Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Biochem Pharmacol ; 197: 114871, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34902340

RESUMO

Stereoselectivity is important in many pharmacological processes but its impact on drug membrane transport is scarcely understood. Recent studies showed strong stereoselective effects in the cellular uptake of fenoterol by the organic cation transporters OCT1 and OCT2. To provide possible molecular explanations, homology models were developed and the putative interactions between fenoterol enantiomers and key residues explored in silico through computational docking, molecular dynamics simulations, and binding free energy calculations as well as in vitro by site-directed mutagenesis and cellular uptake assays. Our results suggest that the observed 1.9-fold higher maximum transport velocity (vmax) for (R,R)- over (S,S)-fenoterol in OCT1 is because the enantiomers bind to two distinct binding sites. Mutating PHE355 and ILE442, predicted to interact with (R,R)-fenoterol, reduced the vmax ratio to 1.5 and 1.3, respectively, and to 1.2 in combination. Mutating THR272, predicted to interact with (S,S)-fenoterol, slightly increased stereoselectivity (vmax ratio of 2.2), while F244A resulted in a 35-fold increase in vmax and a lower affinity (29-fold higher Km) for (S,S)-fenoterol. Both enantiomers of salbutamol, for which almost no stereoselectivity was observed, were predicted to occupy the same binding pocket as (R,R)-fenoterol. Unlike for OCT1, both fenoterol enantiomers bind in the same region in OCT2 but in different conformations. Mutating THR246, predicted to interact with (S,S)-fenoterol in OCT2, led to an 11-fold decreased vmax. Altogether, our mutagenesis results correlate relatively well with our computational predictions and thereby provide an experimentally-corroborated hypothesis for the strong and contrasting enantiopreference in fenoterol uptake by OCT1 and OCT2.


Assuntos
Fenoterol/química , Fenoterol/metabolismo , Fator 1 de Transcrição de Octâmero/química , Fator 1 de Transcrição de Octâmero/metabolismo , Transportador 2 de Cátion Orgânico/química , Transportador 2 de Cátion Orgânico/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/química , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Transporte Biológico/fisiologia , Células HEK293 , Humanos , Simulação de Acoplamento Molecular/métodos , Mutagênese Sítio-Dirigida/métodos , Fator 1 de Transcrição de Octâmero/genética , Transportador 2 de Cátion Orgânico/genética , Mutação Puntual/genética , Estrutura Secundária de Proteína , Estereoisomerismo
2.
Biochem Pharmacol ; 171: 113731, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31783011

RESUMO

Stereoselectivity is well described for receptor binding and enzyme catalysis, but so far has only been scarcely investigated in carrier-mediated membrane transport. We thus studied transport kinetics of racemic (anti)adrenergic drugs by the organic cation transporters OCT1 (wild-type and allelic variants), OCT2, OCT3, MATE1, and MATE2-K with a focus on stereospecificity. OCT1 showed stereoselective uptake with up to 2-fold higher vmax over their corresponding counterpart enantiomers for (R,R)-fenoterol, (R,R)-formoterol, (S)-salbutamol, (S)-acebutolol, and (S)-atenolol. Orciprenaline and etilefrine were also transported stereoselectively. The Km was 2.1-fold and 1.5-fold lower for the (S,S)-enantiomers of fenoterol and formoterol, while no significant difference in Km was seen for the other aforementioned drugs. Common OCT1 variants showed similar enantiopreference to wild-type OCT1, with a few notable exceptions (e.g. a switch in enantiospecificity for fenoterol in OCT1*2 compared to the wild-type). Other cation transporters showed strong differences to OCT1 in stereoselectivity and transport activity: The closely related OCT2 displayed a 20-fold higher vmax for (S,S)-fenoterol compared to (R,R)-fenoterol and OCT2 and OCT3 showed 3.5-fold and 4.6-fold higher vmax for the pharmacologically active (R)-salbutamol over (S)-salbutamol. MATE1 and MATE2-K generally mediated transport with a higher capacity but lower affinity compared to OCT1, with moderate stereoselectivity. Our kinetic studies showed that significant stereoselectivity exists in solute carrier-mediated membrane transport of racemic beta-adrenergic drugs with surprising, and in some instances even opposing, preferences between closely related organic cation transporters. This may be relevant for drug therapy, given the strong involvement of these transporters in hepatic and renal drug elimination.


Assuntos
Agonistas Adrenérgicos/farmacologia , Antagonistas Adrenérgicos/farmacologia , Proteínas de Transporte de Cátions Orgânicos/agonistas , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Acebutolol/química , Acebutolol/metabolismo , Acebutolol/farmacologia , Agonistas Adrenérgicos/química , Agonistas Adrenérgicos/metabolismo , Antagonistas Adrenérgicos/química , Antagonistas Adrenérgicos/metabolismo , Atenolol/química , Atenolol/farmacologia , Transporte Biológico , Fenoterol/química , Fenoterol/metabolismo , Fenoterol/farmacologia , Fumarato de Formoterol/química , Fumarato de Formoterol/metabolismo , Fumarato de Formoterol/farmacologia , Células HEK293 , Humanos , Cinética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Transportador 1 de Cátions Orgânicos/agonistas , Transportador 1 de Cátions Orgânicos/antagonistas & inibidores , Transportador 1 de Cátions Orgânicos/metabolismo , Transportador 2 de Cátion Orgânico/agonistas , Transportador 2 de Cátion Orgânico/antagonistas & inibidores , Transportador 2 de Cátion Orgânico/metabolismo , Estereoisomerismo
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 217: 182-189, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30933783

RESUMO

A simple selective luminescent dependent approach was established for quantitation of two selective ß2 agonists namely; Fenoterol hydrobromide (FEN) and Salmeterol xinafoate (SAL). This approach utilizes the capability of the cited drugs to undergo a complexation reaction with Europium ion (Eu3+) in the presence of 1,10-phenanthroline as a co-ligand. The resultant complex leads to a hypersensitive transition and enhancement of the Eu3+ emission peak at 615nm (279nm excitation). Under the optimized conditions, the rectilinear concentration plots of both drugs were (70-1500ngmL-1) and (100-2000ngmL-1) with limit of quantitation 51.3 and 84.4ngmL-1 for FEN and SAL, respectively. The luminescence properties of the complex and its optimum formation conditions were carefully investigated according to the regulations of ICH and the method was successfully applied in plasma. The good accuracy and selectivity of the suggested method allowed extending the proposed protocol into stability study of the cited drugs.


Assuntos
Európio/química , Fenoterol/sangue , Fenoterol/química , Xinafoato de Salmeterol/sangue , Xinafoato de Salmeterol/química , Estabilidade de Medicamentos , Humanos
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 204: 702-707, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-29982162

RESUMO

A new, specific, precise and very sensitive spectrofluorimetric methodology has been established and approved for determination of Fenoterol hydrobromide (FEN) in its pharmaceutical forms and spiked plasma. The strategy utilized the phenolic nature of FEN and its capacity to undergo Von Pechman synthesis of coumarin. In this study, Fenoterol hydrobromide reacts with ethyl acetoacetate in presence of concentrated sulfuric acid to form an extremely fluorescent coumarin derivative measured at 480 nm (λex: 420 nm). Different reaction variables affecting development and stability of the formed coumarin derivative were precisely examined and enhanced to guarantee greatest sensitivity of the strategy. The recommended procedure was found to obey Beer's law in concentration range of (300-2000) pg mL-1 with quantitation limit 130 pg mL-1, revealing high sensitivity of the suggested method. The proposed procedure was completely examined and approved through the ICH guidelines and was efficiently applied for the determination of the cited drug in spiked plasma and its dosage forms.


Assuntos
Cumarínicos/química , Fenoterol/análise , Fenoterol/química , Corantes Fluorescentes/química , Espectrometria de Fluorescência/métodos , Fenoterol/sangue , Humanos , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes , Ácidos Sulfúricos
5.
Mol Biosyst ; 13(5): 910-920, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28338133

RESUMO

The ß2-adrenergic receptor (ß2-AR) is one of the most studied G-protein-coupled receptors. When interacting with ligand molecules, it exhibits a binding characteristic that is strongly dependent on ligand stereoconfiguration. In particular, many experimental and theoretical studies confirmed that stereoisomers of an important ß2-AR agonist, fenoterol, are associated with diverse mechanisms of binding and activation of ß2-AR. The objective of the present study was to explore the stereoselective binding of fenoterol to ß2-AR through the application of an advanced computational methodology based on enhanced-sampling molecular dynamics simulations and potentials of interactions tailored to investigate the stereorecognition effects. The results remain in very good, quantitative agreement with the experimental data (measured in the context of ligand-receptor affinities and their dependence on the temperature), which provides an additional validation for the applied computational protocols. Additionally, our results contribute to the understanding of stereoselective agonist binding by ß2-AR. Although the significant role of the N2936.55 residue is confirmed, we additionally show that stereorecognition does not depend solely on the N293-ligand interactions; the stereoselective effects rely on the co-operation of several residues located on both the 6th and 7th transmembrane domains and on extracellular loops. The magnitude and character of the contributions of these residues may be very diverse and result in either enhancing or reducing the stereoselective effects. The same is true when considering the enthalpic and entropic contributions to the binding free energies, which also are dependent on the ligand stereoconfiguration.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/química , Fenoterol/química , Receptores Adrenérgicos beta 2/metabolismo , Entropia , Humanos , Modelos Moleculares , Conformação Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Receptores Adrenérgicos beta 2/química , Estereoisomerismo , Termodinâmica
6.
Eur Biophys J ; 44(3): 149-63, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25726162

RESUMO

The ß2-adrenergic receptor (ß2-AR), a G protein-coupled receptor (GPCR), is a physiologically important transmembrane protein that is a target for drugs used for treatment of asthma and cardiovascular diseases. Study of the first steps of ligand recognition and the molecular basis of ligand binding to the orthosteric site is essential for understanding the pharmacological properties of the receptor. In this work we investigated the characteristic features of the agonist association-dissociation process to and from the different conformational forms of ß2-AR by use of advanced molecular modeling techniques. The investigation was focused on estimating the free energy profiles (FEPs) corresponding to the process of a full agonist ((R,R)-fenoterol) and an inverse agonist (carazolol) binding and unbinding to and from ß2-AR. The two different conformational forms of ß2-AR, i.e. active ß2-AR-PDB: 3P0G and inactive ß2-AR-PDB: 2RH1 were included in this stage of the study. We revealed several significant qualitative differences between FEPs characteristic of both conformational forms. Both FEPs suggest the existence of three transient binding sites in the extracellular domain of ß2-AR. Comparison of the residues surrounding these transient binding sites in both ß2-AR states revealed the importance of the aromatic residues F194, H93(2.64), H296(6.58), and H178 (extracellular part of ß2-AR) in the early stages of the binding process. In addition, slightly different exit and entry paths are preferred by the ligand molecule in the extracellular part of ß2-AR, depending on the conformation of the receptor.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Fenoterol/farmacologia , Simulação de Acoplamento Molecular , Propanolaminas/farmacologia , Receptores Adrenérgicos beta/química , Agonistas Adrenérgicos beta/química , Sequência de Aminoácidos , Sítios de Ligação , Fenoterol/química , Humanos , Dados de Sequência Molecular , Propanolaminas/química , Ligação Proteica , Receptores Adrenérgicos beta/metabolismo
7.
Naunyn Schmiedebergs Arch Pharmacol ; 388(1): 51-65, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25342094

RESUMO

Functional selectivity is well established as an underlying concept of ligand-specific signaling via G protein-coupled receptors (GPCRs). Functionally, selective drugs could show greater therapeutic efficacy and fewer adverse effects. Dual coupling of the ß2-adrenoceptor (ß2AR) triggers a signal transduction via Gsα and Giα proteins. Here, we examined 12 fenoterol stereoisomers in six molecular and cellular assays. Using ß2AR-Gsα and ß2AR-Giα fusion proteins, (R,S')- and (S,S')-isomers of 4'-methoxy-1-naphthyl-fenoterol were identified as biased ligands with preference for Gs. G protein-independent signaling via ß-arrestin-2 was disfavored by these ligands. Isolated human neutrophils constituted an ex vivo model of ß2AR signaling and demonstrated functional selectivity through the dissociation of cAMP accumulation and the inhibition of formyl peptide-stimulated production of reactive oxygen species. Ligand bias was calculated using an operational model of agonism and revealed that the fenoterol scaffold constitutes a promising lead structure for the development of Gs-biased ß2AR agonists.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Fenoterol/farmacologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/química , Animais , AMP Cíclico/metabolismo , Feminino , Fenoterol/química , GTP Fosfo-Hidrolases/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Masculino , Neutrófilos , Espécies Reativas de Oxigênio/metabolismo , Receptores Adrenérgicos beta 2/genética , Proteínas Recombinantes de Fusão , Células Sf9 , Spodoptera , Estereoisomerismo
8.
PLoS One ; 9(9): e106608, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25203113

RESUMO

BACKGROUND AND PURPOSE: Despite the view that only ß2- as opposed to ß1-adrenoceptors (ßARs) couple to G(i), some data indicate that the ß1AR-evoked inotropic response is also influenced by the inhibition of Gi. Therefore, we wanted to determine if Gi exerts tonic receptor-independent inhibition upon basal adenylyl cyclase (AC) activity in cardiomyocytes. EXPERIMENTAL APPROACH: We used the Gs-selective (R,R)- and the Gs- and G(i)-activating (R,S)-fenoterol to selectively activate ß2ARs (ß1AR blockade present) in combination with Gi inactivation with pertussis toxin (PTX). We also determined the effect of PTX upon basal and forskolin-mediated responses. Contractility was measured ex vivo in left ventricular strips and cAMP accumulation was measured in isolated ventricular cardiomyocytes from adult Wistar rats. KEY RESULTS: PTX amplified both the (R,R)- and (R,S)-fenoterol-evoked maximal inotropic response and concentration-dependent increases in cAMP accumulation. The EC50 values of fenoterol matched published binding affinities. The PTX enhancement of the Gs-selective (R,R)-fenoterol-mediated responses suggests that Gi regulates AC activity independent of receptor coupling to Gi protein. Consistent with this hypothesis, forskolin-evoked cAMP accumulation was increased and inotropic responses to forskolin were potentiated by PTX treatment. In non-PTX-treated tissue, phosphodiesterase (PDE) 3 and 4 inhibition or removal of either constitutive muscarinic receptor activation of Gi with atropine or removal of constitutive adenosine receptor activation with CGS 15943 had no effect upon contractility. However, in PTX-treated tissue, PDE3 and 4 inhibition alone increased basal levels of cAMP and accordingly evoked a large inotropic response. CONCLUSIONS AND IMPLICATIONS: Together, these data indicate that Gi exerts intrinsic receptor-independent inhibitory activity upon AC. We propose that PTX treatment shifts the balance of intrinsic G(i) and Gs activity upon AC towards Gs, enhancing the effect of all cAMP-mediated inotropic agents.


Assuntos
Adenilil Ciclases/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Animais , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Ativação Enzimática/efeitos dos fármacos , Fenoterol/química , Fenoterol/farmacologia , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Toxina Pertussis/farmacologia , Inibidores da Fosfodiesterase 3/farmacologia , Inibidores da Fosfodiesterase 4/farmacologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Estereoisomerismo
9.
J Comput Chem ; 35(11): 876-82, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24615679

RESUMO

The computational approach applicable for the molecular dynamics (MD)-based techniques is proposed to predict the ligand-protein binding affinities dependent on the ligand stereochemistry. All possible stereoconfigurations are expressed in terms of one set of force-field parameters [stereoconfiguration-independent potential (SIP)], which allows for calculating all relative free energies by only single simulation. SIP can be used for studying diverse, stereoconfiguration-dependent phenomena by means of various computational techniques of enhanced sampling. The method has been successfully tested on the ß2-adrenergic receptor (ß2-AR) binding the four fenoterol stereoisomers by both metadynamics simulations and replica-exchange MD. Both the methods gave very similar results, fully confirming the presence of stereoselective effects in the fenoterol-ß2-AR interactions. However, the metadynamics-based approach offered much better efficiency of sampling which allows for significant reduction of the unphysical region in SIP.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Fenoterol/farmacologia , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/química , Fenoterol/química , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Estereoisomerismo , Termodinâmica
10.
J Pharm Biomed Anal ; 91: 92-6, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24441217

RESUMO

Fenoterol and its derivatives are selective ß2-adrenergic receptor (ß2-AR) agonists whose stereoselective biological activities have been extensively investigated in the past decade; a complete stereochemical characterization of fenoterol derivatives is therefore crucial for a better understanding of the effects of stereochemistry on ß2-AR binding. In the present project, the relationship between chiroptical properties and absolute stereochemistry of the stereoisomers of fenoterol (1) was investigated by experimental ECD spectroscopy and time-dependent density functional theory (TD-DFT). DFT geometry optimizations were carried out at the RI-B97D/TZVP/IEFPCM(MeOH) level and subsequent TD-DFT calculations were performed using the PBE0 hybrid functional. Despite the large pool of equilibrium conformers found for the investigated compounds and the known limitations of the level of theory employed, the computational protocol was able to reproduce the experimental ECD spectra of the stereoisomers of 1. The main contribution to the overall chiroptical properties was found to arise from the absolute configuration of the chiral center in α-position to the resorcinol moiety. Based on this evidence, a thorough conformational analysis was performed on the optimized DFT conformers, which revealed the occurrence of a different equilibrium between conformational patterns for the diastereomers of fenoterol: the (R,R')/(S,S') enantiomeric pair showed a higher population of folded conformations than the (R,S')/(S,R') pair.


Assuntos
Fenoterol/química , Dicroísmo Circular/métodos , Conformação Molecular , Análise Espectral/métodos , Estereoisomerismo
11.
Anal Bioanal Chem ; 405(29): 9477-87, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24121469

RESUMO

Fenoterol, a fast-acting ß2-adrenergic agonist, is used in the therapy of obstructive pulmonary diseases and for the inhibition of premature labour obstetrics. Doping control for ß2-agonists, which are prohibited in sports by the World Anti-Doping Agency, is commonly performed by liquid chromatography/mass spectrometry after hydrolysis of phase II metabolites. The continuing development of analytical procedures has led to direct injection of urine samples without sample preparation becoming a viable tool. For the detection of substances without sample preparation, including hydrolysis, detailed information of the phase II metabolism of the substances is essential. In this study, human S9 fractions of different tissues and two recombinant sulfotransferases were investigated for their potential to form fenoterol sulfoconjugates, which were characterised in detail. Two mono-sulfoconjugates and one bis-sulfoconjugate were synthesised and their structures confirmed by liquid chromatography­high-resolution/high-accuracy mass spectrometry. All of the metabolites were identified as esterified phenolic compounds. Excretion studies with orally and inhalatively administered fenoterol proved the occurrence of the sulfoconjugates in vivo. Inhalatively administered fenoterol resulted in the detection of the two monosulfoconjugates in low amounts in urine due to the lower inhalation dose of fenoterol compared to the oral dose. After oral uptake of fenoterol, the two mono-sulfoconjugates and a fenoterol bis-sulfoconjugate were detected in urine. This is the first report of the bis-sulfoconjugate.


Assuntos
Fenoterol/química , Fenoterol/urina , Administração por Inalação , Adulto , Cromatografia Líquida de Alta Pressão , Feminino , Fenoterol/administração & dosagem , Humanos , Fígado/química , Fígado/metabolismo , Espectrometria de Massas , Estrutura Molecular
12.
J Mol Model ; 19(11): 4919-30, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24043542

RESUMO

The ß2 adrenergic receptor (ß2-AR) has become a model system for studying the ligand recognition process and mechanism of the G protein coupled receptors activation. In the present study stereoisomers of fenoterol and some of its derivatives (N = 94 molecules) were used as molecular probes to identify differences in stereo-recognition interactions between ß2-AR and structurally similar agonists. The present study aimed at determining the 3D molecular models of the fenoterol derivative-ß2-AR complexes. Molecular models of ß2-AR have been developed by using the crystal structure of the human ß2-AR T4 lysozyme fusion protein with bound (S)-carazolol (PDB ID: 2RH1) and more recently reported structure of a nanobody-stabilized active state of the ß2-AR with the bound full agonist BI-167107 (PDB ID: 3P0G). The docking procedure allowed us to study the similarities and differences in the recognition binding site(s) for tested ligands. The agonist molecules occupied the same binding region, between TM III, TM V, TM VI and TM VII. The residues identified by us during docking procedure (Ser203, Ser207, Asp113, Lys305, Asn312, Tyr308, Asp192) were experimentally indicated in functional and biophysical studies as being very important for the agonist-receptor interactions. Moreover, the additional space, an extension of the orthosteric pocket, was identified and described. Furthermore, the molecular dynamics simulations were used to study the molecular mechanism of interaction between ligands ((R,R')- and (S,S')-fenoterol) and ß2-AR. Our research offers new insights into the ligand stereoselective interaction with one of the most important GPCR member. This study may also facilitate the design of improved selective medications, which can be used to treat, prevent and control heart failure symptoms.


Assuntos
Fenoterol/química , Receptores Adrenérgicos beta 2/química , Agonistas de Receptores Adrenérgicos beta 2/química , Sítios de Ligação , Fenoterol/análogos & derivados , Humanos , Ligantes , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Receptores Acoplados a Proteínas G/metabolismo , Estereoisomerismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-23872161

RESUMO

Due to the lack of sensitivity in current methods for the determination of fenoterol (Fen), a rapid LC-MS/MS method was developed for the determination of (R,R')-Fen and (R,R';S,S')-Fen in plasma and urine. The method was fully validated and was linear from 50pg/ml to 2000pg/ml for plasma and from 2.500ng/ml to 160ng/ml for urine with a lower limit of quantitation of 52.8pg/ml in plasma. The coefficient of variation was <15% for the high QC standards and <10% for the low QC standards in plasma and was <15% for the high and low QC standards in urine. The relative concentrations of (R,R')-Fen and (S,S')-Fen were determined using a chirobiotic T chiral stationary phase. The method was used to determine the concentration of (R,R')-Fen in plasma and urine samples obtained in an oral cross-over study of (R,R')-Fen and (R,R';S,S')-Fen formulations. The results demonstrated a potential pre-systemic enantioselective interaction in which the (S,S')-Fen reduces the sulfation of the active (R,R')-Fen. The data suggest that a non-racemic mixture of the Fen enantiomers may provide better bioavailability of the active (R,R')-Fen for use in the treatment of cardiovascular disease.


Assuntos
Agonistas Adrenérgicos/sangue , Agonistas Adrenérgicos/urina , Cromatografia Líquida de Alta Pressão/métodos , Fenoterol/sangue , Fenoterol/urina , Espectrometria de Massas em Tandem/métodos , Agonistas Adrenérgicos/química , Fenoterol/química , Humanos , Sensibilidade e Especificidade , Estereoisomerismo
14.
J Pharmacol Exp Ther ; 343(1): 157-66, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22776956

RESUMO

Inhibition of cell proliferation by fenoterol and fenoterol derivatives in 1321N1 astrocytoma cells is consistent with ß(2)-adrenergic receptor (ß(2)-AR) stimulation. However, the events that result in fenoterol-mediated control of cell proliferation in other cell types are not clear. Here, we compare the effect of the ß(2)-AR agonists (R,R')-fenoterol (Fen) and (R,R')-4-methoxy-1-naphthylfenoterol (MNF) on signaling and cell proliferation in HepG2 hepatocarcinoma cells by using Western blotting and [(3)H]thymidine incorporation assays. Despite the expression of ß(2)-AR, no cAMP accumulation was observed when cells were stimulated with isoproterenol or Fen, although the treatment elicited both mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt activation. Unexpectedly, isoproterenol and Fen promoted HepG2 cell growth, but MNF reduced proliferation together with increased apoptosis. The mitogenic responses of Fen were attenuated by 3-(isopropylamino)-1-[(7-methyl-4-indanyl)oxy]butan-2-ol (ICI 118,551), a ß(2)-AR antagonist, whereas those of MNF were unaffected. Because of the coexpression of ß(2)-AR and cannabinoid receptors (CBRs) and their impact on HepG2 cell proliferation, these Gα(i)/Gα(o)-linked receptors may be implicated in MNF signaling. Cell treatment with (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-napthalenylmethanone (WIN 55,212-2), a synthetic agonist of CB(1)R and CB(2)R, led to growth inhibition, whereas inverse agonists of these receptors blocked MNF mitogenic responses without affecting Fen signaling. MNF responses were sensitive to pertussis toxin. The ß(2)-AR-deficient U87MG cells were refractory to Fen, but responsive to the antiproliferative actions of MNF and WIN 55,212-2. The data indicate that the presence of the naphthyl moiety in MNF results in functional coupling to the CBR pathway, providing one of the first examples of a dually acting ß(2)-AR-CBR ligand.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Apoptose/fisiologia , Carcinoma Hepatocelular/metabolismo , Fenoterol/farmacologia , Neoplasias Hepáticas/metabolismo , Receptores de Canabinoides/metabolismo , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Fenoterol/química , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia
15.
Chirality ; 24(10): 796-803, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22744891

RESUMO

The presystemic sulfate conjugation of the stereoisomers of 4'-methoxyfenoterol, (R,R')-MF, (S,S')-MF, (R,S')-MF, and (S,R')-MF, was investigated using commercially available human intestinal S9 fractions, a mixture of sulfotransferase (SULT) enzymes. The results indicate that the sulfation was stereospecific and that an S-configuration at the ß-OH carbon of the MF molecule enhanced the maximal formation rates with (S,R')-MF (S,S')-MF (R,S')-MF ≈ (R,R')-MF, and competition studies demonstrated that (S,R')-MF is an effective inhibitor of (R,R')-MF sulfation (IC(50) = 60 µM). In addition, the results from a cDNA-expressed human SULT isoform screen indicated that SULT1A1, SULT1A3, and SULT1E1 can mediate the sulfation of all four MF stereoisomers. Previously published molecular models of SULT1A3 and SULT1A1 were used in docking simulations of the MF stereoisomers using Molegro Virtual Docker. The models of the MF-SULT1A3 and MF-SULT1A1 complexes indicate that each of the two chiral centers of MF molecule plays a role in the observed relative stabilities. The observed stereoselectivity is the result of multiple hydrogen bonding interactions and induced conformational changes within the substrate-enzyme complex. In conclusion, the results suggest that a formulation developed from a mixture of (R,R')-MF and (S,R')-MF may increase the oral bioavailability of (R,R')-MF.


Assuntos
Fenoterol/análogos & derivados , Sulfatos/química , Sulfotransferases/metabolismo , Sítios de Ligação , Simulação por Computador , Fenoterol/química , Humanos , Modelos Moleculares , Isoformas de Proteínas/metabolismo , Estereoisomerismo , Sulfotransferases/genética
16.
Mol Pharmacol ; 81(6): 846-54, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22434858

RESUMO

G protein-coupled receptors (GPCRs) are integral membrane proteins that change conformation after ligand binding so that they can transduce signals from an extracellular ligand to a variety of intracellular components. The detailed interaction of a molecule with a G protein-coupled receptor is a complicated process that is influenced by the receptor conformation, thermodynamics, and ligand conformation and stereoisomeric configuration. To better understand the molecular interactions of fenoterol analogs with the ß(2)-adrenergic receptor, we developed a new agonist radioligand for binding assays. [(3)H](R,R')-methoxyfenoterol was used to probe the binding affinity for a series of fenoterol stereoisomers and derivatives. The results suggest that the radioligand binds with high affinity to an agonist conformation of the receptor, which represents approximately 25% of the total ß(2)-adrenoceptor (AR) population as determined with the antagonist [(3)H]CGP-12177. The ß(2)-AR agonists tested in this study have considerably higher affinity for the agonist conformation of the receptor, and K(i) values determined for fenoterol analogs model much better the cAMP activity of the ß(2)-AR elicited by these ligands. The thermodynamics of binding are also different when interacting with an agonist conformation, being purely entropy-driven for each fenoterol isomer, rather than a mixture of entropy and enthalpy when the fenoterol isomers binding was determined using [(3)H]CGP-12177. Finally, computational modeling identified the molecular interactions involved in agonist binding and allow for the prediction of additional novel ß(2)-AR agonists. The study underlines the possibility of using defined radioligand structure to probe a specific conformation of such shape-shifting system as the ß(2)-adrenoceptor.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Fenoterol/análogos & derivados , Receptores Adrenérgicos beta 2/efeitos dos fármacos , Agonistas Adrenérgicos beta/química , Linhagem Celular , Fenoterol/química , Fenoterol/farmacologia , Humanos , Modelos Moleculares , Propanolaminas/química , Propanolaminas/farmacologia , Ensaio Radioligante , Receptores Adrenérgicos beta 2/química , Termodinâmica
17.
Cardiovasc Drugs Ther ; 26(2): 101-8, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22328006

RESUMO

PURPOSE: A salutary effect of ß(2) adrenergic receptor (AR) agonist, fenoterol has been demonstrated in a rat model of post-myocardial infarction (MI) dilated cardiomyopathy (DCM). Recent reports on single cardiomyocyte experiments suggested that out of two enantiomers, RR and SS, that constitute a racemic mixture of fenoterol, only RR-enantiomer is an active component that might be a promising new drug for treatment of chronic heart failure. The objective of this study was to compare the efficacy of the RR enantiomer of fenoterol with efficacy of racemic fenoterol, and SS, an inactive enantiomer, in whole animal experimental models of DCM. METHODS: Two weeks after induction of MI by permanent ligation of the anterior descending coronary artery early cardiac remodeling and MI size were assessed via echocardiography and rats were divided into treatment groups. Treatment (placebo, racemic fenoterol, RR- or SS-enantiomers of fenoterol) continued for 6 months while progression of DCM was followed by serial echocardiography. RESULTS: Compared with untreated rats, rats treated with racemic fenoterol demonstrated previously described attenuation of LV remodeling, functional decline and the arrest of the MI expansion during the first 2 months of treatment. On the contrary, the treatment with either RR-, or with SS-enantiomers of fenoterol was completely ineffective. CONCLUSION: The conclusion drawn on the basis of previous experiments with single cardiomyocytes that RR-enantiomer of fenoterol represents an active component of racemic fenoterol and can be further investigated as a new drug for treatment of chronic heart failure was not confirmed in the whole animal model of DCM.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Cardiomiopatia Dilatada/tratamento farmacológico , Fenoterol/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Agonistas de Receptores Adrenérgicos beta 2/química , Animais , Cardiomiopatia Dilatada/fisiopatologia , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/fisiopatologia , Ecocardiografia/métodos , Fenoterol/química , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Masculino , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Ratos , Ratos Wistar , Estereoisomerismo , Remodelação Ventricular/fisiologia
18.
Chirality ; 23 Suppl 1: E1-6, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21618615

RESUMO

The ß(2) adrenergic receptor (ß(2)-AR) is a model system for studying the ligand recognition process in G protein-coupled receptors. Fenoterol (FEN) is a ß(2)-AR selective agonist that has two centers of chirality and exists as four stereoisomers. Radioligand binding studies determined that stereochemistry greatly influences the binding affinity. Subsequent Van't Hoff analysis shows very different thermodynamics of binding depending on the stereoconfiguration of the molecule. The binding of (S,x')-isomers is almost entirely enthalpy controlled whereas binding of (R,x')-isomers is purely entropy driven. Stereochemistry of FEN molecule also affects the coupling of the receptor to different G proteins. In a rat cardiomyocyte contractility model, (R,R')-FEN was shown to selectively activate G(s) protein signaling while the (S,R')-isomer activated both G(i) and G(s) protein. The overall data demonstrate that the chirality at the two chiral centers of the FEN molecule influences the magnitude of binding affinity, thermodynamics of local interactions within the binding site, and the global mechanism of ß(2)-AR activation. Differences in thermodynamic parameters and nonuniform G-protein coupling suggest a mechanism of chiral recognition in which observed enantioselectivities arise from the interaction of the (R,x')-FEN stereoisomers with a different receptor conformation than the one with which the (S,x')-isomer interacts.


Assuntos
Fenoterol/química , Receptores Adrenérgicos beta 2/química , Agonistas de Receptores Adrenérgicos beta 2/química , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Animais , Linhagem Celular Tumoral , Entropia , Fenoterol/farmacologia , Proteínas de Ligação ao GTP/química , Temperatura Alta , Humanos , Cinética , Ligantes , Modelos Químicos , Ratos , Estereoisomerismo , Relação Estrutura-Atividade , Temperatura , Termodinâmica
19.
J Mol Model ; 17(9): 2353-66, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21365223

RESUMO

Cannabinoid and adrenergic receptors belong to the class A (similar to rhodopsin) G protein coupled receptors. Docking of agonists and antagonists to CB(1) and CB(2) cannabinoid receptors revealed the importance of a centrally located rotamer toggle switch and its possible participation in the mechanism of agonist/antagonist recognition. The switch is composed of two residues, F3.36 and W6.48, located on opposite transmembrane helices TM3 and TM6 in the central part of the membranous domain of cannabinoid receptors. The CB(1) and CB(2) receptor models were constructed based on the adenosine A(2A) receptor template. The two best scored conformations of each receptor were used for the docking procedure. In all poses (ligand-receptor conformations) characterized by the lowest ligand-receptor intermolecular energy and free energy of binding the ligand type matched the state of the rotamer toggle switch: antagonists maintained an inactive state of the switch, whereas agonists changed it. In case of agonists of ß(2)AR, the (R,R) and (S,S) stereoisomers of fenoterol, the molecular dynamics simulations provided evidence of different binding modes while preserving the same average position of ligands in the binding site. The (S,S) isomer was much more labile in the binding site and only one stable hydrogen bond was created. Such dynamical binding modes may also be valid for ligands of cannabinoid receptors because of the hydrophobic nature of their ligand-receptor interactions. However, only very long molecular dynamics simulations could verify the validity of such binding modes and how they affect the process of activation.


Assuntos
Simulação de Dinâmica Molecular , Receptor CB1 de Canabinoide/química , Receptor CB2 de Canabinoide/química , Receptores Adrenérgicos beta 2/química , Motivos de Aminoácidos , Ácidos Araquidônicos/química , Sítios de Ligação , Dronabinol/química , Endocanabinoides , Fenoterol/química , Humanos , Ligação de Hidrogênio , Indóis/química , Ligantes , Piperidinas/química , Alcamidas Poli-Insaturadas/química , Pirazóis/química , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/antagonistas & inibidores , Estereoisomerismo , Termodinâmica
20.
Biomed Chromatogr ; 24(10): 1125-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20853467

RESUMO

The development of methods for the separation of the enantiomers of fenoterol by chiral HPLC and capillary zone electrophoresis (CZE) is described. For the HPLC separation precolumn fluorescence derivatization with naphthyl isocyanate was applied. The resulting urea derivatives were resolved on a cellulose tris(3,5-dimethylphenylcarbamate)-coated silica gel column employing a column switching procedure. Detection was carried out fluorimetrically with a detection limit in the low ng/mL range. The method was adapted to the determination of fenoterol enantiomers in rat heart perfusates using liquid-liquid extraction. As an alternative a CE method was used for the direct separation of fenoterol enantiomers comparing different cyclodextrin derivatives as chiral selectors.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Eletroforese Capilar/métodos , Fenoterol/química , Agonistas de Receptores Adrenérgicos beta 2/química , Agonistas de Receptores Adrenérgicos beta 2/isolamento & purificação , Animais , Fenoterol/isolamento & purificação , Miocárdio/química , Ratos , Estereoisomerismo , Simpatomiméticos/química , Simpatomiméticos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...