Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41.163
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 463, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39269473

RESUMO

The fecal microbiome is identical to the gut microbial communities and provides an easy access to the gut microbiome. Therefore, fecal microbial transplantation (FMT) strategies have been used to alter dysbiotic gut microbiomes with healthy fecal microbiota, successfully alleviating various metabolic disorders, such as obesity, type 2 diabetes, and inflammatory bowel disease (IBD). However, the success of FMT treatment is donor-dependent and variations in gut microbes cannot be avoided. This problem may be overcome by using a cultured fecal microbiome. In this study, a human fecal microbiome was cultured using five different media; growth in brain heart infusion (BHI) media resulted in the highest microbial community cell count. The microbiome (16S rRNA) data demonstrated that the cultured microbial communities were similar to that of the original fecal sample. Therefore, the BHI-cultured fecal microbiome was selected for cultured FMT (cFMT). Furthermore, a dextran sodium sulfate (DSS)-induced mice-IBD model was used to confirm the impact of cFMT. Results showed that cFMT effectively alleviated IBD-associated symptoms, including improved gut permeability, restoration of the inflamed gut epithelium, decreased expression of pro-inflammatory cytokines (IFN-γ, TNF-α, IL-1, IL-6, IL-12, and IL-17), and increased expression of anti-inflammatory cytokines (IL-4 and IL-10). Thus, study's findings suggest that cFMT can be a potential alternative to nFMT. KEY POINTS: • In vitro fecal microbial communities were grown in a batch culture using five different media. • Fecal microbial transplantation was performed on DSS-treated mice using cultured and normal fecal microbes. • Cultured fecal microbes effectively alleviated IBD-associated symptoms.


Assuntos
Citocinas , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Fezes , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , RNA Ribossômico 16S , Transplante de Microbiota Fecal/métodos , Animais , Fezes/microbiologia , Camundongos , Humanos , Doenças Inflamatórias Intestinais/terapia , Doenças Inflamatórias Intestinais/microbiologia , Citocinas/metabolismo , RNA Ribossômico 16S/genética , Camundongos Endogâmicos C57BL , Sulfato de Dextrana , Masculino , Meios de Cultura/química , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação
2.
BMC Public Health ; 24(1): 2502, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39272049

RESUMO

BACKGROUND: Recreational water activities at beaches are popular among Canadians. However, these activities can increase the risk of recreational water illnesses (RWI) among beachgoers. Few studies have been conducted in Canada to determine the risk of these illnesses. This protocol describes the methodology for a study to determine the risk and burden of RWI due to exposure to fecal pollution at beaches in Canada. METHODS: This study will use a mixed-methods approach, consisting of a prospective cohort study of beachgoers with embedded qualitative research. The cohort study involves recruiting and enrolling participants at public beaches across Canada, ascertaining their water and sand contact exposure status, then following-up after seven days to determine the incidence of acute RWI outcomes. We will test beach water samples each recruitment day for culture-based E. coli, enterococci using rapid molecular methods, and microbial source tracking biomarkers. The study started in 2023 and will continue to 2025 at beaches in British Columbia, Manitoba, Ontario, and Nova Scotia. The target enrollment is 5000 beachgoers. Multilevel logistic regression models will be fitted to examine the relationships between water and sand contact and RWI among beachgoers. We will also examine differences in risks by beachgoer age, gender, and beach location and the influence of fecal indicator bacteria and other water quality parameters on these relationships. Sensitivity analyses will be conducted to examine the impact of various alternative exposure and outcome definitions on these associations. The qualitative research phase will include focus groups with beachgoers and key informant interviews to provide additional contextual insights into the study findings. The study will use an integrated knowledge translation approach. DISCUSSION: Initial implementation of the study at two Toronto, Ontario, beaches in 2023 confirmed that recruitment is feasible and that a high completion rate (80%) can be achieved for the follow-up survey. While recall bias could be a concern for the self-reported RWI outcomes, we will examine the impact of this bias in a negative control analysis. Study findings will inform future recreational water quality guidelines, policies, and risk communication strategies in Canada.


Assuntos
Praias , Humanos , Estudos Prospectivos , Canadá , Masculino , Feminino , Adulto , Microbiologia da Água , Recreação , Pesquisa Qualitativa , Adulto Jovem , Pessoa de Meia-Idade , Adolescente , Doenças Transmitidas pela Água/epidemiologia , Fezes/microbiologia
3.
Parasit Vectors ; 17(1): 387, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39267171

RESUMO

Soil-transmitted helminth (STH) infections account for a significant global health burden, necessitating mass drug administration with benzimidazole-class anthelmintics, such as albendazole (ALB), for morbidity control. However, ALB efficacy shows substantial variability, presenting challenges for achieving consistent treatment outcomes. We have explored the potential impact of the baseline gut microbiota on ALB efficacy in hookworm-infected individuals through microbiota profiling and machine learning (ML) techniques. Our investigation included 89 stool samples collected from hookworm-infected individuals that were analyzed by microscopy and quantitative PCR (qPCR). Of these, 44 were negative by microscopy for STH infection using the Kato-Katz method and qPCR 21 days after treatment, which entails a cure rate of 49.4%. Microbiota characterization was based on amplicon sequencing of the V3-V4 16S ribosomal RNA gene region. Alpha and beta diversity analyses revealed no significant differences between participants who were cured and those who were not cured, suggesting that baseline microbiota diversity does not influence ALB treatment outcomes. Furthermore, differential abundance analysis at the phylum, family and genus levels yielded no statistically significant associations between bacterial communities and ALB efficacy. Utilizing supervised ML models failed to predict treatment response accurately. Our investigation did not provide conclusive insights into the relationship between gut microbiota and ALB efficacy. However, the results highlight the need for future research to incorporate longitudinal studies that monitor changes in the gut microbiota related to the infection and the cure with ALB, as well as functional metagenomics to better understand the interaction of the microbiome with the drug, and its role, if there is any, in modulating anthelmintic treatment outcomes in STH infections. Interdisciplinary approaches integrating microbiology, pharmacology, genetics and data science will be pivotal in advancing our understanding of STH infections and optimizing treatment strategies globally.


Assuntos
Albendazol , Anti-Helmínticos , Fezes , Microbioma Gastrointestinal , Infecções por Uncinaria , Albendazol/uso terapêutico , Albendazol/farmacologia , Albendazol/administração & dosagem , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Anti-Helmínticos/uso terapêutico , Anti-Helmínticos/administração & dosagem , Infecções por Uncinaria/tratamento farmacológico , Fezes/parasitologia , Fezes/microbiologia , Feminino , Masculino , RNA Ribossômico 16S/genética , Adulto , Resultado do Tratamento , Animais , Adulto Jovem , Pessoa de Meia-Idade , Ancylostomatoidea/efeitos dos fármacos , Ancylostomatoidea/genética , Adolescente , Criança
4.
Pol J Microbiol ; 73(3): 403-410, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39268956

RESUMO

Vancomycin-resistant Enterococcus faecium (VRE) has been detected in Türkiye. Only limited information is available on its dissemination in the central regions of the country. This study describes the first epidemiological characterization of VRE clinical isolates detected in patients in a hospital in the province of Aksaray. In this one-year study conducted between 2021 and 2022, stool samples from intensive care unit patients were screened for VRE using the phenotypic E-test method, and the antibiotic sensitivity test was analyzed by using the VITEK® 2 system. A molecular assay for confirmation of species level was carried out by 16S rRNA gene-based sequencing and testing for antibiotic resistance (vanA or vanB) and virulence factor-encoding genes (esp, asa1, and hyl). Further, genotypic characterization was determined by macro-restriction fragment pattern analysis (MRFPA) of genomic DNA digested with SmaI restriction enzyme. Of the total 350 Enterococcus positive patients from different hospital intensive care units, 22 (6.3%) were positive for VRE using the phenotypic E-test method. All isolates showed resistance to ampicillin, ciprofloxacin, vancomycin, and teicoplanin and positive amplification for the vanA gene. However, none of the isolates was positive for the vanB gene. The most prevalent virulence gene was esp. The results indicate that the isolates are persistent in the hospital environment and subsequently transmitted to hospitalized patients, thus representing challenges to an outbreak and infection control. These study results would also help formulate more effective strategies to reduce the transmission and propagation of VRE contamination in various hospital settings.


Assuntos
Antibacterianos , Proteínas de Bactérias , Enterococcus faecium , Genótipo , Infecções por Bactérias Gram-Positivas , Unidades de Terapia Intensiva , Testes de Sensibilidade Microbiana , Enterococos Resistentes à Vancomicina , Humanos , Enterococcus faecium/genética , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/isolamento & purificação , Enterococos Resistentes à Vancomicina/genética , Enterococos Resistentes à Vancomicina/isolamento & purificação , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/epidemiologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Fatores de Virulência/genética , Vancomicina/farmacologia , Fezes/microbiologia , RNA Ribossômico 16S/genética , Fenótipo , Masculino , Feminino , Resistência a Vancomicina/genética , Pessoa de Meia-Idade
5.
Int J Mol Sci ; 25(17)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39273567

RESUMO

Recent evidence indicates that the gut microbiota (GM) has a significant impact on the inflammatory bowel disease (IBD) progression. Our aim was to investigate the GM profiles, the Microbial Dysbiosis Index (MDI) and the intestinal microbiota-associated markers in relation to IBD clinical characteristics and disease state. We performed 16S rRNA metataxonomy on both stools and ileal biopsies, metabolic dysbiosis tests on urine and intestinal permeability and mucosal immunity activation tests on the stools of 35 IBD paediatric patients. On the GM profile, we assigned the MDI to each patient. In the statistical analyses, the MDI was correlated with clinical parameters and intestinal microbial-associated markers. In IBD patients with high MDI, Gemellaceae and Enterobacteriaceae were increased in stools, and Fusobacterium, Haemophilus and Veillonella were increased in ileal biopsies. Ruminococcaceae and WAL_1855D were enriched in active disease condition; the last one was also positively correlated to MDI. Furthermore, the MDI results correlated with PUCAI and Matts scores in ulcerative colitis patients (UC). Finally, in our patients, we detected metabolic dysbiosis, intestinal permeability and mucosal immunity activation. In conclusion, the MDI showed a strong association with both severity and activity of IBD and a positive correlation with clinical scores, especially in UC. Thus, this evidence could be a useful tool for the diagnosis and prognosis of IBD.


Assuntos
Biomarcadores , Disbiose , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Medicina de Precisão , Humanos , Disbiose/microbiologia , Criança , Feminino , Masculino , Doenças Inflamatórias Intestinais/microbiologia , Adolescente , Medicina de Precisão/métodos , RNA Ribossômico 16S/genética , Fezes/microbiologia , Pré-Escolar , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Mucosa Intestinal/metabolismo , Íleo/microbiologia , Íleo/patologia , Colite Ulcerativa/microbiologia
6.
Molecules ; 29(17)2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39274868

RESUMO

Tea is a highly popular beverage, primarily due to its unique flavor and aroma as well as its perceived health benefits. The impact of tea on the gut microbiome could be an important means by which tea exerts its health benefits since the link between the gut microbiome and health is strong. This review provided a discussion of the bioactive compounds in tea and the human gut microbiome and how the gut microbiome interacts with tea polyphenols. Importantly, studies were compiled on the impact of differently processed tea, which contains different polyphenol profiles, on the gut microbiota from in vivo animal feeding trials, in vitro human fecal fermentation experiments, and in vivo human feeding trials from 2004-2024. The results were discussed in terms of different tea types and how their impacts are related to or different from each other in these three study groups.


Assuntos
Microbioma Gastrointestinal , Polifenóis , Chá , Microbioma Gastrointestinal/efeitos dos fármacos , Chá/química , Humanos , Polifenóis/farmacologia , Polifenóis/química , Animais , Fermentação , Fezes/microbiologia
7.
Nutrients ; 16(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39275142

RESUMO

Immunoglobulin A (IgA) is a major gut antibody that coats commensal gut bacteria and contributes to shaping a stable gut bacterial composition. Although previous studies have shown that cyclic oligosaccharides, including cyclic nigerosyl-1,6-nigerose (CNN) and cyclodextrins (CDs, including αCD, ßCD, and γCD), alter the gut bacterial composition, it remains unclear whether cyclic oligosaccharides modify the IgA coating of gut bacteria, which relates to cyclic oligosaccharide-induced alteration of the gut bacterial composition. To address this issue, mice were maintained for 12 weeks on diets containing CNN, αCD, ßCD, or γCD; the animals' feces were evaluated for their bacterial composition and the IgA coating index (ICI), a measure of the degree of IgA coating of bacteria. We observed that the intake of each cyclic oligosaccharide altered the gut bacterial composition, with changes in the ICI found at both the phylum and genus levels. The ICI for Bacillota, Lachnospiraceae NK4A136 group, UC Lachnospiraceae, and Tuzzerella were significantly and positively correlated with the relative abundance (RA) in total bacteria for these bacteria; in contrast, significant correlations were not seen for other phyla and genera. Our observations suggest that cyclic oligosaccharide-induced modulation of the IgA coating of gut bacteria may partly relate to changes in the community structure of the gut bacteria.


Assuntos
Fezes , Microbioma Gastrointestinal , Imunoglobulina A , Oligossacarídeos , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Oligossacarídeos/farmacologia , Camundongos , Fezes/microbiologia , Bactérias/efeitos dos fármacos , Masculino , Ciclodextrinas/farmacologia , Camundongos Endogâmicos C57BL
8.
Nutrients ; 16(17)2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39275152

RESUMO

Wild rice (WLD) attenuated hyperglycemia, hyperlipidemia and chronic inflammation in mice receiving a high-fat diet (HFD) versus white rice (WHR), but the underlying mechanism is not well understood. We examined the influence of HFD + WLD on gut microbiota, short chain fatty acids (SCFAs) and the correlation with metabolic or inflammatory markers in mice versus HFD + WHR. C57BL/6J mice received HFD + 26 g weight (wt) % WHR or WLD or 13 g wt% WHR + 13 g wt% WLD (WTWD) for 12 weeks. Plasma levels of glucose, cholesterol and triglycerides, insulin resistance and inflammatory markers after overnight fasting were lower, and the abundances of fecal Lactobacillus gasseri and propionic acid were higher in HFD + WLD-fed mice than in HFD + WHR-fed mice. The anti-inflammatory effects of HFD + WTWD were weaker than HFD + WLD but were greater than those in HFD + WHR-fed mice. Abundances of fecal Lactobacillus gasseri and propionic acid in mice receiving HFD + WLD were higher than those in mice fed with HFD + WHR. The abundances of fecal L. gasseri and propionic acid negatively correlated with metabolic and inflammatory markers. The findings of the present study suggest that WLD attenuated metabolic and inflammatory disorders in mice on HFD. Interactions between WLD components and gut microbiota may upregulate fecal SCFAs, and the latter may be attributed to the benefits of WLD on metabolism and inflammation in mice on HFD.


Assuntos
Biomarcadores , Dieta Hiperlipídica , Disbiose , Ácidos Graxos Voláteis , Fezes , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Oryza , Animais , Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Ácidos Graxos Voláteis/metabolismo , Masculino , Camundongos , Fezes/microbiologia , Fezes/química , Biomarcadores/sangue , Inflamação , Glicemia/metabolismo , Resistência à Insulina , Triglicerídeos/sangue , Propionatos
9.
Nutrients ; 16(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39275232

RESUMO

Probiotics have shown potential in managing hypercholesterolemia and related metabolic conditions. This study evaluated the effects of Lactocaseibacillus (Lactobacillus) paracasei sup. paracasei TISTR 2593 on the gut microbiome and metabolic health in patients with hypercholesterolemia, and was registered in the Thai Clinical Trial Registry (TCTR 20220917002). In a randomized, double-blind, placebo-controlled trial, 22 hypercholesterolemic participants received either the probiotic or a placebo daily for 90 days. Fecal samples collected before and after the intervention revealed significant microbiome changes, including a decrease in Subdoligranulum, linked to rheumatoid arthritis, and an increase in Flavonifractor, known for its anti-inflammatory properties. Additionally, the probiotic group exhibited a significant reduction in low-density lipoprotein cholesterol (LDL-C) levels. These findings suggest that L. paracasei TISTR 2593 can modulate the gut microbiome and improve metabolic health, warranting further investigation into its mechanisms and long-term benefits.


Assuntos
LDL-Colesterol , Fezes , Microbioma Gastrointestinal , Hipercolesterolemia , Probióticos , Humanos , Probióticos/administração & dosagem , Probióticos/uso terapêutico , Microbioma Gastrointestinal/efeitos dos fármacos , Hipercolesterolemia/terapia , Hipercolesterolemia/sangue , Masculino , Feminino , Método Duplo-Cego , Pessoa de Meia-Idade , Fezes/microbiologia , LDL-Colesterol/sangue , Lacticaseibacillus paracasei , Adulto , Suplementos Nutricionais , Idoso
10.
Nutrients ; 16(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39275234

RESUMO

Previous studies have indicated a critical role of intestinal bacteria in the pathogenesis of ulcerative colitis (UC). B. salyersiae is a commensal species from the human gut microbiota. However, what effect it has on UC development has not been investigated. In the present study, we explored this issue and demonstrated for the first time that oral administration of B. salyersiae CSP6, a bacterium previously isolated from the fecal sample of a healthy individual, protected against dextran sulfate sodium (DSS)-induced colitis in C57BL/6J mice. In particular, B. salyersiae CSP6 improved mucosal damage and attenuated gut dysbiosis in the colon of DSS-fed mice. Specifically, B. salyersiae CSP6 decreased the population of pathogenic Escherichia-Shigella spp. and increased the abundance of probiotic Dubosiella spp. and Bifidobacterium pseudolongum. Additionally, by reshaping the colonic microbiota, B. salyersiae CSP6 remarkably increased the fecal concentrations of equol, 8-deoxylactucin, and tiglic acid, three beneficial metabolites that have been well documented to exert strong anti-inflammatory effects. Altogether, our study provides novel evidence that B. salyersiae is a candidate probiotic species with potential anti-colitis properties in the human colon, which has applications for the development of next-generation probiotics.


Assuntos
Bacteroides , Colo , Sulfato de Dextrana , Modelos Animais de Doenças , Fezes , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Probióticos , Animais , Probióticos/farmacologia , Humanos , Colo/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Bacteroides/isolamento & purificação , Fezes/microbiologia , Masculino , Colite/microbiologia , Colite/induzido quimicamente , Disbiose/microbiologia , Colite Ulcerativa/microbiologia
11.
Nutrients ; 16(17)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39275259

RESUMO

Traditional fermented foods are known to offer cardiovascular health benefits. However, the potential of fermented Chinese chives (FCC) in reducing coronary heart disease (CHD) remains unclear. This study employed anaerobic fermentation to investigate Lactiplantibacillus plantarum (L. plantarum) P470 from FCC. The results indicated that L. plantarum P470 enhanced hydroxyl radical scavenging and exhibited anti-inflammatory effects on RAW264.7 macrophages in the fecal fermentation supernatant of CHD patients. These effects were attributed to the modulation of gut microbiota and metabolites, including short-chain fatty acids (SCFAs). Specifically, L. plantarum P470 increased the abundance of Bacteroides and Lactobacillus while decreasing Escherichia-Shigella, Enterobacter, Veillonella, Eggerthella, and Helicobacter in CHD patient fecal samples. Furthermore, L. plantarum P470 regulated the biosynthesis of unsaturated fatty acids and linoleic acid metabolism. These findings suggest that L. plantarum P470 from FCC can improve the fecal physiological status in patients with CHD by modulating intestinal microbiota, promoting SCFA production, and regulating lipid metabolism.


Assuntos
Doença das Coronárias , Ácidos Graxos Voláteis , Fezes , Alimentos Fermentados , Microbioma Gastrointestinal , Lactobacillus plantarum , Humanos , Fezes/microbiologia , Doença das Coronárias/microbiologia , Camundongos , Animais , Alimentos Fermentados/microbiologia , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/análise , Masculino , Fermentação , Feminino , Pessoa de Meia-Idade , Células RAW 264.7 , Idoso , Probióticos/farmacologia
12.
Nutrients ; 16(17)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39275313

RESUMO

A confined environment is a special kind of extreme working environment, and prolonged exposure to it tends to increase psychological stress and trigger rhythmic disorders, emotional abnormalities and other phenomena, thus seriously affecting work efficiency. However, the mechanisms through which confined environments affect human health remain unclear. Therefore, this study simulates a strictly controlled confined environment and employs integrative multi-omics techniques to analyze the alterations in gut microbiota and metabolites of workers under such conditions. The aim is to identify metabolic biomarkers and elucidate the relationship between gut microbiota and metabolites. High-throughput sequencing results showed that a confined environment significantly affects gut microbial composition and clusters subjects' gut microbiota into two enterotypes (Bla and Bi). Differences in abundance of genera Bifidobacterium, Collinsella, Ruminococcus_gnavus_group, Faecalibacterium, Bacteroides, Prevotella and Succinivibronaceae UCG-002 were significant. Untarget metabolomics analyses showed that the confined environment resulted in significant alterations in intestinal metabolites and increased the activity of the body's amino acid metabolism and bile acid metabolism pathways. Among the metabolites that differed after confined environment living, four metabolites such as uric acid and beta-PHENYL-gamma-aminobutyric acid may be potential biomarkers. Further correlation analysis demonstrated a strong association between the composition of the subjects' gut microbiota and these four biomarkers. This study provides valuable reference data for improving the health status of workers in confined environments and facilitates the subsequent proposal of targeted prevention and treatment strategies.


Assuntos
Biomarcadores , Microbioma Gastrointestinal , Sequenciamento de Nucleotídeos em Larga Escala , Metabolômica , Microbioma Gastrointestinal/fisiologia , Humanos , Metabolômica/métodos , Masculino , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Adulto , Fezes/microbiologia , Metaboloma
13.
Nutrients ; 16(17)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39275312

RESUMO

Chronic kidney disease (CKD) affects more than 850 million people worldwide, contributing to morbidity and mortality, particularly through cardiovascular disease (CVD). The altered composition in CKD patients leads to increased production and absorption of uremic toxins such as trimethylamine (TMA) and its oxidized form, trimethylamine N-oxide (TMAO), which are associated with cardiovascular risks. This study investigated the potential of supplementary interventions with high-carotenoid-content gac fruit extract and probiotics to mitigate serum TMAO by modulating the gut microbiota. We conducted an animal study involving 48 male Wistar rats, divided into six groups: the control, CKD control, and four treatment groups receiving gac fruit extract, carotenoid extract, or combinations with Ligilactobacillus salivarius and Lactobacillus crispatus and Lactobacillus casei as a standard probiotic. CKD was induced in rats using cisplatin and they were supplemented with choline to enhance TMA production. The measures included serum creatinine, TMAO levels, gut microbiota composition, and the expression of fecal TMA lyase and intestinal zonula occluden-1 (ZO-1). CKD rats showed increased TMA production and elevated serum levels of TMAO. Treatment with gac fruit extract and selective probiotics significantly altered the composition of the gut microbiota by decreasing Actinobacteriota abundance and increasing the abundance of Bacteroides. This combination effectively promoted ZO-1 expression, reduced fecal TMA lyase, and subsequently lowered serum TMAO levels, demonstrating the therapeutic potential of these interventions. Our results highlight the benefits of gac fruit extract combined with probiotics for the effective reduction in serum TMAO levels in rats with CKD, supporting the further exploration of dietary and microbial interventions to improve outcomes in patients with CKD.


Assuntos
Frutas , Microbioma Gastrointestinal , Metilaminas , Extratos Vegetais , Probióticos , Ratos Wistar , Insuficiência Renal Crônica , Animais , Metilaminas/sangue , Probióticos/farmacologia , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/sangue , Masculino , Extratos Vegetais/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Ratos , Frutas/química , Modelos Animais de Doenças , Fezes/microbiologia , Carotenoides/farmacologia , Proteína da Zônula de Oclusão-1/metabolismo
14.
Nutrients ; 16(17)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39275319

RESUMO

Autism Spectrum Disorder (ASD) is a multifactorial disorder involving genetic and environmental factors leading to pathophysiologic symptoms and comorbidities including neurodevelopmental disorders, anxiety, immune dysregulation, and gastrointestinal (GI) abnormalities. Abnormal intestinal permeability has been reported among ASD patients and it is well established that disturbances in eating patterns may cause gut microbiome imbalance (i.e., dysbiosis). Therefore, studies focusing on the potential relationship between gut microbiota and ASD are emerging. We compared the intestinal bacteriome and mycobiome of a cohort of ASD subjects with their non-ASD siblings. Differences between ASD and non-ASD subjects include a significant decrease at the phylum level in Cyanobacteria (0.015% vs. 0.074%, p < 0.0003), and a significant decrease at the genus level in Bacteroides (28.3% vs. 36.8%, p < 0.03). Species-level analysis showed a significant decrease in Faecalibacterium prausnitzii, Prevotella copri, Bacteroides fragilis, and Akkermansia municiphila. Mycobiome analysis showed an increase in the fungal Ascomycota phylum (98.3% vs. 94%, p < 0.047) and an increase in Candida albicans (27.1% vs. 13.2%, p < 0.055). Multivariate analysis showed that organisms from the genus Delftia were predictive of an increased odds ratio of ASD, whereas decreases at the phylum level in Cyanobacteria and at the genus level in Azospirillum were associated with an increased odds ratio of ASD. We screened 24 probiotic organisms to identify strains that could alter the growth patterns of organisms identified as elevated within ASD subject samples. In a preliminary in vivo preclinical test, we challenged wild-type Balb/c mice with Delftia acidovorans (increased in ASD subjects) by oral gavage and compared changes in behavioral patterns to sham-treated controls. An in vitro biofilm assay was used to determine the ability of potentially beneficial microorganisms to alter the biofilm-forming patterns of Delftia acidovorans, as well as their ability to break down fiber. Downregulation of cyanobacteria (generally beneficial for inflammation and wound healing) combined with an increase in biofilm-forming species such as D. acidovorans suggests that ASD-related GI symptoms may result from decreases in beneficial organisms with a concomitant increase in potential pathogens, and that beneficial probiotics can be identified that counteract these changes.


Assuntos
Transtorno do Espectro Autista , Microbioma Gastrointestinal , Micobioma , Irmãos , Transtorno do Espectro Autista/microbiologia , Humanos , Feminino , Masculino , Criança , Animais , Camundongos , Pré-Escolar , Disbiose/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Candida albicans/isolamento & purificação , Fezes/microbiologia
15.
Nutrients ; 16(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39275356

RESUMO

ATP-binding cassette transporter subfamily G member 2 (ABCG2) is responsible for the excretion of foreign substances, such as uric acid (UA) and indoxyl sulfate (IS), from the body. Given the importance of increased ABCG2 expression in UA excretion, we investigated the enhancement of intestinal ABCG2 expression using Lactiplantibacillus plantarum 06CC2 (LP06CC2). Mice were reared on a potassium oxonate-induced high-purine model at doses of 0.02% or 0.1% LP06CC2 for three weeks. Results showed that LP06CC2 feeding resulted in increased ABCG2 expression in the small intestine. The expression level of large intestinal ABCG2 also showed a tendency to increase, suggesting upregulation of the intestinal excretion transporter ABCG2 by LP06CC2. Overall, LP06CC2 treatment increased fecal UA excretion and showed a trend towards increased fecal excretion of IS, suggesting that LP06CC2 treatment enhanced the expression of intestinal ABCG2, thereby promoting the excretion of UA and other substances from the intestinal tract.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Ácido Úrico , Animais , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Ácido Úrico/metabolismo , Ácido Úrico/urina , Camundongos , Masculino , Fezes/química , Fezes/microbiologia , Probióticos , Mucosa Intestinal/metabolismo , Lactobacillus plantarum/metabolismo , Lactobacillaceae/metabolismo , Intestino Delgado/metabolismo , Intestinos/microbiologia
16.
Ren Fail ; 46(2): 2399749, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39248406

RESUMO

BACKGROUND: IgA nephropathy (IgAN) is intimately linked to mucosal immune responses, with nasopharyngeal and intestinal lymphoid tissues being crucial for its abnormal mucosal immunity. The specific pathogenic bacteria in these sites associated with IgAN, however, remain elusive. Our study employs 16S rRNA sequencing and machine learning (ML) approaches to identify specific pathogenic bacteria in these locations and to investigate common pathogens that may exacerbate IgAN. METHODS: In this cross-sectional analysis, we collected pharyngeal swabs and stool specimens from IgAN patients and healthy controls. We applied 16SrRNA sequencing to identify differential microbial populations. ML algorithms were then used to classify IgAN based on these microbial differences. Spearman correlation analysis was employed to link key bacteria with clinical parameters. RESULTS: We observed a reduced microbial diversity in IgAN patients compared to healthy controls. In the gut microbiota of IgAN patients, increases in Bacteroides, Escherichia-Shigella, and Parabacteroides, and decreases in Parasutterella, Dialister, Faecalibacterium, and Subdoligranulum were notable. In the respiratory microbiota, increases in Neisseria, Streptococcus, Fusobacterium, Porphyromonas, and Ralstonia, and decreases in Prevotella, Leptotrichia, and Veillonella were observed. Post-immunosuppressive therapy, Oxalobacter and Butyricoccus levels were significantly reduced in the gut, while Neisseria and Actinobacillus levels decreased in the respiratory tract. Veillonella and Fusobacterium appeared to influence IgAN through dual immune loci, with Fusobacterium abundance correlating with IgAN severity. CONCLUSIONS: This study revealing that changes in flora structure could provide important pathological insights for identifying therapeutic targets, and ML could facilitate noninvasive diagnostic methods for IgAN.


Assuntos
Microbioma Gastrointestinal , Glomerulonefrite por IGA , Humanos , Glomerulonefrite por IGA/microbiologia , Estudos Transversais , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Fezes/microbiologia , Aprendizado de Máquina , Estudos de Casos e Controles , Bactérias/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Microbiota , Adulto Jovem
17.
Hum Vaccin Immunother ; 20(1): 2396707, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-39248509

RESUMO

Evidence on unnecessary antibiotic use in children with acute viral gastroenteritis (AGE) is scarce. We characterized the extent and correlates of antibiotic use among children hospitalized with viral AGE. A single-center study enrolled children aged 0-59 months hospitalized for AGE between 2008 and 2015 in Israel. Information was collected on laboratory tests, diagnoses, antibiotic treatment, and rotavirus vaccination. Stool samples were tested for rotavirus antigen, GII-norovirus, and stool cultures were performed for bacterial enteropathogens. Data from 2240 children were analyzed. Rotavirus vaccine was given to 79% of eligible children. Rotavirus test was performed on 1419 (63.3%) children. Before the introduction of universal rotavirus vaccination (2008-2010), rotavirus positivity in stool samples was 37.0%, which declined to 17.3% during the universal vaccination years (2011-2015). Overall, 1395 participants had viral AGE. Of those, 253 (18.1% [95% CI 16.1-20.2]) had unnecessary antibiotic treatment, mostly penicillin 46.6%, ceftriaxone 34.0% and azithromycin 21.7%. A multivariable analysis showed an inverse association between rotavirus vaccination and unnecessary antibiotic treatment (odds ratio = 0.53 [95% CI 0.31-0.91]), while positive associations were found with performing chest-X-ray test (3.00 [1.73-5.23]), blood (3.29 [95% CI 1.85-5.86]) and urine cultures (7.12 [3.77-13.43]), levels of C-reactive protein (1.02 [1.01-1.02]) and leukocytes (1.05 [1.01-1.09]). The results were consistent in an analysis of children with laboratory-confirmed rotavirus or norovirus AGE, or after excluding children with CRP > 50 mg/L. In conclusion, antibiotic prescription was common among hospitalized children with viral AGE, which was inversely related to rotavirus vaccination, possibly due to less severe illness in the vaccinated children.


Assuntos
Antibacterianos , Gastroenterite , Hospitalização , Infecções por Rotavirus , Vacinas contra Rotavirus , Humanos , Gastroenterite/virologia , Gastroenterite/prevenção & controle , Gastroenterite/tratamento farmacológico , Lactente , Vacinas contra Rotavirus/administração & dosagem , Vacinas contra Rotavirus/imunologia , Pré-Escolar , Masculino , Feminino , Antibacterianos/uso terapêutico , Infecções por Rotavirus/prevenção & controle , Hospitalização/estatística & dados numéricos , Israel/epidemiologia , Recém-Nascido , Fezes/virologia , Fezes/microbiologia , Rotavirus/imunologia , Rotavirus/isolamento & purificação , Vacinação/estatística & dados numéricos , Norovirus/imunologia
18.
FASEB J ; 38(18): e70065, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39305117

RESUMO

One in six people are projected to be 65 years or older by 2050. As the population ages, better treatments for injuries that disproportionately impact the aged population will be needed. Clinical studies show that people aged 65 and older experience higher rates of morbidity and mortality after burn injury, including a greater incidence of pulmonary complications when compared to younger burn injured adults, which we and others believe is mediated, in part, by inflammation originating in the intestines. Herein, we use our clinically relevant model of scald burn injury in young and aged mice to determine whether cohousing aged mice with young mice or giving aged mice oral gavage of fecal material from young mice is sufficient to alter the microbiome of the aged mice and protect them from inflammation in the ileum and the lungs. Aged burn injured mice have less DNA expression of Bacteroidetes in the feces and an unhealthy Firmicutes/Bacteroidetes ratio. Both Bacteroidetes and the ratio of these two phyla are restored in aged burn injured by prior cohousing for a month with younger mice but not fecal transfer from young mice. This shift in the microbiome coincides with heightened expression of danger-associated molecular patterns (DAMP), and pro-inflammatory cytokine interleukin-6 (il6) in the ileum and lung of aged, burn injured mice, and heightened antimicrobial peptide camp in the lung. Cohousing reverses DAMP expression in the ileum and lung, and cathelicidin-related antimicrobial peptide protein (camp) in the lung, while fecal transfer heightened DAMPs while reducing camp in the lung, and also increased IL-6 protein in the lungs. These results highlight the importance of the intestinal microbiome in mediating inflammation within the gut-lung axis, giving insights into potential future treatments in the clinic.


Assuntos
Queimaduras , Microbioma Gastrointestinal , Inflamação , Animais , Queimaduras/microbiologia , Camundongos , Inflamação/microbiologia , Camundongos Endogâmicos C57BL , Masculino , Envelhecimento , Fezes/microbiologia , Pulmão/microbiologia , Pulmão/metabolismo , Pulmão/patologia , Transplante de Microbiota Fecal , Bacteroidetes , Íleo/microbiologia , Íleo/metabolismo
19.
J Hazard Mater ; 479: 135756, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39255668

RESUMO

The report demonstrated that a member of cockroach family, Blaptica dubia (Blattodea: Blaberidae) biodegraded commercial polystyrene (PS) plastics with Mn of 20.3 kDa and Mw of 284.9 kDa. The cockroaches digested up to 46.6 % of ingested PS within 24 h. The biodegradation was confirmed by the 13C isotopic shift of the residual PS in feces versus pristine PS (Δ Î´13C of 2.28 ‰), reduction of molecular weight and formation of oxidative functional groups in the residual PS. Further tests found that B.dubia cockroaches degraded all eight high purity PS microplastics with low to ultra-high molecular weights (MW) at 0.88, 1.20, 3.92, 9.55, 62.5, 90.9, 524.0, and 1040 kDa, respectively, with superior biodegradation ability. PS depolymerization/biodegradation pattern was MW-dependent. Ingestion of PS shifted gut microbial communities and elevated abundances of plastic-degrading bacterial genes. Genomic, transcriptomic and metabolite analyses indicated that both gut microbes and cockroach host contributed to digestive enzymatic degradation. PS plastic diet promoted a highly cooperative model of gut digestive system. Weighted gene co-expression network analysis revealed different PS degradation patterns with distinct MW profiles in B. dubia. These results have provided strong evidences of plastic-degrading ability of cockroaches or Blaberidae family and new understanding of insect and their microbe mediated biodegradation of plastics.


Assuntos
Biodegradação Ambiental , Baratas , Microbioma Gastrointestinal , Poliestirenos , Animais , Poliestirenos/química , Baratas/microbiologia , Baratas/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Fezes/microbiologia , Microplásticos/toxicidade
20.
Sci Rep ; 14(1): 21746, 2024 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294269

RESUMO

The aim of this study was to investigate the vertical transfer of microbiota from dams to the offspring. We studied a pair of 20 dams and its offspring. Maternal sources (colostrum, feces and vaginal secretion) and newborn fecal samples were analyzed using 16S rDNA amplicon sequencing on days 1, 3, 7, 14 and 28. Overall, newborns were maintained healthy and did not receive antimicrobial therapy. The Source Tracker analysis indicated that the newborn fecal microbiota was similar to colostrum and vaginal secretion from day 1 up to 7. However, an unknown source (probably from the environment) showed a gradual increase in its similarity with fecal samples from calves measured from day 3 to 28. The most abundant bacteria groups on meconium (day 1) and calf fecal samples on day 3 were Escherichia-Shigella and Clostridium, respectively. On day 7, the predominant genus were Bifidobacterium and Lactobacillus, while Fusobacterium was the most abundant genus on day 14, coinciding with the diarrhea peak. Faecalibacterium showed a gradual increase throughout the neonatal period. Maternal sources contribute to the neonatal microbiota, however other unknown sources (probably environment) had a strong influence on development of the gut microbiota later in the neonate period.


Assuntos
Animais Recém-Nascidos , Colostro , Fezes , Microbioma Gastrointestinal , Animais , Microbioma Gastrointestinal/genética , Bovinos , Feminino , Fezes/microbiologia , Colostro/microbiologia , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Gravidez , Vagina/microbiologia , Mecônio/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA