrate treatment restored PKCα activity to baseline levels. We conclude that hyperglycemia directly induces barrier dysfunction by disrupting tight junction structure, a process that is mitigated by fenofibrate. We further propose that counteracting modulation of PKCα activation by increased intracellular glucose levels and fenofibrate is a key candidate regulatory pathway of tight junction structure and epithelial permeability.


Assuntos
Fenofibrato , Hiperglicemia , Enteropatias , Humanos , Gatos , Animais , Cães , Glucose/farmacologia , Glucose/metabolismo , Proteína Quinase C-alfa/metabolismo , Fenofibrato/farmacologia , Intestinos , Hiperglicemia/metabolismo , Enteropatias/metabolismo , Junções Íntimas/metabolismo , Mucosa Intestinal/metabolismo , Permeabilidade
16.
Nutr Diabetes ; 13(1): 19, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935669

RESUMO

BACKGROUND: Fenofibrate is a hypolipidemic peroxisome proliferator-activated receptor α (PPARα) agonist used clinically to reduce hypercholesterolemia and hypertriglyceridemia. OBJECTIVE: We investigated the effects of fenofibrate on insulin resistance and tissue inflammation in a high-fat diet (HFD)-fed ovariectomized (OVX) C57BL/6J mice, a mouse model of obese postmenopausal women. METHODS: Female OVX mice were randomly divided into 3 groups and received a low-fat diet, an HFD, or an HFD supplemented with 0.05% (w/w) fenofibrate for 9 weeks. Parameters of insulin resistance and tissue inflammation were measured using blood analysis, histological analysis, immunohistochemistry, and quantitative real-time polymerase chain reaction. RESULTS: When fenofibrate was administered to HFD-fed OVX mice for 9 weeks, we observed reductions in body weight gain, adipose tissue mass, and the size of visceral adipocytes without the change of food intake. Fenofibrate improved mild hyperglycemia, severe hyperinsulinemia, and glucose tolerance in these mice. It also reduced pancreatic islet size and insulin-positive ß-cell area to levels similar to those in OVX mice fed a low-fat diet. Concomitantly, administration of fenofibrate not only suppressed pancreatic lipid accumulation but also decreased CD68-positive macrophages in both the pancreas and visceral adipose tissue. Treatment with fenofibrate reduced tumor necrosis factor α (TNFα) mRNA levels in adipose tissue and lowered serum TNFα levels. CONCLUSION: These results suggest that fenofibrate treatment attenuates insulin resistance in part by reducing tissue inflammation and TNFα expression in HFD-fed OVX mice.


Assuntos
Fenofibrato , Hiperlipidemias , Resistência à Insulina , Humanos , Feminino , Camundongos , Animais , Fenofibrato/farmacologia , Fenofibrato/uso terapêutico , Fenofibrato/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Obesos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo
17.
Eur J Pharmacol ; 961: 176172, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37939988

RESUMO

Maternal infections during pregnancy may increase the risk of psychiatric disorders in offspring. We recently demonstrated that activation of peroxisome proliferator-activate receptor-α (PPARα), with the clinically available agonist fenofibrate (FEN), attenuates the neurodevelopmental disturbances induced by maternal immune activation (MIA) in rat offspring. We hypothesized that fenofibrate might reduce MIA-induced cytokine imbalance using a MIA model based on the viral mimetic polyriboinosinic-polyribocytidilic acid [poly (I:C)]. By using the Bio-Plex Multiplex-Immunoassay-System, we measured cytokine/chemokine/growth factor levels in maternal serum and in the fetal brain of rats treated with fenofibrate, at 6 and 24 h after poly (I:C). We found that MIA induced time-dependent changes in the levels of several cytokines/chemokines/colony-stimulating factors (CSFs). Specifically, the maternal serum of the poly (I:C)/control (CTRL) group showed increased levels of (i) proinflammatory chemokine macrophage inflammatory protein 1-alpha (MIP-1α), (ii) tumor necrosis factor-alpha (TNF-α), the monocyte chemoattractant protein-1 (MCP-1), the macrophage (M-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF). Conversely, in the fetal brain of the poly (I:C)/CTRL group, interleukin 12p70 and MIP-1α levels were lower than in vehicle (veh)/CTRL group. Notably, MIP-1α, TNF-α, keratinocyte derived chemokine (GRO/KC), GM-CSF, and M-CSF levels were lower in the poly (I:C)/FEN than in poly (I:C)/CTRL rats, suggesting the protective role of the PPARα agonist. PPARα might represent a therapeutic target to attenuate MIA-induced inflammation.


Assuntos
Fenofibrato , Esquizofrenia , Humanos , Feminino , Gravidez , Ratos , Animais , Citocinas , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Quimiocina CCL3 , Fenofibrato/farmacologia , Fenofibrato/uso terapêutico , Fator Estimulador de Colônias de Macrófagos , PPAR alfa , Esquizofrenia/tratamento farmacológico , Fator de Necrose Tumoral alfa , Quimiocinas , Poli I-C/farmacologia
18.
Drug Des Devel Ther ; 17: 3439-3452, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38024539

RESUMO

Purpose: This study aimed to determine the effect and its mechanism of fenofibrate on retinal pigment epithelium (RPE) injury induced by excessive fat in vitro and in vivo. Methods: ARPE-19 cells were co-incubated with palmitic acid (PA) and fenofibric acid (the active form of fenofibrate after metabolism in vivo) and mice fed with high-fat diet (HFD) were supplemented with fenofibrate. The following methods were used: Western blot and immunofluorescent staining to determine expressions of reactive oxygen species (ROS)-associated factors and proinflammatory cytokines; electroretinogram (ERG) c-wave to evaluate RPE function; TUNEL staining to detect the apoptotic cell in RPE tissue. Additionally, ARPE19 cells were treated with PI3K/AKT inhibitor or agonist to investigate the mechanism of fenofibric acid inhibiting PA-induced RPE damage. Results: We found that the application of PA inhibited RPE cell viability in a dose-dependent manner, and increased the levels of NAPDH oxidase 4 (NOX4), 3-nitrotyrosin (3-NT), intracellular adhesion molecule-1(ICAM1), tumor necrosis factor alpha (TNFα) and vascular endothelial growth factor (VEGF) at 400µM. The application of fenofibric acid resulted in the inhibition of NOX4, 3-NT, TNFα, ICAM1 and VEGF expression in ARPE-19 cells treated with PA. Moreover, wortmannin, as a selective inhibitor of PI3K/AKT pathway, abolished the effects of fenofibrate on the oxidative stress and inflammation in ARPE-19 cells. In addition, 740Y-P, a selective agonist of PI3K/AKT pathway, enhanced the protective action of fenofibrate. Meanwhile, in vivo dosing of fenofibrate ameliorated the downregulated amplitudes of ERG c-wave in HFD-fed mice and suppressed the HFD-induced oxidative injury and inflammatory response in RPE tissues. Conclusion: Our results suggested that fenofibrate ameliorated RPE cell damage induced by excessive fat in vitro and in vivo, in part, through activation of the PI3K/AKT signaling pathway.


Assuntos
Fenofibrato , Camundongos , Animais , Fenofibrato/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para Cima , Fosfatidilinositol 3-Quinases/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Transdução de Sinais , Estresse Oxidativo
19.
Eur J Pharmacol ; 960: 176159, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37898287

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a major liver disease subtype worldwide, is commonly associated with insulin resistance and obesity. NAFLD is characterized by an excessive hepatic lipid accumulation, as well as hepatic steatosis. Fenofibrate is a peroxisome proliferator-activated receptor α agonist widely used in clinical therapy to effectively ameliorate the development of NAFLD, but its mechanism of action is incompletely understood. Here, we found that fenofibrate dramatically modulate the gut microbiota composition of high-fat diet (HFD)-induced NAFLD mouse model, and the change of gut microbiota composition is dependent on TFEB-autophagy axis. Furthermore, we also found that fenofibrate improved hepatic steatosis, and increased the activation of TFEB, which severed as a regulator of autophagy, thus, the protective effects of fenofibrate against NAFLD are depended on TFEB-autophagy axis. Our study demonstrates the host gene may influence the gut microbiota and highlights the role of TFEB and autophagy in the protective effect of NAFLD. This work expands our understanding of the regulatory interactions between the host and gut microbiota and provides novel strategies for alleviating obesity.


Assuntos
Fenofibrato , Microbioma Gastrointestinal , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Fenofibrato/farmacologia , Fenofibrato/uso terapêutico , Resistência à Insulina/genética , Fígado , Obesidade/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Autofagia , Camundongos Endogâmicos C57BL
20.
J Physiol Pharmacol ; 74(2)2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37453093

RESUMO

The aim of this study was to examine the effects of the hypolipemic drug fenofibrate (FF) and aging on the expression of factors/enzymes involved in brown adipose tissue (BAT) function and browning of white adipose tissue epididymal (eWAT) and subcutaneous (sWAT) depots. Young-adult and old male Wistar rats were fed standard chow (control) or supplemented with 0.1% or 0.5% FF for 30 days. Tissue samples were analysed for gene expression and protein content, and stained with Oil Red O or hematoxylin and eosin. In BAT of young rats, 0.5% FF increased only Cbp/p300 interacting transactivator with Glu/Asp rich carboxy-terminal domain 1 (CITED1) protein content and Fgf21 and Gpr109A mRNA expression. The expression of oxidative metabolism related genes (Pgc1α, Cpt1b, Mcad) decreased after 0.5% FF. In BAT of old rats, FF did not affect UCP1 and CITED1 content and had little effect on gene expression. Oil Red O staining of BAT revealed no changes in lipid droplet area upon treatment in either age group. In eWAT of young rats, 0.1FF elevated UCP1 protein content and Ucp1, Pgc-1α, and Mcad expression, whereas 0.5% FF increased PPARα content and Pgc-1α, Cpt1b, Mcad, and Gpr109A levels. In eWAT of old rats, only 0.1FF increased Pgc1α and Mcad expression. In both age groups median cell area of eWAT adipocytes was reduced after 0.5% FF. In sWAT Ucp1 gene expression was very low and UCP1 protein was undetectable. FF upregulated Ucp1, Cited1, Eva1, and Cpt1b expression in sWAT of young rats, with diminished effects in old rats. In both age groups 0.5% FF increased Fgf21 expression in sWAT. Median cell area of sWAT adipocytes decreased only in young rats treated with 0.5% FF. Our results reveal that fenofibrate differentially affects gene expression in BAT, with diminished effects in old compared to young rats. In WAT of young rats FF modestly stimulates the expression of factors/enzymes involved in lipid oxidative metabolism and browning. Aging reduces both these effects. Gpr109A may present a novel gene target upregulated by FF in BAT and eWAT.


Assuntos
Fenofibrato , Ratos , Masculino , Animais , Ratos Wistar , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/farmacologia , Fenofibrato/farmacologia , Fenofibrato/metabolismo , Tecido Adiposo Branco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...